首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metamorphic geology has accumulated a huge body of observation on mineral assemblages that reveal strong patterns in occurrence, summarized, for example, in the idea of metamorphic facies. On the realization that such patterns needed a simple explanation, there has been considerable a posteriori success from adopting the idea that equilibrium thermodynamics can be used on mineral assemblages to make sense of the patterns in terms of, for example, the pressure and temperature of formation of mineral assemblages. In doing so, a particularly simple implicit assumption is made, that mineral assemblages operate essentially hydrostatically. Structural geologists have studied the same rocks for different ends, but, remarkably, the phenomena they are interested in depend on non‐hydrostatic stress. We look at the effect of such behaviour on mineral equilibria. With adoption of some plausible assumptions about how metamorphism in the crust works, the consequence of minerals being non‐hydrostatically stressed is commonly second order in equilibrium calculations.  相似文献   

2.
Pressure is one of the most important parameters to be quantified in geological problems. However, in metamorphic systems the pressure is usually calculated with two different approaches. One pressure calculation is based on petrological phase equilibria and this pressure is often termed thermodynamic pressure. The other calculation is based on continuum mechanics, which provides a mean stress that is commonly used to estimate the thermodynamic pressure. Both thermodynamic pressure calculations can be justified by the accuracy and applicability of the results. Here, we consider systems with low‐differential stress (<1 kbar) and no irreversible volumetric deformation, and refer to them as conventional systems. We investigate the relationship between mean stress and thermodynamic pressure. We discuss the meaning of thermodynamic pressure and its calculation for irreversible processes such as viscous deformation and heat conduction, which exhibit entropy production. Moreover, it is demonstrated that the mean stress for incompressible viscous deformation is essentially equal to the mean stress for the corresponding viscous deformation with elastic compressibility, if the characteristic time of deformation is five times longer than the Maxwell viscoelastic relaxation time that is equal to the ratio of shear viscosity to bulk modulus. For typical lithospheric rocks, this Maxwell time is smaller than c. 10,000 years. Therefore, numerical simulations of long‐term (>10 kyr) geodynamic processes, employing incompressible deformation, provide mean stress values that are close to the mean‐stress value associated with elastic compressibility. Finally, we show that for conventional systems the mean stress is essentially equal to the thermodynamic pressure. However, mean stress and, hence, thermodynamic pressure can be significantly different from the lithostatic pressure.  相似文献   

3.
Granulite facies magnesian metapelites commonly preserve a wide array of mineral assemblages and reaction textures that are useful for deciphering the metamorphic evolution of a terrane. Quantitative pressure, temperature and bulk composition constraints on the development and preservation of characteristic peak granulite facies mineral assemblages such as orthopyroxene + sillimanite + quartz are assessed with reference to calculated phase diagrams. In NCKFMASH and its chemical subsystems, peak assemblages form mainly in high‐variance fields, and most mineral assemblage changes reflect multivariant equilibria. The rarity of orthopyroxene–sillimanite–quartz‐bearing assemblages in granulite facies rocks reflects the need for bulk rock XMg of greater than approximately 0.60–0.65, with pressures and temperatures exceeding c. 8 kbar and 850 °C, respectively. Cordierite coronas mantling peak minerals such as orthopyroxene, sillimanite and quartz have historically been used to infer isothermal decompression P–T paths in ultrahigh‐temperature granulite facies terranes. However, a potentially wide range of P–T paths from a given peak metamorphic condition facilitate retrograde cordierite growth after orthopyroxene + sillimanite + quartz, indicating that an individual mineral reaction texture is unable to uniquely define a P–T vector. Therefore, the interpretation of P–T paths in high‐grade rocks as isothermal decompression or isobaric cooling may be overly simplistic. Integration of quantitative data from different mineral reaction textures in rocks with varying bulk composition will provide the strongest constraints on a P–T path, and in turn on tectonic models derived from these paths.  相似文献   

