首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Morphodynamics of ebb-tidal deltas: a model approach   总被引:1,自引:0,他引:1  
The results of 2DH numerical models of the Frisian Inlet (located in the Dutch Wadden Sea) are discussed to gain further knowledge about the physical mechanisms causing the presence of both ebb-tidal deltas and of channels and shoals in tide-dominated inlet systems. A hydrodynamic model, extended with sediment transport formulations, was used to verify earlier conceptual models that deal with ebb-tidal delta characteristics. The model does not confirm their hypothesis concerning the observed spatial asymmetry of ebb-tidal deltas and suggests that long-term morphological simulations are needed to understand this aspect. Furthermore, the model indicates that the initial formation of the ebb-tidal delta is mainly due to convergence of the tidally averaged sediment flux related to residual currents, whilst the net sediment transport in the basin is mainly caused by tidal asymmetry. A second model (accounting for feedbacks between tidal motion and the erodible bottom) was used to simulate the long-term bathymetric evolution of the Frisian Inlet under fair weather conditions. This model reproduces the gross characteristics of the observed morphology: the presence of a double-inlet system with two distinct ebb-tidal deltas having different sizes and the presence of channels and shoals. The role of the ‘Engelsmanplaat’, a consolidated shoal in the middle of the Frisian Inlet, was not found to be crucial for the morphodynamic stability of this inlet system.  相似文献   

2.
3.
《Coastal Engineering》2006,53(5-6):505-529
Texel inlet, the largest inlet in the Dutch Wadden Sea, has undergone drastic changes in the morphology of basin, ebb-tidal delta and adjacent coastlines after closure of a major part of its back-barrier basin. Despite intensive monitoring and analysis, present observation-based conceptual models lack the subtle physics necessary to explain the sand exchange between inlet, ebb-tidal delta and adjacent coastlines.Fundamental understanding of the inlet dynamics and evolution is obtained by integrating field and model data analysis. The state-of-the-art process-based model Delft3D Online Morphology has been used to generate synoptic data of high spatial and temporal resolution over the inlet domain. It is shown that the Delft3D Online Morphology model is capable of the quasi real-time simulation of the dominant flow and transport patterns over a 3-month period on the scale of the inlet. The high-resolution numerical model results prove to be a valuable tool in identifying the main transport patterns and mechanisms in the inlet domain. Qualitative transport patterns in Texel Inlet and its associated ebb-tidal delta are derived by integration of the observations and model results.The present ebb-tidal delta developments are best described as a second-stage self-organizing phase of redistribution and recirculation of sediments to obtain a natural dynamic equilibrium state, adapted to the changed configuration of the main-ebb channels. Sand is transported from the abandoned ebb-delta front (western margin of Noorderhaaks) and along the adjacent coastlines into the basin where it partly settles. Ebb-tidal currents redistribute sand back from the basin mainly onto the southern ebb-tidal delta shoals. Large gross transport rates, but small morphological changes, point to sediment recirculation. Sediment import into the basin results from net flood dominated transport due to tidal asymmetry, landward directed wind- and wave-driven flow, and larger flood transport capacities due to wave effects (e.g. enhanced bed shear stresses and stirring of sediment) that exceed the net ebb-dominated tidal residual transports.  相似文献   

4.
Morphodynamic Processes of Tidal Inlet and Ebb-Tidal Delta of Shuidong Bay   总被引:1,自引:0,他引:1  
Based on the observed data in 1982- 1985 at Shuidong Bay area, west Guangdong Province, the morphodynamic processes of tidal inlet and ebb-tidal delta in the barrier-lagoon system are presented, including the dynamic features of tides and in the tidal inlet, the regional dyanmics and longshore sediment transport in the ebb-tidal delta, the genesis of the entrance bar, the recent erosion and deposition in the ebb-tidal delta and so on. The paper attempts to answer two questions, i. e., the stability of the tidal inlet and the feasibility of dredging on the entrance bar for the course of Shuidong Harbour. The results show that the stability of the tidal inlet is ideal and that dredging action on the entrance bar may be successful if dredging is deep enough and the course position reasonable.  相似文献   

