首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
In May of 2005, an observational program was carried out to investigate the along channel hydrodynamics and suspended sediment transport patterns at North Inlet, South Carolina. Along channel variability, which is important in establishing sediment transport pathways, has not been characterized for this system. Measurements of water column currents, salinity, bed sediment, suspended sediment concentration, and particle size distribution were obtained over a complete tidal cycle along the thalweg of the inlet entrance. Along channel currents, shear stress and bed sediment distributions vary significantly in space and time along a 3 km section bracketing the inlet throat. Most of the variability is consistent with geomorphic controls such as bed elevation variability and channel width. The highest velocities, shear stresses, suspended sediment concentration and bed sediment grain size are observed in the narrowest section of the inlet throat. Magnitudes systematically decrease along the channel toward the marsh as changes in channel geometry and branching reduces flow energy. Due to tidal asymmetry, the ebb phase contains significantly higher currents and associated sediment transport. Over the complete tidal cycle, depth integrated transport is directed towards the marsh landward of the intersection of Town and Debidue Creek. In contrast, net transport is out of the inlet seaward of this intersection. Sediment grain size distributions show 35% more material less than 63 μm on flood, suggesting net landward transport of fines.  相似文献   

2.
Vast bay-type tidal inlets can be found along the coastal zones of China. They are generally suitable for deep water channels and large harbors because of the presence of large water depth and good mooring conditions. The deep channel, in front of the head of Caofeidian Island in Bohai Bay, China, is a typical bay-type tidal inlet system. The tidal current, a type of reverse flow, makes the key contribution to maintain the deep water depth. The co-action of waves and tidal currents is the main dynamic force for sediment motion. Waves have significant influence on the sediment concentration. Based on the characteristics of waves, tidal currents, sediment and seabed evolution in Caofeidian sea area, a 2D mathematical model for sediment transport under influence of waves and tidal currents is developed to study the development schemes of the Caofeidian Harbor. The model has been verified for spring and neap tides, in winter as well as in summer of 2006. The calculated tidal stages, flow velocities, flow directions and sediment concentrations at 15 stations are in good agreement with the observations. Furthermore, the calculated data on pattern and magnitude of sedimentation and erosion in the related area agree well with the observations. This model has been used to study the effects of the reclamation scheme for Caofeidian Harbor on the hydrodynamic environment, sediment transport and morphological changes. Attentions are paid to the project inducing changes of flow velocities and morphology in the deep channel at the south side of Caofeidian foreland, in the Laolonggou channel and in various harbor basins. The conclusions can provide the important foundation for the protection and use of bay-type tidal inlets and the development of harbor industry.  相似文献   

3.
《Coastal Engineering》2006,53(5-6):505-529
Texel inlet, the largest inlet in the Dutch Wadden Sea, has undergone drastic changes in the morphology of basin, ebb-tidal delta and adjacent coastlines after closure of a major part of its back-barrier basin. Despite intensive monitoring and analysis, present observation-based conceptual models lack the subtle physics necessary to explain the sand exchange between inlet, ebb-tidal delta and adjacent coastlines.Fundamental understanding of the inlet dynamics and evolution is obtained by integrating field and model data analysis. The state-of-the-art process-based model Delft3D Online Morphology has been used to generate synoptic data of high spatial and temporal resolution over the inlet domain. It is shown that the Delft3D Online Morphology model is capable of the quasi real-time simulation of the dominant flow and transport patterns over a 3-month period on the scale of the inlet. The high-resolution numerical model results prove to be a valuable tool in identifying the main transport patterns and mechanisms in the inlet domain. Qualitative transport patterns in Texel Inlet and its associated ebb-tidal delta are derived by integration of the observations and model results.The present ebb-tidal delta developments are best described as a second-stage self-organizing phase of redistribution and recirculation of sediments to obtain a natural dynamic equilibrium state, adapted to the changed configuration of the main-ebb channels. Sand is transported from the abandoned ebb-delta front (western margin of Noorderhaaks) and along the adjacent coastlines into the basin where it partly settles. Ebb-tidal currents redistribute sand back from the basin mainly onto the southern ebb-tidal delta shoals. Large gross transport rates, but small morphological changes, point to sediment recirculation. Sediment import into the basin results from net flood dominated transport due to tidal asymmetry, landward directed wind- and wave-driven flow, and larger flood transport capacities due to wave effects (e.g. enhanced bed shear stresses and stirring of sediment) that exceed the net ebb-dominated tidal residual transports.  相似文献   

