首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 845 毫秒
1.
The main purpose of this paper is to analyze the convergence measurements in drifts of the Underground Research Laboratory (URL) of the French National Radioactive Waste Management Agency (Andra), excavated in Callovo-Oxfordian claystone. These measurements show an anisotropic closure, which depends on the drift orientations with respect to the horizontal in situ stresses. This anisotropic character of the deformation is taken into account by assuming that the drifts section evolves following an elliptical shape. The characteristics of the deformed elliptical section are evaluated following the methodology proposed by Vu et al. (Rock Mech Rock Eng 46:231–246, 2013). Then, using the semi-empirical law proposed by Sulem et al. (Int J Rock Mech Min Sci Geomech Abstr 24:145–154, 1987), the convergence evolution is fitted independently for each axis of the ellipse. This method allows to distinguish two effects: the face advance and the time-dependent behavior of the ground. The results for the two drift orientations (along the major horizontal stress and perpendicular to it) show very close values for the parameters describing the time-dependent properties of the ground, the distance of influence of the face, and the extent of the decompressed zone around the drift. Finally, the model is validated by keeping these parameters as constants and by simulating the convergence data on a new drift. It is shown that with a period of about 40 days of convergence monitoring, the model can provide valuable insights for predictions of the convergence evolution in the long term.  相似文献   

2.
3.
In this paper, we analyse the convergence measurements recorded in a gallery excavated in severely squeezing ground. The procedure consists in a preliminary geometrical treatment of the raw data to evaluate the principal axes of deformation by assuming an elliptic deformation of the walls of the gallery. Then the convergence law proposed by Sulem et al. (Int J Rock Mech Min Sci Geomech Abstr 24(3):145–154, 1987a), which is extended to account for anisotropic closure, is fitted on the displacements along the two axes of the obtained ellipse. This procedure is more robust and relevant than fitting the convergence recorded on the most deforming segment or fitting the average value of the convergence along the various segments. An attempt is made to correlate the amount and the direction of anisotropic deformation with the lithology and some geological features described by the dominant discontinuity families.  相似文献   

4.
The development of the Brazilian disc test for determining indirect tensile strength and its applications in rock mechanics are reviewed herein. Based on the history of research on the Brazilian test by analytical, experimental, and numerical approaches, three research stages can be identified. Most of the early studies focused on the tensile stress distribution in Brazilian disc specimens, while ignoring the tensile strain distribution. The observation of different crack initiation positions in the Brazilian disc has drawn a lot of research interest from the rock mechanics community. A simple extension strain criterion was put forward by Stacey (Int J Rock Mech Min Sci Geomech Abstr 18(6):469–474, 1981) to account for extension crack initiation and propagation in rocks, although this is not widely used. In the present study, a linear elastic numerical model is constructed to study crack initiation in a 50-mm-diameter Brazilian disc using FLAC3D. The maximum tensile stress and the maximum tensile strain are both found to occur about 5 mm away from the two loading points along the compressed diameter of the disc, instead of at the center of the disc surface. Therefore, the crack initiation point of the Brazilian test for rocks may be located near the loading point when the tensile strain meets the maximum extension strain criterion, but at the surface center when the tensile stress meets the maximum tensile strength criterion.  相似文献   

5.
Three-dimensional, elastic and elasto-plastic finite element (FE) programs have permitted calculation of the displacements and the factor of safety (FOS) for the excavation for a tower, 132.70 m high (above foundation) on the island of Tenerife. The tower is supported by a 2 m thick reinforced concrete slab on jointed, vesicular and weathered basalt and scoria. The installation of rod extensometers at different depths below the slab has permitted comparison between measured and calculated displacements and the estimation of in situ deformation modulus. The moduli deduced from the simple empirical equations proposed by Hoek et al. (In: NARMS-TAC, 2002) and Gokceoglu et al. (Int J Rock Mech Min Sci 40:701–710, 2003) as a function of GSI, and Nicholson and Bieniawski (Int J Min Geol Eng 8:181–202, 1990) as a function of RMR, provide an acceptable fit with the measured settlements in this type of rock. Good correlation is also obtained with the empirical equation presented by Verman et al. (Rock Mech Rock Eng 30(3):121–127, 1997) that incorporates the influence of confining stress in the deformation modulus. The FOS obtained from different correlations with geomechanical classifications is within a relatively narrow range. These results increase our confidence in the use of classification schemes to estimate the deformation and stability in jointed rock.  相似文献   