5.
The Otzum ebb-tidal delta, located between Langeoog and Spiekeroog islands along the East Frisian barrier-island coast, southern North Sea, was investigated with respect to its morphological evolution, sediment distribution patterns and internal sedimentary structures. Bathymetric charts reveal that, over the last 50 years, the size of the Otzum ebb-tidal delta has slightly shrunk, while sediment has accreted on the ebb-delta lobe to the east of the main inlet channel (west of Spiekeroog). Swash bars superimposed on the eastern ebb-tidal shoal (Robben Plate) have migrated south or south-eastwards, i.e. towards the inlet throat. The main ebb-delta body is composed of fine quartz sand, whereas the superimposed swash bars and the inlet channel bed consist of medium-grained quartz sand containing high proportions of coarser bioclastic material. Internal sedimentary structures in short box-cores (up to 30 cm long) are dominated by flood-oriented cross-beds. Longer vibro-cores (up to 1.5 m long) show that, at depth, the sediment is dominated by storm-generated parallel (upper plane bed) laminations with intercalated shell layers and dune cross-bedding. The cross-bedded sands in both box-cores and vibro-cores from the ebb-delta shoal predominantly dip towards the south or southeast, indicating transport towards the inlet throat by the flood current. The observations demonstrate that, contrary to previous contentions, the sediments of the highly mobile swash bars do not bypass the inlet but are instead being continually recirculated by the combined action of tidal currents and waves. In this model, the cycle begins with both fine and medium sands, including shell hash, being transported seawards in the main ebb channel until they reach the shallow ebb-delta front. From here, the sediment is pushed onto the eastern ebb-delta shoal by the flood current assisted by waves, becoming strongly size-sorted in the process. The medium sands together with the shell hash are formed into swash bars which migrate along arcuate paths over a base of fine sand back to the main ebb channel located south of the ebb delta. By the same token, the fine sand between the swash bars is transported south-eastwards by the flood current in the form of small dunes until it cascades into the large flood channel located to the west of Spiekeroog. From here, the fine sand is fed back into the main ebb channel, thus completing the cycle. No evidence was found on the ebb delta for alongshore sediment bypassing.  相似文献   

6.
基于湛江湾口外海图地形资料,采用GIS与动力地貌分析的方法,研究了近50年来湛江湾口外落潮三角洲的冲淤变化特征,对湛江湾口外落潮三角洲的演变机制进行了探讨。湛江口外落潮三角洲体系包括口外东北浅滩、西南边滩及口门通道深槽。近50年来,东北浅滩东缘及滩顶出现了侵蚀后退,浅滩西缘和南缘呈淤积趋势,东北浅滩整体有西移南扩趋势;西南边滩有不同程度的侵蚀后退;口门通道深槽有所淤积。湛江湾口外落潮三角洲侵蚀与沿岸泥沙供给不足及人类活动影响有关,口门通道深槽淤积除与落潮三角洲侵蚀泥沙向西搬运有关外,还可能与湛江湾内围垦导致口门通道潮汐动力减弱有关。航道北侧东北浅滩变化对航道回淤的可能影响值得关注。  相似文献   

7.
湛江港潮汐汊道落潮三角洲动力场模拟和沉积动态分析   总被引:3,自引:0,他引:3  
用数值模拟方法揭示湛江港潮汐汊道落潮三角洲的潮流场特征和波浪场特征,探讨落潮三角洲地貌的形成、演化过程中的沉积动力学意义,并提出湛江港落潮三角洲沉积物的运动模式。  相似文献   

8.
A large deficit in the coastal sediment budget, high rates of relative sea-level rise (~0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ~1.6 × 109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ~41,400 m2 to ~139,500 m2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends.  相似文献   