4.
海南陵水新村港潮汐汊道演变及其稳定性分析   总被引:8,自引:1,他引:8  
根据海南陵水新村港附近海区的卫星遥感图及其潮汐汉道的动力场,分析该潮汐汉道的演变状况及其泥沙动力机制,着重于其落潮三角洲的地貌演变与落潮主水道的动力过程,计算分析了其稳定性。研究结果表明,新村港潮汐汉道的落潮主水道表现出有规律的演变,汉道口门稳定性比较高,但其落潮主水道不太稳定。  相似文献   

5.
《Coastal Engineering》2001,42(2):115-142
The Arcachon Lagoon on the French Atlantic coast is a triangular shaped lagoon of 20 km on a side connected to the ocean by a 3-km wide inlet between the mainland and an elongated sand spit. This tidal inlet exhibits a particularly active morphology due to locally strong tidal currents and rough wave conditions. During the past 300 years, minimum and maximum spatial extents of the Cap Ferret sand spit have varied by 8 km while one or two channels have alternately allowed circulation between the lagoon and the ocean. These impressive morphological changes have never prevented regular flushing of the lagoon, eventhough the spit came as close as 300 m from the coast during the 18th century. According to Bruun's concept of tidal inlet stability [Theory and Engineering (1978), 510 pp.], the balance between longshore littoral transport and the tidal prism ensures the perpetuity of the inlet.Process modeling was believed to give better insight into the respective roles of tides and waves in driving the long-term morphological changes of the inlet. A two-dimensional horizontal morphodynamic model was therefore developed, combining modules for hydrodynamics, waves, sediment transport and bathymetry updates. The use of process models at a scale of decades requires a schematization of the input conditions. We defined representative mean annual wave and tide conditions with respect to sediment transport, i.e. conditions that induce the same annual transport as measured in the field. Driven by these representative conditions, simulations run from the 1993 bathymetry show that the tide is responsible for the opening of a new channel at the extremity of the sand spit (where tidal currents are the strongest), while waves induce a littoral transport responsible for the longshore drift of sand bodies across the inlet. One particular simulation consisted in running the model from a hypothetical initial topography where the channels are filled with sand and the entire inlet is set to a constant depth (3 m). The results show the reproduction of a channel and bar system comparable to historical observations, which supports the idea that the lagoon is unlikely to be disconnected from the ocean, provided tide and wave conditions remain fairly constant in the following decades.  相似文献   

6.
Research into the response of coastlines to the opening and stabilisation of inlets has been limited by the availability of suitable data, the shortcomings of existing formulae when applied to different inlets, and the difficulties particular to multi-inlet situations. Our appraisal of methodologies for studying inlet dynamics leads us to formulate a new approach for investigating inlet evolution and stability based on combining sediment budget computations (using best estimates and uncertainty analysis) and inlet hydraulic parameter analysis.The approach developed is applied to a stabilised inlet, located within a multi-inlet system (Faro-Olhão Inlet, Ria Formosa, Southern Portugal), which was opened starting 1929 and has since been dredged periodically to maintain navigability. A series of digital maps was produced based on multi-year data acquired from charts, surveys, and aerial photos. The maps were used to compute sediment volumes for six coastal cells delineated on the basis of the morphological features of the inlet. Cell volumes and fluxes were calculated for three periods (1929–1962, 1962–1978, and 1978–2001), and overall sediment budgets were calculated for the latter two periods. Inlet hydraulic parameters measured included tidal prism, inlet channel cross-sectional area and hydraulic radius, and maximum depth of the inlet throat, and were tracked over 9 bathymetric surveys from 1947–2004. The computed budget reveals that the inlet is only at present reaching volumetric equilibrium. However, the analysis of channel cross-sectional area and radius indicates parameter stability around 1978–1985, 20–25 years before the inlet started to reach volumetric equilibrium. It is hypothesised that the observed stability in parameters for the inlet post-1978 is related to the presence of fixed jetties and to a stratigraphic control that prevents further deepening, and not to the achievement of a dynamic equilibrium.The findings indicate that the coupling of sediment budget computation and inlet parameter analysis is useful for understanding historical sediment pathways and magnitudes, and for analysing the evolution of an inlet towards equilibrium. Although the analysis of inlet parameter evolution is valuable for examining the locational/geometrical stability of an inlet, it needs to be used in conjunction with sediment budget computations in order to properly infer inlet equilibrium. Moreover, existing formulae used to infer inlet stability, which relate cross-sectional area to tidal prism, should be reviewed with a view to including other external variables (e.g., stratigraphic controls) and to making their application more flexible to cope with the range of different inlet conditions. For multi-inlet systems, the coupling of morphology and hydrodynamics analysis should be extended to all inlets in order to infer the stability of the overall system based on the distribution of the tidal prism through time and the patterns of inlet circulation and sediment transport.  相似文献   