6.
Slake durability of rocks is an important property of rock-mass and rock-materials in geotechnical practice. The slake durability of rocks is closely related to their mineralogical composition. In this paper, mineralogical examinations and slake durability tests for argillaceous clastic rocks, especially pyroclastic rocks, sandstones and mudstones of Neogene Tertiary age from Japan, were performed in order to assess the slake durability and rock alteration process of these rocks as well as to understand the relationship between mineralogy and durability.The mineral composition and textural features of the rocks were studied by means of optical microscopy (OM), X-ray diffractometry (XRD), electron microprobe analysis (EPMA), and scanning electron microscopy (SEM). In addition, the slake durability test was carried out by using the standard testing method of ISRM [Int. J. Rock Mech. Min. Sci. 16 (1979) 148] in distilled water and in the aqueous solutions with dissolved electrolytes of NaCl and CaCl2.The pyroclastic rocks and tuffaceous sandstone, rich in di-octahedral and tri-octahedral Fe smectite, respectively, show distinctively different slaking behaviors. The pyroclastic rocks show relatively high slaking (Id2=55.5% and Id10=10.5%) than the tuffaceous sandstone (Id2=94.1% and Id10=87.8%, refer to text for Id2 and Id10). This difference in the slake durability observed in these rocks is due to the microscopic occurrences of smectite present in the interspaces between the particles (pyroclastic rocks) and zeolite cementing the interspaces (tuffaceous sandstone) as alteration minerals. In addition, the durability results of tuffaceous sandstone show that the slake durability decreases as the degree of weathering increases (weathered material Id2=88.7% and Id10=65.3%). Furthermore, two mudstones of Miocene and Pliocene ages, having different clay mineral compositions (smectite vs. illite+chlorite), show the lowest and the highest slake durability among the tested clastic rocks. Hard mudstone shows the highest (Id2=98.1% and Id10=95.5%) while the soft mudstone shows the lowest (Id2=33.9% and Id6=0.4%.) slake durability. Thus, the slake durability of pyroclastic and sedimentary rocks is greatly affected by their mineral composition and texture, and is closely related to their alteration history. Slake durability is also affected by the kind of dissolved electrolyte and its concentration in the aqueous solution, providing some useful information for geotechnical practice.  相似文献   

7.
Experiments were conducted to study the relationship between the transmission ratio (TR) and normal stress, joint roughness, joint number and frequency of incident waves, respectively, when ultrasonic waves pass across a rock mass with one joint and multiple parallel joints oriented normally. The ultrasonic waves were generated and received by pairs of piezoelectric transducers and recorded by an ultrasonic detector. The specimens were subjected to normal stress by a hydraulic jack and loading frame. The jointed rock mass was produced by superposing rock blocks in the study. Rough joints were produced by grooving notches on the planar joints formed by sawing directly. In the case of multiple parallel joints, the overall thickness of specimens was maintained while the joint number changed. Three pairs of P-wave transducers and one pair of S-wave transducers with different frequencies were, respectively, applied and all transducers emitted signals perpendicular to the joints in the experiment. The results indicate that TR increases with increasing normal stress while the increment rate decreases gradually. This is particularly so when the normal stress is high enough that TR will approximate 1 even if the rock mass has many joints. In addition, the experiments indicate that the higher the wave’s frequency, the lower its TR, and this phenomenon is gradually reduced as the normal stress increases. In response to S-waves, TR increases with increase in joint roughness; however, in response to P-waves, TR decreases gradually with increase in joint roughness. For multiple parallel joints in a fixed thickness rock mass with normally incident P-waves, TR does not always decrease with increase in the number of joints, and there is a threshold joint spacing for a certain incident wave: when the joint spacing is smaller than the threshold value, TR will increase with a decrease in joint spacing. The experimental results support similar conclusions based on analytical results drawn by Cai and Zhao (Int J Rock Mech Min Sci 37(4):661–682, 2000), Zhao et al. (Int J Rock Mech Min Sci 43(5):776–788, 2006b) and Zhu et al. (J Appl Geophys 73:283–288, 2011a).  相似文献   