9.
Process-based modeling of morphodynamics of a tidal inlet system   总被引:1,自引:0,他引:1  
The morphodynamic evolution of an idealized inlet system is investigated using a 2-D depthaveraged process-based model,incorporating the hydrodynamic equations,Englund-Hansen’s sediment transport formula and the mass conservation equation.The model has a fixed geometry,impermeable boundaries and uniform sediment grain size,and driven by shore-parallel tidal elevations.The results show that the model reproduces major elements of the inlet system,i.e.,flood and ebb tidal deltas,inlet channel.Equilibrium is reached after several years when the residual transport gradually decreases and eventually diminishes.At equilibrium,the flow field characteristics and morphological patterns agree with the schematized models proposed by O’Brien (1969) and Hayes (1980).The modeled minimum cross-sectional entrance area of the tidal inlet system is comparable with that calculated with the statistical P-A relationship for tidal inlets along the East China Sea coast.The morphological evolution of the inlet system is controlled by a negative feedback between hydrodynamics,sediment transport and bathymetric changes.The evolution rates decrease exponentially with time,i.e.,the system develops rapidly at an early stage while it slows down at later stages.Temporal changes in hydrodynamics occur in the system;for example,the flood velocity decreases while its duration increases,which weakens the flood domination patterns.The formation of the multi-channel system in the tidal basin can be divided into two stages;at the first stage the flood delta is formed and the water depth is reduced,and at the second stage the flood is dissected by a number of tidal channels in which the water depth increases in response to tidal scour.  相似文献   

10.
The economical and ecological importance of tidal inlets has fostered the development of empirical tools for inlet management during the last century. This study aims at confronting these empirical theories with results obtained with a process-based numerical model, MORSYS2D. This 2DH morphodynamic modeling system is applied to an idealized tidal inlet/lagoon system with different combinations of significant wave height, tidal range and tidal prism. The numerical model predictions are compared to the empirical models of Hayes, Bruun, O'Brien and FitzGerald and to morphologies observed at natural tidal inlets. The results present good accordance with observations as well as with some key behaviors predicted with the empirical theories. The predicted morphologies satisfy the relation of O'Brien between the tidal prism and the cross-sectional area, the model reproduces the conceptual model of sand by-passing by ebb-tidal delta breaching of FitzGerald and the classifications of Hayes and Bruun are generally respected. However, some inconsistencies between model results and Hayes classification highlight the limitations of applying this classification, which only considers the yearly-averaged significant wave height and tidal range, to a single tidal inlet case.  相似文献   

11.
《Journal of Sea Research》2009,61(4):227-234
Daily observations of the sea surface temperature in the Marsdiep tidal inlet, which connects the shallow Dutch western Wadden Sea with the deeper North Sea, already started in the summer of 1860, over 140 years ago. Since the year 2000 the sampling frequency has strongly increased because of the use of electronic sensors and data logging by computer. Analysis of these temperature data has revealed variations with time scales from tidal, daily, seasonal, inter-annual, to centennial. The tidal temperature variations are generated by advection of the seasonally varying temperature gradient between Wadden Sea and North Sea, while the daily variations are mainly caused by the daily variation of solar radiation. The seasonal variation in sea surface temperature only lags a few days behind the coastal surface air temperature, contrary to the sea surface temperature in the deeper nearby North Sea, which is delayed with about 1 month. The North Atlantic Oscillation index has been used as large-scale proxy for the atmospheric forcing of the Wadden Sea temperature. Only for the winter and spring a significant correlation is found between temperature and the winter index. However, this correlation is so strong that also the annual mean temperature is correlated significantly with the North Atlantic Oscillation. At longer time scales, from decadal to centennial, also large temperature variations are observed, of the order of 1.5 °C. However, these are not related to long-term changes of the North Atlantic oscillation. These long-term temperature changes involve a cooling of about 1.5 °C in the first 30 years of the record and a similar warming in the last 25 years. In between, these long-term changes were smaller and more irregular. Similar conclusions can also be applied to individual seasons as well as to the date of the onset of spring.  相似文献   