7.
为了研究泻湖型海湾内经常出现的湾中岛的形成机理,应用水平二维潮流、泥沙输移和地形演变耦合模型,对具有典型的沙坝泻湖地貌形态的水东湾的湾中岛的形成和演化进行了数值模拟,成功地模拟出了涨潮三角洲(大洲岛)的形成过程,计算结果与实际地貌形态总体符合。模型中分别考虑了全沙输沙和推移质输沙两种输沙情况。结果表明,水东湾湾中岛是由涨潮流引起的泻湖内泥沙不断淤积而形成的,是一种涨潮三角洲的地貌形态;全沙输沙模式比推移质输沙模式更适合这一地形演化过程的模拟。模拟结果也再现了湾中岛在25 a期间的地形变化过程,这一研究结果为通过计算数值模拟来研究一般海湾的地貌形态的形成机理和演化过程提供了实际算例。  相似文献   

8.
弱动力浅海中的悬沙输运机制:以天津港附近海域为例   总被引:3,自引:1,他引:2  
根据在天津港附近海域获取的水动力和浊度数据,分析了悬沙输运特征和输运机制,结果表明:天津港附近海域受不规则半日潮控制呈低流态往复流特征,但涨潮流强于落潮流;涨潮期间底部悬沙浓度与垂线平均流速呈显著线性相关,存在显著的再悬浮作用;潮周期内的悬沙输运呈典型的不对称特征,形成向岸的净输运趋势。输运机制分析结果显示:潮泵效应(尤其是潮汐捕捉效应)是天津港附近海域悬沙输运的主要贡献项,其次是拉格朗日平流输运项,前者比后者高一个量级;垂向剪切作用最小。涨落潮期间流速与悬沙浓度的显著不对称是造成潮汐捕捉效应占主导的基本条件。在潮下带这种悬沙输运格局可能和潮间带发生的细颗粒沉积物捕集(堆积)作用有关。  相似文献   

9.
In order to investigate the sediment dynamic behavior of the Yuehu, a small inlet system characterized by abundant sediment supply and rapid sediment infilling, measurements and sampling were undertaken to obtain data sets of tidal water levels, current velocities, suspended sediment concentrations, grain size parameters, deposition rates and organic carbon contents. Sediment budget and the time–velocity asymmetry patterns of the inlet system were analyzed. The results show that the deposition rates are relatively high within the tidal basin. The total sediment flux cannot be balanced by the input from the open sea, the aerosol and biological production; rather, the material from land (which has been intensified by agricultural activities over the past several decades) represents a major component for the balance. Thus, the denudation rate must be reduced to protect the Yuehu as a natural reserve. Furthermore, it is found from the present study that the Yuehu inlet system exhibits all of the four time–velocity asymmetry patterns with varied frequencies of occurrence, compared with the two asymmetry patterns identified for larger inlet systems; such phenomena are partly due to the adjustment of entrance channel geometry. This behavior may be representative of the small tidal inlets at their late stage of morphological evolution and, therefore, may be utilized to prolong the lifespan of small inlet systems.  相似文献   