8.
The influence of roughness on the hydro-mechanical behavior of rock discontinuities has long been recognized. As a result, several definitions and measures of roughness have been developed. According to the ISRM (Int J Rock Mech Min Sci Geomech Abstr 15(6):319–368, 1978), discontinuity roughness comprises large-scale (waviness) and small-scale (unevenness) components. However, the division between these scales is not clear and most investigations of surface roughness have been restricted to small fracture surfaces (<1 m2). Hence, the large-scale components of roughness are often neglected. Furthermore, these investigations typically define roughness using two-dimensional profiles rather than three-dimensional surfaces, which can lead to biased estimates of roughness. These limitations have led to some contradictory findings regarding roughness scale dependency (scale effects). This paper aims to provide some explanation of these contradictory findings. Through the in situ digitization and analysis of two adjacent large-scale (~2 × 3 m2 and ~2 × 2 m2) migmatitic-gneiss fracture surfaces, the influence of sample size on roughness estimates are investigated. In addition, the influence of measurement resolution on roughness estimates is investigated by digitizing small-scale (100 × 100 mm2) samples from the same fracture with varying resolution. The findings show roughness to increase as a function of the sampling window size, in contrast to what is commonly assumed. That is, the combined waviness and unevenness of a discontinuity relative to its mean plane increases with scale. Compared to the sampling window size, the resolution of surface measurements is shown to have a far greater influence on roughness estimates. This influence of measurement resolution may explain some of the contradictory roughness scale relationships that have been published previously. It is important to note that the observed decrease in shear strength with increasing scale, as observed in many prior studies, is not being questioned; rather, a clarification of the role of roughness in this phenomenon is sought.  相似文献   

9.
The paper presents a closed-form solution for the convergence curve of a circular tunnel in an elasto-brittle-plastic rock mass with both the Hoek–Brown and generalized Hoek–Brown failure criteria, and a linear flow rule, i.e., the ratio between the minor and major plastic strain increments is constant. The improvement over the original solution of Brown et al. (J Geotech Eng ASCE 109(1):15–39, 1983) consists of taking into account the elastic strain variation in the plastic annulus, which was assumed to be fixed in the original solution by Brown et al. The improvement over Carranza-Torres’ solution (Int J Rock Mech Min Sci 41(Suppl 1):629–639, 2004) consists of providing a closed-form solution, rather than resorting to numerical integration of an ordinary differential equation. The presented solution, by rigorously following the theory of plasticity, takes into account that the elastic strain components change with radial and circumferential stress changes within the plastic annulus. For the original Hoek–Brown failure criterion, disregarding the elastic strain change leads to underestimate the convergence by up to 55%. For a rock mass failing according to the generalized Hoek–Brown failure criterion, using the original failure criterion leads to a high probability (97%) of underestimating the convergence by up to 100%. As a consequence, the onset or degree of squeezing may be underestimated, and the loading on the support/reinforcement calculated with the convergence/confinement method may be largely underestimated.  相似文献   