4.
Ultra‐high‐temperature (UHT) metamorphism occurs when the continental crust is subjected to temperatures of greater than 900 °C at depths of 20–40 km. UHT metamorphism provides evidence that major tectonic processes may operate under thermal conditions more extreme than those generally produced in numerical models of orogenesis. Evidence for UHT metamorphism is recorded in mineral assemblages formed in magnesian pelites, supported by high‐temperature indicators including mesoperthitic feldspar, aluminous orthopyroxene and high Zr contents in rutile. Recent theoretical, experimental and thermodynamic data set constraints on metamorphic phase equilibria in FMAS, KFMASH and more complex chemical systems have greatly improved quantification of the P–T conditions and paths of UHT metamorphic belts. However, despite these advances key issues that remain to be addressed include improving experimental constraints on the thermodynamic properties of sapphirine, quantifying the effects of oxidation state on sapphirine, orthopyroxene and spinel stabilities and quantifying the effects of H2O–CO2 in cordierite on phase equilibria and reaction texture analysis. These areas of uncertainty mean that UHT mineral assemblages must still be examined using theoretical and semi‐quantitative approaches, such as P(–T)–μ sections, and conventional thermobarometry in concert with calculated phase equilibrium methods. In the cases of UHT terranes that preserve microtextural and mineral assemblage evidence for steep or ‘near‐isothermal’ decompression P–T paths, the presence of H2O and CO2 in cordierite is critical to estimates of the P–T path slopes, the pressures at which reaction textures have formed and the impact of fluid infiltration. Many UHT terranes have evolved from peak P–T conditions of 8–11 kbar and 900–1030 °C to lower pressure conditions of 8 to 6 kbar whilst still at temperature in the range of 950 to 800 °C. These decompressional P–T paths, with characteristic dP/dT gradients of ~25 ± 10 bar °C?1, are similar in broad shape to those generated in deep‐crustal channel flow models for the later stages of orogenic collapse, but lie at significantly higher temperatures for any specified pressure. This thermal gap presents a key challenge in the tectonic modelling of UHT metamorphism, with implications for the evolution of the crust, sub‐crustal lithosphere and asthenospheric mantle during the development of hot orogens.  相似文献   

5.
构造物理化学的思路、研究和问题   总被引:5,自引:0,他引:5  
吕古贤  邓军  李晓波  倪师军  郭涛 《地质学报》2006,80(10):1616-1626
构造物理化学是研究地壳物质受构造作用产生的物理和化学变化相互关联的领域。构造力可以分解为两部分一部分是均应力,指各向相等的应力,它叠加在原有压力之上,并且影响着各种化学反应的平衡,也是成岩、成矿和变质作用的影响因素。另一部分是差应力,固体中受外力作用普遍产生差应力,它引起地壳物质变形,产生各种构造形迹。构造物理化学特别关注构造作用产生或引起的压力、温度及其他的物理化学条件的变化,研究这些构造附加参量对各种化学平衡的影响,逐渐发展成为独立的学科研究领域。  相似文献   

6.
利用最新的内洽性热力学数据库和THERMOCALC3.21程序对胶北地块高压与低压泥质麻粒岩的相平衡关系进行了定量分析。计算了胶北地块高压泥质麻粒岩、低压泥质麻粒岩和夕线石榴黑云片岩等代表性富铝岩石KFMASH(K2O-FeO-MgO-Al2O3-SiO2-H2O)体系的p-T视剖面图,再现了这些岩石随温压条件变化可能出现的各种矿物组合与矿物成分变化,发现原岩成分不同的变质岩石,尽管变质演化过程有所差异,但在麻粒岩相变质条件下所形成的矿物组合一致。通过计算泥质岩石在高压(p=1.0GPa)和低压(p=0.5GPa)条件下的T-X视剖面图,发现极度富铁、贫镁的岩石,在高压麻粒岩相条件下并不会生成含蓝晶石的特征矿物组合,在低压麻粒岩相条件下也不会生成含堇青石的特征矿物组合。将样品实际观测结果与p-T视剖面图的计算结果对比,确定胶北地块高压泥质麻粒岩变质峰期的温压条件为830~860℃,1.25~1.4GPa,峰期后呈现顺时针样式的p-T演化轨迹,反映陆壳先碰撞增厚、后又快速减薄的地质动力学过程;确定胶北地块低压泥质麻粒岩变质峰期的温压条件为790~820℃,0.62~0.68GPa,峰期后呈现近等压冷却的p-T演化轨迹。  相似文献   

