首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic response of equipment mounted on an isolated raised floor inside a building while the primary fixed base structure is subjected to harmonic and earthquake ground motions is numerically investigated. Sliding concave foundation (SCF) system is utilized for isolating the raised floor. The equations of motion for a MDOF shear building containing a SCF isolated raised floor with a mounted equipment are developed and the rigid link method is utilized to handle the non‐linearity of the system. The equipment, which can be modelled as a SDOF or MDOF system, may represent a critical computer unit or telecommunication processing system. SCF can be used easily to achieve the desired long period, necessary for protecting sensitive equipment. In this investigation, the ability of SCF in reducing the acceleration level experienced by the equipment inside a building is demonstrated while the lateral displacement is still within an acceptable range. The analysis considered the case of equipment housed in the upper floors of a building where the acceleration is amplified and the motion contains strong components at long periods. For this purpose, different excitations including both harmonic and real earthquake ground motions are employed and the performance of the system is evaluated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Coulomb damping can be utilized effectively to reduce the dynamic response of structures subjected to seismic ground motions. To activate this damping, some parts of a vibrating structure are allowed to slide at rough interfaces. The dynamic response of structures provided with sliding interfaces at the base, between a floor slab and frame and in the cross bracings of a frame has been examined recently. In this paper, a simple slab sliding system provided with a spring to introduce a recovery mechanism and to reduce the sliding displacement requirement for low frequency structures has been examined. The equations of motion for this system are developed. An approach is presented to solve these coupled equations for earthquake induced ground motions. Structures with varying frequency and friction characterisics are considered and the numerical results are presented in response spectrum form. It is observed that, in low frequency structures, provision of a rather weak spring can reduce the sliding displacement requirements without significantly increasing the forces in the supporting frame and the acceleration input to supported secondary systems.  相似文献   

3.
In this paper, the dynamic behavior of multi-drum columns and colonnades with epistyles under earthquake excitations is examined through planar numerical simulations. A specialized software application, developed utilizing the discrete element methods (DEM), is used to investigate the influence of certain parameters on the seismic response of such multi-body structural systems. First, this custom-made software is extensively validated by comparing the computed responses of various problems, such as sliding, rocking and free vibration dynamics of rigid bodies, with the corresponding analytical solutions. Then, the developed software is used to study the influence of the frequency content and amplitude of the ground motions on the columns and colonnades, as well as the geometric characteristics of these structures. Parameters such as the number of drums that assemble each column and the number of columns of a colonnade appear to be defining parameters that affect the seismic response of colonnades with epistyles. For ground motions with relatively low predominant frequencies, rocking is the dominant effect in the response, while with the increase of the excitation frequency the response becomes even more complex involving both sliding and rocking phenomena. The numerical simulations show that earthquakes with relatively low predominant frequencies seem to endanger both standalone columns and colonnades with epistyles more than earthquakes with higher predominant frequencies.  相似文献   

4.
Economic losses during past earthquakes are strongly associated with damage and failure to nonstructural equipment and contents. Among the vast types of nonstructural elements, one important category, is scientific equipment in biological or chemical laboratories. These equipment are often mounted on heavy ceramic bench‐tops of bench–shelf systems, which in turn may amplify the dynamic motions imposed. To investigate the seismic response of these types of systems, a series of shake table and field experiments were conducted considering different representative bench and shelf‐mounted equipment and contents. Results from shake table experiments indicate that these equipment are generally sliding‐dominated. In addition, the bench–shelf system is observed to be very stiff and when lightly loaded, has a fundamental frequency between 10 and 16 Hz. An approximate 50% reduction in the first and second fundamental frequencies is observed considering practical loading conditions. Insight into a broader range of system response is provided by conducting eigenvalue and time history analyses. Non‐linear regression through the numerical data indicate acceleration amplification ratios Ω range from 2.6 to 1.4 and from 4.3 to 1.6, for fixed–fixed and pinned–pinned conditions, respectively. Both the experimental and numerical results support the importance of determining the potential dynamic amplification of motion in the context of accurately determining the maximum sliding displacement of support equipment and contents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The response of multi-degree-of-freedom (MDOF) structures with sliding supports is studied. The problem of sliding structures is a discontinuous one in that different numbers of equations of motion with varying forcing functions are required for the sliding and non-sliding phases. The numerical difficulties involved in this regard in an incremental finite element analysis can be circumvented through the introduction of a fictitious spring for the sliding support. Such a treatment enables one to study the higher mode effects on MDOF sliding structures under the excitation of harmonic or earthquake motions. The dynamic characteristics of MDOF sliding structures will be highlighted in the analysis of a four-storey shear building with sliding support.  相似文献   