12.
Daily observations of the sea surface temperature in the Marsdiep tidal inlet, which connects the shallow Dutch western Wadden Sea with the deeper North Sea, already started in the summer of 1860, over 140 years ago. Since the year 2000 the sampling frequency has strongly increased because of the use of electronic sensors and data logging by computer. Analysis of these temperature data has revealed variations with time scales from tidal, daily, seasonal, inter-annual, to centennial. The tidal temperature variations are generated by advection of the seasonally varying temperature gradient between Wadden Sea and North Sea, while the daily variations are mainly caused by the daily variation of solar radiation. The seasonal variation in sea surface temperature only lags a few days behind the coastal surface air temperature, contrary to the sea surface temperature in the deeper nearby North Sea, which is delayed with about 1 month. The North Atlantic Oscillation index has been used as large-scale proxy for the atmospheric forcing of the Wadden Sea temperature. Only for the winter and spring a significant correlation is found between temperature and the winter index. However, this correlation is so strong that also the annual mean temperature is correlated significantly with the North Atlantic Oscillation. At longer time scales, from decadal to centennial, also large temperature variations are observed, of the order of 1.5 °C. However, these are not related to long-term changes of the North Atlantic oscillation. These long-term temperature changes involve a cooling of about 1.5 °C in the first 30 years of the record and a similar warming in the last 25 years. In between, these long-term changes were smaller and more irregular. Similar conclusions can also be applied to individual seasons as well as to the date of the onset of spring.  相似文献   

13.
Tidal Flats are important examples of extensive areas of natural environment that remain relatively unaffected by man. Monitoring of tidal flats is required for a variety of purposes. Remote sensing has become an established technique for the measurement of topography over tidal flats. A further requirement is to measure topographic changes in order to measure sediment budgets. To date there have been few attempts to make quantitative estimates of morphological change over tidal flat areas. This paper illustrates the use of remote sensing to measure quantitative and qualitative changes in the tidal flats of Morecambe Bay during the relatively long period 1991–2007. An understanding of the patterns of sediment transport within the Bay is of considerable interest for coastal management and defence purposes. Tidal asymmetry is considered to be the dominant cause of morphological change in the Bay, with the higher currents associated with the flood tide being the main agency moulding the channel system. Quantitative changes were measured by comparing a Digital Elevation Model (DEM) of the intertidal zone formed using the waterline technique applied to satellite Synthetic Aperture Radar (SAR) images from 1991–1994, to a second DEM constructed from airborne laser altimetry data acquired in 2005. Qualitative changes were studied using additional SAR images acquired since 2003. A significant movement of sediment from below Mean Sea Level (MSL) to above MSL was detected by comparing the two Digital Elevation Models, though the proportion of this change that could be ascribed to seasonal effects was not clear. Between 1991 and 2004 there was a migration of the Ulverston channel of the river Leven north-east by about 5 km, followed by the development of a straighter channel to the west, leaving the previous channel decoupled from the river. This is thought to be due to independent tidal and fluvial forcing mechanisms acting on the channel. The results demonstrate the effectiveness of remote sensing for measurement of long-term morphological change in tidal flat areas. An alternative use of waterlines as partial bathymetry for assimilation into a morphodynamic model of the coastal zone is also discussed.  相似文献   

14.
The ebb-tidal delta model of McBride and Moslow is the most comprehensive on the morphogenesis and distribution of shoreface ridges along the US Atlantic seaboard to date. This discussion evaluates the applicability of the above model to the southern North Sea barrier island coast. Results indicate that the characteristics of the North Sea shoreface-connected ridge sediments display a genetic relationship with those of the inlet ebb delta as implied by the ebb-tidal model. By contrast, ridge orientation is not well accounted for by lateral inlet migration and shoreline recession as suggested by the model. A possible reason for the aforementioned discrepancy is discussed.  相似文献   