7.
田作林  张泽明  董昕 《岩石学报》2020,36(9):2616-2630
变质相平衡模拟是变质岩领域近几十年最重要的进展之一,它已经成为确定变质作用P-T-t轨迹和探索变质演化过程的有力工具。变质岩的矿物组合不但与其形成的温度(T)和压力(P)条件有关,而且受控于岩石的全岩成分(X)。但是变质岩通常是不均匀的并且往往保留两期以上的矿物组合,因此计算不同成分域或不同变质演化期次的有效全岩成分是模拟P-T视剖面图的核心问题之一。在中-低温变质岩中,石榴石变斑晶的生长会不断地将其核部成分"冻结"而不参与后续变质反应,这导致根据实测全岩成分计算的P-T视剖面图无法有效地模拟石榴石幔部或边部生长阶段的变质演化过程。"瑞利分馏法"和"球体积法"利用电子探针实测的石榴石成分环带可以模拟计算石榴石各个生长阶段所对应的有效全岩成分,本文推荐使用这两个方法来处理石榴石变斑晶的分馏效应问题。相比较而言,石榴石在高温变质岩中通常无法保留生长阶段的成分环带特征,这是因为石榴石成分在高温条件下会发生扩散再平衡,并同时与多数基质矿物达到热力学平衡,这时一般不需要考虑石榴石的分馏效应。但是高温变质岩通常会发生部分熔融并伴随熔体的迁移,进而改变岩石的有效全岩成分。因此,通过P-T视剖面图模拟熔体迁移前后的变质演化过程需要使用"相平衡法"计算迁移的熔体成分以及熔体迁移前后岩石的有效全岩成分。此外,后成合晶与反应边是变质岩中最常见的退变质反应结构,但是后成合晶或反应边中的矿物之间并未达到热力学平衡。这种情况需要结合岩相学观察和矿物成分,利用最小二乘法确定后成合晶或反应边中发生的平衡反应方程式,进而获取变质反应发生时的有效全岩成分并通过计算P-T视剖面图来估算退变质的温压条件。除此之外,岩石体系中三价铁(Fe2O3)和H2O含量的估算一直以来都是相平衡模拟研究中的难点,本文推荐使用P/T-X(Fe3+/FetotMH2O)视剖面图来确定这两个组分的含量,这是因为P/T-X图可以估算各个变质演化阶段或特定矿物组合的Fe2O3或H2O含量。  相似文献   

8.
This Special Issue comprises a selection of the papers given at a two‐day discussion meeting held at the University of Melbourne, Australia in June 2009 to celebrate Roger Powell’s 60th birthday. At this milestone, it is fitting to review Roger’s career to date. He has published ~200 scientific papers on topics that range from low‐ to high‐grade metamorphism, from low‐ to ultrahigh‐pressure (UHP) metamorphism, and from thermodynamics to kinetics. Most of Roger’s papers are multi‐authored and address important questions in the petrogenesis of metamorphic rocks. Roger is widely known for his work with Tim Holland to develop the most complete internally consistent dataset of thermodynamic properties of end members of phases necessary to undertake calculations on the conditions of formation and modification of metamorphic rocks. Additionally, Roger and Tim have developed activity–composition models for many of these phases, building on their important methodological developments in formulating such models. Roger is also responsible for the ongoing development of thermocalc , a thermodynamic calculation software package that may be used to undertake a wide range of phase diagram calculations, including PT projections, PT, PX and TX, compatibility diagrams and μ–μ diagrams. Together, Roger and Tim have changed the way we carry out quantitative phase equilibria studies. However, Roger’s contributions to metamorphic petrology go well beyond the development of phase equilibria methods and mineral thermodynamics. He has contributed significantly to our understanding of a range of metamorphic processes, and with an extensive array of co‐authors has shown how phase equilibria can be used to understand the evolution of metamorphic rocks in general terms as well as in specific terranes. The papers in this Special Issue cover the range from the stabilization of the continents to understanding the formation of orogenic gold deposits, from the stability of sapphirine–quartz‐bearing assemblages to the crystallization of melt in migmatites, from the effects of ferric iron and sulphur on the stability of metamorphic mineral assemblages in general to the effects of ferric iron and H2O on the stability of eclogite in particular, and to the quantification of UHP metamorphism. It is our hope that in reading these contributions, you will be stimulated to seek a better understanding of metamorphic processes and to improve our quantification of the variables in metamorphism.  相似文献   