10.
《Coastal Engineering》2004,51(3):207-221
This study focuses on the prediction of the long-term morphological evolution of tidal basins due to human interventions. New analytical results have been derived for an existing model [ASMITA, Aggregated Scale Morphological Interaction between a Tidal inlet and the Adjacent coast; Stive, M.J.F., Capobianco, M., Wang, Z.B., Ruol, P., Buijsman, M.C., 1998. Morphodynamics of a Tidal Lagoon and adjacent Coast. 8th International Biennial Conference on Physics of Estuaries and Coastal Seas, The Hague, September 1996, 397–407.]. Through linearisation of the model equations a set of time scales is obtained that describe the main features of the morphological evolution of tidal inlets. The magnitude of these system time scales is determined by inlet geometry and sediment exchange processes. The nature and degree of interventions determine which time scales are dominant. We focus on five different tidal inlets in the Wadden Sea. For these inlets, the system time scales have been estimated. The model has been applied to simulate the morphological response of the Marsdiep and Vlie inlets to the closure of the Zuiderzee in 1932. In this way, the model and associated system time scales for each of these inlets have been validated. Results show that in both inlets, the channels display the largest adaptation time. It will take at least a century before the channels and hence the tidal inlet systems reach a new morphological equilibrium.  相似文献   

11.
长江河口北槽水沙过程对航道整治工程的响应   总被引:4,自引:3,他引:1  
北槽大型航道整治工程确定了南北槽分汊口分流界线, 阻碍了北槽和邻近滩槽的水沙自由交换过程, 使北槽水沙动力过程发生调整。基于工程前后北槽主槽纵向同步水沙观测数据的统计分析表明:入口段落潮优势显著减弱;上段枯季时落潮优势显著减弱, 而洪季时落潮优势有所增强;中段(弯曲段拐点附近)落潮优势略有减弱;下段落潮优势明显加强。北槽主槽水沙纵向输移机制分析表明:欧拉余流、潮泵作用、斯托克斯效应和垂向环流为悬沙输移的主要驱动力, 其中欧拉余流输沙指向海, 斯托克斯输沙和垂向环流输沙指向陆, 而潮泵输沙随着季节而变化。洪季, 欧拉余流输沙和潮泵输沙在工程前后的变化使大潮期河床冲淤由中段和下段普遍落淤转化为中上段集中落淤。枯季, 工程前后稳定的潮流辐散输沙作用使大潮期河床以冲刷为主, 但工程后在入口段和上段潮泵的向上游输沙占优势, 使悬沙在入口段落淤。  相似文献   

12.
In terms of grain size, surficial sediment distribution patterns in back-barrier tidal basins (e.g., the East Frisian Wadden Sea, Germany) often show a landward fining trend from the sea boundary to the mainland shore. In addition to the cross-shore patterns, there are lateral grain-size trends toward the watersheds of the basins and toward the watersheds of tidal flats bordered by tidal channels on either side. In the present study, interrelationships between morphological evolution and grain-size trends in the back-barrier tidal basins of the East Frisian Wadden Sea were simulated for a period of 60 years by a process-based forward modeling approach using the Delft3D system. The model outputs show that grain size displays a shoreward fining trend within the basin area, which is consistent with in situ observations; such a trend can be interpreted by the shoreward decrease in the cross-shore maximum velocity. Moreover, the model predicts lateral grain-size trends similar to those observed in the tidal basins: coarser sediment remains in the inlets and channels, while finer sediment settles at the tidal watersheds and on the tidal flats between channels. The spatial patterns of tidal flat sediment grain size within the tidal basins are thus related to the distance from the sea boundary and from the tidal channels. The modeling exercise also indicates that the development of the grain-size pattern observed in the East Frisian Wadden Sea is accomplished within a few decades, and that the time periods required to reach equilibrium are much shorter for grain size than for bed elevation. Evidently, spatial grain-size information can be used to assess sediment transport and morphological adaptation processes as, for example, attempted in sediment trend analysis procedures.  相似文献   

13.
A new numerical model was developed to simulate regional sediment transport and shoreline response in the vicinity of tidal inlets based on the one-line theory combined with the reservoir analogy approach for volumetric evolution of inlet shoals. Sand bypassing onshore and sheltering effects on wave action from the inlet bar and shoals were taken into account. The model was applied to unique field data from the south coast of Long Island, United States, including inlet opening and closure. The simulation area extended from Montauk Point to Fire Island Inlet, including Shinnecock and Moriches Inlets. A 20-year long time series of hindcast wave data at three stations along the coast were used as input data to the model. The capacity of the inlet shoals and bars to store sand was estimated based on measured cross-sectional areas of the inlets as well as on comprehensive bathymetric surveys of the areas around the inlet. Several types of sediment sources and sinks were represented, including beach fills, groin systems, jetty blocking, inlet bypassing, and flood shoal and ebb shoal feeding. The model simulations were validated against annual net longshore transport rates reported in the literature, measured shorelines, and recorded sediment volumes in the flood and ebb shoal complexes. Overall, the model simulations were in good agreement with the measured data.  相似文献   