6.
集集地震近断层地震动频谱特性   总被引:5,自引:2,他引:3       下载免费PDF全文
徐龙军  谢礼立 《地震学报》2005,27(6):656-665
利用5个反映地震动频谱特征的周期(反应谱卓越周期Tp, 平滑化反应谱卓越周期To, 傅氏幅值谱平均周期Tm, 等效速度脉冲周期Tv和拟速度反应谱卓越周期Tpv), 对集集地震的近断层三分量地震动进行研究. 结果表明, 上盘地震动的频谱周期小于下盘地震动; Tp小于To和Tm, 且Tp反映的三分量之间的关系与To和Tm不同; 在地表断裂带的北端,Tv和Tpv所反映的近断层地震动长周期分量的频谱特征, 与走滑断层中方向性效应作用的规律相类似. 得出的定性或定量结论可以为近场抗震设计谱的建立与地震危险性区划研究提供参考.   相似文献   

7.
Techniques for the analysis of equipment in structures supported on a Coulomb friction type support that is subjected to harmonic and earthquake ground motion are presented. The behaviour is governed by two phases—a sliding phase and a non-sliding phase. Since the behaviour in each of the phases is linear, an analytical expression for equipment response can be obtained in terms of the roots of an appropriate characteristic polynomial. The times of phase transition are determined by an iterative scheme. The methodology is accurate, less computationally intensive, and avoids the difficulties that can be encountered with standard numerical integration techniques for highly non-linear systems.  相似文献   

8.
地震动的频谱特征是影响结构动力反应的重要因素。以集集地震动记录为数据基础,对反映地震动频谱特征的4个参数周期(反应谱卓越周期Tp,平滑化反应谱卓越周期To,傅氏幅值谱平均周期Tm和反应谱特征周期Tg)进行了研究。依据理论模型,经非线性回归分析,给出了不同场地上地震动各周期分量随断层距变化的经验公式。结果表明,不同的频谱参数周期反映地震动不同的频谱特征;同一场地上各周期随断层距的增大而增大;To和Tm具有较好的可估性。  相似文献   

9.
Earthquake ground motion records are nonstationary in both amplitude and frequency content. However, the latter nonstationarity is typically neglected mainly for the sake of mathematical simplicity. To study the stochastic effects of the time‐varying frequency content of earthquake ground motions on the seismic response of structural systems, a pair of closely related stochastic ground motion models is adopted here. The first model (referred to as ground motion model I) corresponds to a fully nonstationary stochastic earthquake ground motion model previously developed by the authors. The second model (referred to as ground motion model II) is nonstationary in amplitude only and is derived from the first model. Ground motion models I and II have the same mean‐square function and global frequency content but different features of time variation in the frequency content, in that no time variation of the frequency content exists in ground motion model II. New explicit closed‐form solutions are derived for the response of linear elastic SDOF and MDOF systems subjected to stochastic ground motion model II. New analytical solutions for the evolutionary cross‐correlation and cross‐PSD functions between the ground motion input and the structural response are also derived for linear systems subjected to ground motion model I. Comparative analytical results are presented to quantify the effects of the time‐varying frequency content of earthquake ground motions on the structural response of linear elastic systems. It is found that the time‐varying frequency content in the seismic input can have significant effects on the stochastic properties of system response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Introduction The dynamic response of structural systems subjected to earthquake ground shaking is sig-nificantly affected by the frequency content of input ground motions. When the frequency content of a predominant earthquake ground motion closely matches the natural period of a structural sys-tem, the dynamic response is significantly enhanced and thus may cause severe damage (Chopra, 1995). Therefore, it is of great importance to evaluate the frequency content of ground motions. In recent …  相似文献   