15.
In the paper two types of numerical models – a lumped-parameter model and a high-resolution two-dimensional hydrodynamic model – are used to analyse the response of a system of partially-connected tidal basins to inhomogeneous open sea forcing. The equations of the lumped-parameter model, suitable for an arbitrary number of basins with sloping walls, are formulated based on one-dimensional continuity and momentum equations. Numerical solutions to the equations are thoroughly examined, showing the influence of inhomogeneous open sea forcing and of geometrical parameters of the basins on the tidal range and the water transport through the system, with particular emphasis given to inter-basin water exchange and cumulative water transport through basins boundaries. The results of the lumped-parameter model simulations for the tidal basins of the German Wadden Sea are successfully compared with the results of calculations with the two-dimensional hydrodynamic model, which is used to investigate in more detail circulation patterns and the influence of specific local features of inlet bathymetry on the hydrodynamic processes in the study area. The influence of wind on the basins response is discussed as well.  相似文献   

16.
Daily observations of the salinity of the Marsdiep tidal inlet, which connects the Dutch western Wadden Sea with the North Sea, already started over 140 years ago, in 1860. Since the year 2000 the sampling frequency has increased because of the use of electronic sensors. Analysis of these salinity data have revealed variations on time scales from tidal (~ 12 hour), seasonal, inter-annual, and multi-decadal, to centennial. The contributions of the salinity variations in the Marsdiep for these different spectral bands or time scales are all of the order of a standard deviation of 0.5 to 1. The centennial variation, which can be expressed as a 140 year long salinity trend, is related to engineering works on the rivers Rhine and IJssel, which already started in the early 18-th century, and more than doubled the magnitude of the freshwater content of the western Wadden Sea since then. In contrast with this anthropogenic salinity trend, the climatic variability of the precipitation over western Europe, and the connected changes in the Rhine discharge, are mainly responsible for the inter-annual variations in the salinity and/or freshwater content of the western Wadden Sea. Since variations in salinity and freshwater content also reflect variations in the terrigeneous and river influence on the Wadden ecosystem, e.g. via the nutrient content, it can be expected that the ecology of the Wadden Sea also experienced changes on centennial time scales.  相似文献   

17.
《Marine Geology》2006,225(1-4):23-44
The morphodynamics of inlets and ebb-tidal deltas reflect the interaction between wave and tidal current-driven sediment transport and significantly influence the behaviour of adjacent shorelines. Studies of inlet morphodynamics have tended to focus on sand-dominated coastlines and reference to gravel-dominated or ‘gravel-rich’ inlets is rare. This work characterises and conceptualises the morphodynamics of a meso-tidal sand–gravel inlet at the mouth of the Deben estuary, southeast England. Behaviour of the inlet and ebb-tidal delta over the last 200 yr is analysed with respect to planform configuration and bathymetry. The estuary inlet is historically dynamic, with ebb-tidal shoals exhibiting broadly cyclic behaviour on a 10 to 30 yr timescale. Quantification of inlet parameters for the most recent cycle (1981–2003) indicate an average ebb delta volume of 1 × 106 m3 and inlet cross-sectional area of 775 m2. Bypassing volumes provide a direct indicator of annual longshore sediment transport rate over this most recent cycle of 30–40 × 103 m3 yr 1. Short-term increases in total ebb-tidal delta volume are linked to annual variability in the north to northeasterly wind climate. The sediment bypassing mechanism operating in the Deben inlet is comparable to the ‘ebb delta breaching’ model of FitzGerald [FitzGerald, D.M., 1988. Shoreline erosional–depositional processes associated with tidal inlets, in: Aubrey, D.G., Weishar, L. (Ed.), Hydrodynamics and Sediment Dynamics of Tidal Inlets. Springer-Verlag Inc., New York, pp. 186–225.], although the scales and rates of change exhibited are notably different to sand-dominated systems. A systematic review of empirical models of sand-dominated inlet and ebb-tidal delta morphodynamics (e.g. those of [O'Brien, M.P., 1931. Estuary tidal prisms related to entrance areas. Civil Engineering, 1, 738–739.; Walton, T.L., and Adams, W.D., 1976. Capacity of inlet outer bars to store sand. Proceedings of 15th Coastal Engineering Conference, 1919–1937.; Gaudiano, D.J., Kana, T.W., 2001. Shoal bypassing in mixed energy inlets: geomorphic variables and empirical predictions for nine South Carolina inlets. J. Coast. Res., 17, (2), 280–291.]) shows the Deben system to be significantly smaller yet characterised by a longer bypassing cycle than would be expected for its tidal prism. This is attributed to its coarse-grained sedimentology and the lower efficiency of sediment transporting processes.  相似文献   