14.
The Otzum ebb-tidal delta, located between Langeoog and Spiekeroog islands along the East Frisian barrier-island coast, southern North Sea, was investigated with respect to its morphological evolution, sediment distribution patterns and internal sedimentary structures. Bathymetric charts reveal that, over the last 50 years, the size of the Otzum ebb-tidal delta has slightly shrunk, while sediment has accreted on the ebb-delta lobe to the east of the main inlet channel (west of Spiekeroog). Swash bars superimposed on the eastern ebb-tidal shoal (Robben Plate) have migrated south or south-eastwards, i.e. towards the inlet throat. The main ebb-delta body is composed of fine quartz sand, whereas the superimposed swash bars and the inlet channel bed consist of medium-grained quartz sand containing high proportions of coarser bioclastic material. Internal sedimentary structures in short box-cores (up to 30 cm long) are dominated by flood-oriented cross-beds. Longer vibro-cores (up to 1.5 m long) show that, at depth, the sediment is dominated by storm-generated parallel (upper plane bed) laminations with intercalated shell layers and dune cross-bedding. The cross-bedded sands in both box-cores and vibro-cores from the ebb-delta shoal predominantly dip towards the south or southeast, indicating transport towards the inlet throat by the flood current. The observations demonstrate that, contrary to previous contentions, the sediments of the highly mobile swash bars do not bypass the inlet but are instead being continually recirculated by the combined action of tidal currents and waves. In this model, the cycle begins with both fine and medium sands, including shell hash, being transported seawards in the main ebb channel until they reach the shallow ebb-delta front. From here, the sediment is pushed onto the eastern ebb-delta shoal by the flood current assisted by waves, becoming strongly size-sorted in the process. The medium sands together with the shell hash are formed into swash bars which migrate along arcuate paths over a base of fine sand back to the main ebb channel located south of the ebb delta. By the same token, the fine sand between the swash bars is transported south-eastwards by the flood current in the form of small dunes until it cascades into the large flood channel located to the west of Spiekeroog. From here, the fine sand is fed back into the main ebb channel, thus completing the cycle. No evidence was found on the ebb delta for alongshore sediment bypassing.  相似文献   

15.
曹妃甸老龙沟动力地貌体系及演化   总被引:3,自引:0,他引:3  
老龙沟为典型沙坝-泻湖型潮汐汊道,潮汐汊道地貌结构完整.老龙沟口门处潮流动力最强,发育-20m的深槽.口门内涨潮流三角洲上发育完整的多级水道体系.口门外落潮三角洲止于-11 m水深处.以突起的末端坝为地形标志,落潮主水道偏于落潮三角洲东侧发育,落潮三角洲西侧发育宽缓冲流平台.落潮主水道以落潮流为优势,冲流平台上潮流动力...  相似文献   

16.
The newly developed nearshore circulation model, SHORECIRC, using a hybrid finite-difference finite-volume TVD-type scheme, is coupled with the wave model SWAN in the Nearshore Community Model (NearCoM) system. The new modeling system is named NearCoM-TVD and the purpose of this study is to report the capability and limitation of NearCoM-TVD for several coastal applications. For tidal inlet applications, the model is verified with the semi-analytical solution of Keulegan (1967) for an idealized inlet-bay system. To further evaluate the model performance in predicting nearshore circulation under intense wave–current interaction over complex bathymetry, modeled circulation patterns are validated with measured data during RCEX field experiment (MacMahan et al., 2010). For sediment transport applications, two sediment transport models are applied to predict three sandbar migration events at Duck, NC, during August to October 1994 (Gallagher et al., 1998). The model of Kobayashi et al. (2008) incorporates wave-induced onshore sediment transport rate as a function of the standard deviation of wave-induced horizontal velocities. The modeled beach profile evolution for two offshore events and one onshore event agrees well with the measured data. The second model investigated here combines two published sediment transport models, namely, the total load model driven by currents under the effect of wave stirring (Soulsby, 1997) and the wave-driven sediment transport model due to wave asymmetry/skewness (van Rijn et al., 2011). The model study with limited field data suggests that the parameterization of wave stirring is appropriate during energetic wave conditions. However, during low energy wave conditions, the effect of wave stirring needs to be re-calibrated.  相似文献   