11.
An analytical and closed-form frequency response of equipment mounted on multistorey buildings subjected to horizontal ground motion is proposed. In this study, the dynamics of the equipment and the building is expressed as a state-flow graph model, in which the interaction effect between the equipment and the building is considered. Based on the graph model, the analytical results for the frequency response of the acceleration of the equipment and the internal force in the support are derived. One of the advantages of this method is that the closed-form solutions of the frequency response expressed by polynomial form will be easily examined by analytical and numerical computations without complex operation. Moreover, the dynamic of the primary and secondary systems and their dynamic interaction are expressed separately in the derived formula. Thus most of the items in the formula need not be computed repeatedly for different supports of the equipment in design. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
As the forward directivity and fling effect characteristics of the near-fault ground motions, seismic response of structures in the near field of a rupturing fault can be significantly different from those observed in the far field. The unique characteristics of the near-fault ground motions can cause considerable damage during an earthquake. This paper presents results of a study aimed at evaluating the near-fault and far-fault ground motion effects on nonlinear dynamic response and seismic damage of concrete gravity dams including dam-reservoir-foundation interaction. For this purpose, 10 as-recorded earthquake records which display ground motions with an apparent velocity pulse are selected to represent the near-fault ground motion characteristics. The earthquake ground motions recorded at the same site from other events that the epicenter far away from the site are employed as the far-fault ground motions. The Koyna gravity dam, which is selected as a numerical application, is subjected to a set of as-recorded near-fault and far-fault strong ground motion records. The Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is employed in nonlinear analysis. Nonlinear dynamic response and seismic damage analyses of the selected concrete dam subjected to both near-fault and far-fault ground motions are performed. Both local and global damage indices are established as the response parameters. The results obtained from the analyses of the dam subjected to each fault effect are compared with each other. It is seen from the analysis results that the near-fault ground motions, which have significant influence on the dynamic response of dam–reservoir–foundation systems, have the potential to cause more severe damage to the dam body than far-fault ground motions.  相似文献   

13.
The dynamic analysis of sliding structures is complicated due to the presence of friction. Synchronization of the kinematics of all the isolation bearings is often granted to simplify the task. This, however, may lead to inaccurate prediction of the structural responses under certain circumstances. Stepped structures or continuous bridges with seismic isolation are notable examples where unsynchronized bearing motions are expected. In this paper, a logically simple and numerically efficient procedure is proposed to solve the dynamic problem of sliding systems with unsynchronized support motions. The motion equations for the sliding and non‐sliding modes of the isolated structure are unified into a single equation that is represented as a difference equation in a discrete‐time state‐space form and the base shear forces between the sliding interfaces can be determined through simple matrix algebraic analysis. The responses of the sliding structure can be obtained recursively from the discrete‐time version of the motion equation with constant integration time step even during the transitions between the non‐sliding and sliding phases. Therefore, both accuracy and efficiency in the dynamic analysis of the highly non‐linear system can be enhanced to a large extent. Rigorous assessment of seismic structures with unsynchronized support motions has been carried out for both a stepped structure and a continuous bridge. Effectiveness of friction pendulum bearings for earthquake protection of such structures has been verified. Moreover, evident unsynchronized sliding motions of the friction bearings have been observed, confirming the necessity to deal with each of the bearings independently in the analytical model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
This paper focuses on the effects of long‐period pulse of near‐fault ground motions on the structural damage potential. Two sets of near‐fault ground motion records from Chi‐Chi, Taiwan earthquake and Northridge earthquake with and without distinct pulse are selected as the input, and the correlation analysis between 30 non‐structure‐specific intensity measure parameters and maximum inelastic displacements and energy responses (input energy and hysteretic energy) of bilinear single degree of freedom systems are conducted. Based on the frequency characteristic of near‐fault ground motions with remarkable long‐period components, two intensity indices are proposed, namely, the improved effective peak acceleration (IEPA) and improved effective peak velocity (IEPV). In addition a new characteristic period of these ground motions is defined based on IEPA and IEPV. Numerical results illustrate that the intensity measure parameters related to ground acceleration present the best correlation with the seismic responses for rigid systems; the velocity‐related and displacement‐related parameters are better for medium‐frequency systems and flexible systems, respectively. The correlation curves of near‐fault ground motions with velocity pulse differ from those of ground motions without pulse. Moreover, the improved parameters IEPA and IEPV of near‐fault impulsive ground motions enhance the performance of intensity measure of corresponding conventional parameters, i.e. EPA and EPV. The new characteristic period based on IEPA and IEPV can better reflect the frequency content of near‐fault ground motions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
樊剑  吕超  张辉 《地震学报》2009,31(3):333-341
采用在频域内具有极好紧支性和盒形特性的谐小波作为母小波,推导了基于离散谐小波变换的地震波时变谱,并给出了不同尺度下能量随时间变化的包络函数的近似解析表达式.文中以Northridge地震波为例分析了时频分布特征.研究发现,对于自振频率为f的结构,其地震反应与输入地震波的时变谱在f 处的时域最大值(即)以及地震波在f 频率点附近的信号分量在时域内的能量集中程度有很大的关系;与db4波基相比,利用谐小波作为母小波的小波变换,其频域具有较好的分辨率,但时域分辨率却较差.最后提出了两种基于离散谐小波逆变换的人工非平稳地震波仿真方法.   相似文献   