18.
青岛近海潮流沉积体系   总被引:2,自引:1,他引:2  
通过分析钻孔和浅地层剖面资料,研究了胶州湾及青岛前海潮流沉积体系。该体系包括大沽河-洋河潮控三角洲和与狭口海湾密切相关的涨、落潮流三角洲,潮流作用在各三角洲的形成过程中为主要的沉积动力。前者发育在湾西侧,形成了河口沙坝和分流间湾等沉积相;后者分布在湾口两侧,以潮道和潮流沙脊为主要特征。根据对各沉积相特征的分析,认为潮流沉积体系的演化已整体趋于稳定。  相似文献   

19.
《Coastal Engineering》2004,51(3):207-221
This study focuses on the prediction of the long-term morphological evolution of tidal basins due to human interventions. New analytical results have been derived for an existing model [ASMITA, Aggregated Scale Morphological Interaction between a Tidal inlet and the Adjacent coast; Stive, M.J.F., Capobianco, M., Wang, Z.B., Ruol, P., Buijsman, M.C., 1998. Morphodynamics of a Tidal Lagoon and adjacent Coast. 8th International Biennial Conference on Physics of Estuaries and Coastal Seas, The Hague, September 1996, 397–407.]. Through linearisation of the model equations a set of time scales is obtained that describe the main features of the morphological evolution of tidal inlets. The magnitude of these system time scales is determined by inlet geometry and sediment exchange processes. The nature and degree of interventions determine which time scales are dominant. We focus on five different tidal inlets in the Wadden Sea. For these inlets, the system time scales have been estimated. The model has been applied to simulate the morphological response of the Marsdiep and Vlie inlets to the closure of the Zuiderzee in 1932. In this way, the model and associated system time scales for each of these inlets have been validated. Results show that in both inlets, the channels display the largest adaptation time. It will take at least a century before the channels and hence the tidal inlet systems reach a new morphological equilibrium.  相似文献   

20.
A coupled waves–currents-bathymetric evolution model (DELFT-3D) is compared with field measurements to test hypotheses regarding the processes responsible for alongshore varying nearshore morphological changes at seasonal time scales. A 2001 field experiment, along the beaches adjacent to Grays Harbor, Washington, USA, captured the transition between the high-energy erosive conditions of winter and the low-energy beach-building conditions typical of summer. The experiment documented shoreline progradation on the order of 10–20 m and on average approximately 70 m of onshore sandbar migration during a four-month period. Significant alongshore variability was observed in the morphological response of the sandbar over a 4 km reach of coast with sandbar movement ranging from 20 m of offshore migration to over 175 m of onshore bar migration, the largest seasonal-scale onshore migration event observed in a natural setting. Both observations and model results suggest that, in the case investigated here, alongshore variations in initial bathymetry are primarily responsible for the observed alongshore variable morphological changes. Alongshore varying incident hydrodynamic forcing, occasionally significant in this region due to a tidal inlet and associated ebb-tidal delta, was relatively minor during the study period and appears to play an insignificant role in the observed alongshore variability in sandbar behavior at kilometer-scale. The role of fully three-dimensional cell circulation patterns in explaining the observed morphological variability also appears to be minor, at least in the case investigated here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号