17.
The feed back between morphological evolution and tidal hydrodynamics in a wave-dominated tidal inlet,Xiaohai,China is investigated through data analysis and numerical model experiments.His-torically,Xiaohai Inlet had two openings,located at the north and south of Neizhi Island(a rocky outcrop),respectively.The evolution of Xiaohai Inlet was dominated by the natural process before 1972.In addition to the natural process,human interventions,including the closure of the north opening,50% of fresh water reduction,and increase of land reclamation,have altered tidal hydrodynamics and morphological evolution since 1972.A series of numerical model simulations were conducted to investigate the influence of morphological changes on the hydrodynamics and the influence of human activities on the inlet evolution.The natural process has caused narrowing and shoaling of the inlet throat,development of theflood-tidal delta,and shoaling of the tidal channel in side the lagoon.Human intervention shave accelerated these changes.Consequently,the tidal propagation from the offshore into the lagoon has been impeded and the tidal energy has been dissipated substantially.Tidal current has changed from ebb-dominant to flood-dominant in most parts of the inlet system where as the inlet throat has remained as ebb-dominant,the tidal prism has decreased consistently,and sediment has continued to deposit in side the inlet.As a result,the changes of morphology,hydrodynamics,and sediment transport show a positive feedback.The human interventions have had both advantageous and adverse influences on the stability of the inlet.The closure of the North Opening has decreased the longshore sediment input to the inlet,and increased the tidal prism,ebb velocity,and sediment transport in the south opening,thus enhancing the inlet’sstability.However,reducing the river discharge and landfill of the tidal flats has resulted in a decrease of the tidal prism,the ebb velocity,and the ability to export sediment,thus having the tendency to deteriorate the inlet’sstability.As tability analysis based on a closure curve methodology has shown that Xiaohai Inlet is in a state of dynamic equilibrium at present.  相似文献   

18.
Tidal inlets along the mesotidal coast of Maine contrast with those from other parts of the world by being dominated by flood-tidal currents. Analysis of the factors responsible for flood or ebb dominance indicates factors external to the backbarrier environment. We suggest that the flood dominance is caused by both a steepening of the tidal wave in the Gulf of Maine and the shallow depth of the ebb-tidal delta and spit platform. Flood currents are typically 10–20 cm/sec stronger than the ebb at the inlet throat. The flood dominance results in a significant net landward transport of sediment into the backbarrier.  相似文献   

19.
Sediment and hydrodynamics of the Tauranga entrance to Tauranga harbour   总被引:2,自引:2,他引:0  
To relate the textural characteristics of the bottom sediments of a tidal inlet to hydrodynamics, 45 sediment samples from the Tauranga Entrance to Tauranga Harbour were analysed for textural parameters, and tidal currents and waves were monitored. Tidal currents dominate sediment transport processes near the Tauranga Entrance although swell waves are significant on the ebb tidal delta, and wind waves may influence intertidal sediments within the harbour. The bulk of the sediment is probably derived from marine sand from the Bay of Plenty continental shelf, but tidal currents and waves have changed its textural character. In areas of swift tidal currents, particularly in the inlet channel itself, sediment is coarser, more poorly sorted, and more coarsely skewed than that in areas of slower currents.  相似文献   

20.
海南岛洋浦港潮汐汊道口门的均衡过水面积   总被引:5,自引:1,他引:5  
高抒  张红霞 《海洋与湖沼》1994,25(5):468-476
将汊道均衡与潮汐特征,纳潮量,淡水径流量及沉积物搬运格局相联系,确定了洋浦港的均衡条件,根据纳潮盆地的水面面积-水面高程曲线以及相关的特征潮位估算平均纳潮量,利用1977-1979年波浪观测资料和CERC公式计算沿岸输沙率;此外,还用改进的Gadd公式确定口门涨、落潮流输沙率,计算中引入汊道口门流速频率分布函数的定义。由此而得洋浦港均衡过水面积为5800m^2,与O'Brien方法所得结果相比,本  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号