16.
In this paper, stochastic dynamic responses of dam–reservoir–foundation systems subjected to spatially varying earthquake ground motions are investigated using the displacement-based fluid finite elements. For this purpose, variable-number-node two-dimensional (2D) fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a computer program SVEM, which is used for stochastic dynamic analysis of solid systems subjected to spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes incoherence, wave-passage and site-response effects. The incoherence effect is examined by considering the Harichandran and Vanmarcke coherency model. The effect of the wave passage is investigated by using various wave velocities. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. The Sar?yar concrete gravity dam, constructed in Turkey is selected for numerical example. The ground motion is described by filtered white noise and applied to each support point of the 2D finite element model of the dam–reservoir–foundation system. The record of Kocaeli earthquake in 1999 is used in the analyses. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for four cases. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic dynamic response of dam–reservoir–foundation systems.  相似文献   

17.
首先讨论了近断层脉冲型地震动的特点,并以台湾集集地震实际脉冲型近震记录为地震动输入,应用含潜在约束策略的序列二次规划算法,对安装铅芯橡胶隔震支座的钢筋混凝土框架隔震结构的隔震器参数和上部结构构件截面几何尺寸进行一体化优化设计,然后输入E l Centro(1940)、Taft(1952)地震波对优化后的隔震结构进行地震反应分析。计算结果表明,对考虑脉冲型近断层地震动作用的隔震结构进行参数优化设计后,该隔震结构能同时满足脉冲型和普通非脉冲型近震作用的结构设计需求。  相似文献   

18.
This paper investigates the non-linear inelastic seismic response of existing single-span simply supported bridges having bearings which can remain stable and slide after their anchor bolts are ruptured. A simplified equivalent model is developed for the inelastic analysis of these single-span simply supported bridges. Non-linear inelastic time-history analyses are conducted for various acceleration inputs. It is found that narrower bridges with longer spans may have considerable sliding displacements and fall off their supports if adequate seat width is not provided. It is also found that for the same ratio of friction coefficient to peak ground acceleration, the sliding displacement of a structural system is linearly proportional to the amplitude of the peak ground acceleration beyond a certain threshold value. This is also demonstrated analytically from an energy approach point of view. The distribution of the energy content of an earthquake, which is related to its velocity time history, can be an indication of the propensity of an earthquake to cause high sliding displacements. Ground motions with high frequency content or high Ap/Vp ratio may produce smaller sliding displacements than ground motions with relatively lower Ap/Vp ratios.  相似文献   

19.
This paper investigates the seismic response of freestanding equipment when subjected to strong earthquake motions (2% probability of being exceeded in 50 years). A two-step approach is followed because the displacement limitations of the shake table do not permit full-scale experiments. First, shake table tests are conducted on quarter-scale wooden block models of the equipment. The results are used to validate the commercially available dynamic simulation software Working Model 2D. Working Model is then used to compute the response of the full-scale freestanding equipment when subjected to strong, 2% in 50 years hazard motions. The response is dominated by sliding, with sliding displacements reaching up to 70 cm. A physically motivated dimensionless intensity measure and the associated engineering demand parameter are identified with the help of dimensional analysis, and the results of the numerical simulations are used to obtain a relationship between the two that leads to ready-to-use fragility curves.  相似文献   

20.
本文首先考察了地震动加速度时程在时域和频域上的非平稳性,通过实例分析说明地震动加速度时程 的非平稳性不能由相位谱的概率分布唯一决定,进而阐明了相位差谱是影响地震动非平稳的决定性因素。经 统计检验确定了脉动相位差的概率分布模型,利用相位差谱的数字特征与地震特性参数之间的统计关系,给 出了基于相位差谱的地震动时程生成方法。最后,通过对计算实例的分析,证实了此方法能够反映并模拟实 际地震动的时─频非平稳性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号