10.
Dynamic Brazilian Tests of Granite Under Coupled Static and Dynamic Loads   总被引:2,自引:2,他引:0  
Rocks in underground projects at great depth, which are under high static stresses, may be subjected to dynamic disturbance at the same time. In our previous work (Li et al. Int J Rock Mech Min Sci 45(5):739–748, 2008), the dynamic compressive behaviour of pre-stressed rocks was investigated using coupled-load equipment. The current work is devoted to the investigation of the dynamic tensile behaviour of granite rocks under coupled loads using the Brazilian disc (BD) method with the aid of a high-speed camera. Through wave analyses, stress measurements and crack photography, the fundamental problems of BD tests, such as stress equilibrium and crack initiation, were investigated by the consideration of different loading stresses with abruptly or slowly rising stress waves. The specially shaped striker method was used for the coupled-load test; this generates a slowly rising stress wave, which allows gradual stress accumulation in the specimen, whilst maintaining the load at both ends of the specimen in an equilibrium state. The test results showed that the tensile strength of the granite under coupled loads decreases with increases in the static pre-stresses, which might lead to modifications of the blasting design or support design in deep underground projects. Furthermore, the failure patterns of specimens under coupled loads have been investigated.  相似文献   

11.
In this work Data Mining tools are used to develop new and innovative models for the estimation of the rock deformation modulus and the Rock Mass Rating (RMR). A database published by Chun et al. (Int J Rock Mech Min Sci 46:649–658, 2008) was used to develop these models. The parameters of the database were the depth, the weightings of the RMR system related to the uniaxial compressive strength, the rock quality designation, the joint spacing, the joint condition, the groundwater condition and the discontinuity orientation adjustment, the RMR and the deformation modulus. As a modelling tool the R program environment was used to apply these advanced techniques. Several algorithms were tested and analysed using different sets of input parameters. It was possible to develop new models to predict the rock deformation modulus and the RMR with improved accuracy and, additionally, allowed to have an insight of the importance of the different input parameters.  相似文献   

12.
The construction of a large open air theatre having with an audience capacity of 7,000 is planned at the Beytepe Campus of Hacettepe University located near Ankara, Turkey, in the heart of Anatolia. The foundation of the open air theatre is composed of weak and heavily jointed Ankara Greywacke. An estimation of the strength and deformation of the Ankara Greywacke was required for assessments of short- and long-term stability. Accordingly, rock mass characterization of the Ankara Greywacke was investigated in detail by scan-line surveys and back-analyses of in situ tests performed on the excavated surface of the rock mass. The final version of the Hoek and Brown Criterion (Hoek et al., In: Proceedings of the north American rock mechanics society meeting, Toronto, Canada, pp 1–6, 2002) together with and improvements proposed by Sonmez and Gokceoglu (Int J Rock Mech Min Sci, 43:671–676, 2006) were considered together for the back analyses of small slope benches subjected to plate loading test loaded to failure. In addition, the plate loading test data were used with some well-known empirical equations for predicting of deformation modulus of rock masses to calculate ranges of values of the Geological Strength Index (GSI) The static and pseudostatic slope stabilities of the audience seating structures to be supported by benches excavated into the rock were also analyzed. The stability assessments revealed the unlikelihood of large rock mass failures for the short-term construction stages or for the long-term, as-constructed conditions under static or pseudo-static conditions. Additionally, the analyses showed that there was no need for anchors between the concrete seating structures and greywacke rock mass.  相似文献   

13.
A procedure for the estimation of distribution parameters of a Weibull distribution model K1 = f(KIc12/4/σC23/4) for solid particle erosion, as recently suggested in Rock Mech Rock Eng, doi: 10.1007/s00603-014-0658-x, 2014, is derived. The procedure is based on examinations of elastic–plastically responding rocks (rhyolite, granite) and plastically responding rocks (limestone, schist). The types of response are quantified through SEM inspections of eroded surfaces. Quantitative numbers for the distribution parameter K1 are calculated for 30 rock materials, which cover a wide range of mechanical properties. The ranking according to the parameter K1 is related to qualitative rock classification schemes. A modified proposal for the erosion of schist due to solid particle impingement at normal incidence is introduced.  相似文献   

14.

A series of nonlinear dynamic FE simulations have been performed to investigate the seismic performance of a flexible propped retaining wall in a saturated clay. The simulations have been carried out considering different acceleration time histories at the bedrock and two different inelastic soil models: the classical elastoplastic Modified Cam Clay model and the advanced hypoplastic model for clays proposed by Ma?ín (Int J Numer Anal Methods Geomech 29:311–336, 2005) equipped with the intergranular strains extension. The results of the simulations highlight the major role played by the choice of the constitutive model for the soil on the predicted seismic response, in terms of predicted wall displacements and structural loads. In particular, the results show that a key role is played by the model ability to correctly reproduce soil dilatancy as a function of the current stress state and loading history. This has a major impact on the inelastic volumetric deformations accumulated during the undrained seismic shearing and on the development of excess pore water pressures around the excavations.

  相似文献   

15.
In recent years, the authors have proposed a new double‐node zero‐thickness interface element for diffusion analysis via the finite element method (FEM) (Int. J. Numer. Anal. Meth. Geomech. 2004; 28 (9): 947–962). In the present paper, that formulation is combined with an existing mechanical formulation in order to obtain a fully coupled hydro‐mechanical (or HM) model applicable to fractured/fracturing geomaterials. Each element (continuum or interface) is formulated in terms of the displacements (u) and the fluid pressure (p) at the nodes. After assembly, a particular expression of the traditional ‘up’ system of coupled equations is obtained, which is highly non‐linear due to the strong dependence between the permeability and the aperture of discontinuities. The formulation is valid for both pre‐existing and developing discontinuities by using the appropriate constitutive model that relates effective stresses to relative displacements in the interface. The system of coupled equations is solved following two different numerical approaches: staggered and fully coupled. In the latter, the Newton–Raphson method is used, and it is shown that the Jacobian matrix becomes non‐symmetric due to the dependence of the discontinuity permeability on the aperture. In the part II companion paper (Int. J. Numer. Anal. Meth. Geomech. 2008; DOI: 10.1002/nag.730 ), the formulation proposed is verified and illustrated with some application examples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Numerical procedures are developed to analyze interaction between fully grouted bolts and rock mass using ‘enriched finite element method (EFEM)’. A solid element intersected by a rock bolt along any arbitrary direction is termed as ‘enriched’ element. The nodes of an enriched element have additional degrees of freedom for determining displacements, stresses developed in the bolt rod. The stiffness of the enriched element is formulated based on properties of rock mass, bolt rod and grout, orientation of the bolt and borehole diameter. Decoupling at grout–bolt interface and elasto‐plastic behavior of rock mass have also been incorporated into the EFEM procedures. The results of this method are compared with analytical pull‐out test results presented by Li and Stillborg (Int. J. Rock Mech. Min. Sci. 1999; 36 :1013–1029). In addition, a numerical example of a bolted tunnel is provided to demonstrate the efficacy of the proposed method for practical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The Kela-2 gas field, found in the Kuqa Depression of the Tarim Basin, northwestern China, is a large-sized dry gas field (C1 /C1-5 =0.992 0.999) and characterized by ultra-high pressure (pressure factor up to 2.0 2.2). The pyrolysis experiment was carried out under isothermal gold-tube closed system, with samples collected from the Jurassic coal, Jurassic mudstone and Triassic mudstone in the Kuqa Depression. The result of gas yield showed that the Middle and Lower Jurassic source rocks have higher gas generation potential than the Triassic source rocks. The kinetic modeling of gas generation and methane carbon isotope fractionation suggested that the Kela-2 gases belong to the products of high-over mature stages and were mainly derived from the Middle and Lower Jurassic coal-bearing strata. The Triassic source rocks made a minor contribution to the Kela-2 gases. The Kela-2 gases chiefly generated from coal-bearing source rocks with R o values from 1.3% to 2.5%, and thus primarily accumulated after 5 Ma.  相似文献   

18.
The formation of a compacted zone under the indenter seems to be the major factor controlling the indentation process in porous rocks. In the case of very porous materials, where the pore structure fails and deformation (by structural collapse) proceeds with almost no increase in the applied load and with very limited damage to the surrounding material, no chipping is observed. The extent of the compacted zone is controlled by the porosity of the material and by the strength of its porous structure. This paper presents an interpretation model developed by the authors to obtain the uniaxial compressive strength of porous materials from the results of indentation tests. It is based on the model proposed by Wilson et al. (Int. J. Mech. Sci., 17, 1975, 457) for the interpretation of indentation tests on compressible foams and on an estimation by the authors of the extent of the compacted zone under the indenter. The results of indentation tests can also be used to obtain the Young's modulus of the material with a model proposed by Gill et al. (Proceedings of the 13th Canadian Symposium on Rock Mechanics, 1980, 1103). Uniaxial compression and indentation tests have been performed on artificial porous materials showing porosities varying between 44 and 68%. The uniaxial compressive strength values obtained from both types of test show a very good agreement. For the Young's modulus, the values obtained from the two types of test are different but the variation of the moduli with porosity is the same. Finally, a parameter called permanent penetration modulus is proposed as a means of characterizing the uniaxial compressive strength of porous materials.  相似文献   

19.
The residual mechanism of wave‐induced pore water pressure accumulation in marine sediments is re‐examined. An analytical approximation is derived using a linear relation for pore pressure generation in cyclic loading, and mistakes in previous solutions (Int. J. Numer. Anal. Methods Geomech. 2001; 25 :885–907; J. Offshore Mech. Arctic Eng. (ASME) 1989; 111 (1):1–11) are corrected. A numerical scheme is then employed to solve the case with a non‐linear relation for pore pressure generation. Both analytical and numerical solutions are verified with experimental data (Laboratory and field investigation of wave– sediment interaction. Joseph H. Defrees Hydraulics Laboratory, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 1983), and provide a better prediction of pore pressure accumulation than the previous solution (J. Offshore Mech. Arctic Eng. (ASME) 1989; 111 (1):1–11). The parametric study concludes that the pore pressure accumulation and use of full non‐linear relation of pore pressure become more important under the following conditions: (1) large wave amplitude, (2) longer wave period, (3) shallow water, (4) shallow soil and (5) softer soils with a low consolidation coefficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
There are abundant bitumens and oil seepages stored in vugs in a Lower-Triassic Daye formation (T1d) marlite in Ni’erguan village in the Southern Guizhou Depression. However, the source of those oil seepages has not been determined to date. Multiple suites of source rocks of different ages exist in the depression. Both the oil seepages and potential source rocks have undergone complicated secondary alterations, which have added to the difficulty of an oil-source correlation. For example, the main source rock, a Lower-Cambrian Niutitang Formation (?1n) mudstone, is over mature, and other potential source rocks, both from the Permian and the Triassic, are still in the oil window. In addition, the T1d oil seepages underwent a large amount of biodegradation. To minimize the influence of biodegradation and thermal maturation, special methods were employed in this oil-source correlation study. These methods included catalytic hydropyrolysis, to release covalently bound biomarkers from the over mature kerogen of ?1n mudstone, sequential extraction, to obtain chloroform bitumen A and chloroform bitumen C from the T1d marlite, and anhydrous pyrolysis, to release pyrolysates from the kerogen of T1d marlite. Using the methods above, the biomarkers and n-alkanes released from the oil samples and source rocks were analysed by GC–MS and GC-C-IRMS. The oil-source correlation indicated that the T1d oil seepage primarily originated from the ?1n mudstone and was partially mixed with oil generated from the T1d marlite. Furthermore, the seepage also demonstrated that the above methods were effective for the complicated oil-source correlation in the Southern Guizhou Depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号