9.
Sapphirine, coexisting with quartz, is an indicator mineral for ultrahigh‐temperature metamorphism in aluminous rock compositions. Here a new activity‐composition model for sapphirine is combined with the internally consistent thermodynamic dataset used by THERMOCALC, for calculations primarily in K2O‐FeO‐MgO‐Al2O3‐SiO2‐H2O (KFMASH). A discrepancy between published experimentally derived FMAS grids and our calculations is understood with reference to H2O. Published FMAS grids effectively represent constant aH2O sections, thereby limiting their detailed use for the interpretation of mineral reaction textures in compositions with differing H2O. For the calculated KFMASH univariant reaction grid, sapphirine + quartz assemblages occur at P–T in excess of 6–7 kbar and 1005 °C. Sapphirine compositions and composition ranges are consistent with natural examples. However, as many univariant equilibria are typically not ‘seen’ by a specific bulk composition, the univariant reaction grid may reveal little about the detailed topology of multi‐variant equilibria, and therefore is of limited use for interpreting the P–T evolution of mineral assemblages and reaction sequences. Calculated pseudosections, which quantify bulk composition and multi‐variant equilibria, predict experimentally determined KFMASH mineral assemblages with consistent topology, and also indicate that sapphirine stabilizes at increasingly higher pressure and temperature as XMg increases. Although coexisting sapphirine and quartz can occur in relatively iron‐rich rocks if the bulk chemistry is sufficiently aluminous, the P–T window of stability shrinks with decreasing XMg. An array of mineral assemblages and mineral reaction sequences from natural sapphirine + quartz and other rocks from Enderby Land, Antarctica, are reproducible with calculated pseudosections. That consistent phase diagram calculations involving sapphirine can be performed allows for a more thorough assessment of the metamorphic evolution of high‐temperature granulite facies terranes than was previously possible. The establishment of a a‐x model for sapphirine provides the basis for expansion to larger, more geologically realistic chemical systems (e.g. involving Fe3+).  相似文献   

10.
李旭平  王晗  孔凡梅 《岩石学报》2019,35(2):295-311
超高温变质作用是在变质地质学领域,继超高压变质作用研究高峰之后的又一重要前缘课题,对于认识地壳构造-热演化具有重要意义。本文总结了华北克拉通西部孔兹岩带和南非Kaapvaal克拉通西南部Namaqua活动带与Bushveld变质杂岩体的高温-超高温麻粒岩的化学成分、矿物组合、变质演化特征,及其相应的变质事件与构造属性。我国的超高温变质作用带,包括华北克拉通西部的孔兹岩带——从内蒙西段的大青山到东段的集宁-凉城地区的超高温变质岩,皆为Al-Mg质和Al饱和体系的超高温变质岩石,常见假蓝宝石+石英、尖晶石+石英的典型超高温变质组合,以及含假蓝宝石±尖晶石、但缺少石英的非典型超高温变质组合。南非Namaqua活动带与Bushveld变质杂岩体分别发现有独特的Fe-Al饱和的铁尖晶石+石英+大隅石、刚玉+高温石英等超高温矿物组合,罕见的高温硼硅酸盐和硅硼铝镁石等超高温矿物组合;以及Ca-Mg质饱和的钙镁橄榄石+镁硅钙石镁黄长石+镁橄榄石等超高温矿物组合的麻粒岩。研究的核心问题是矿物和岩石在高温-超高温条件下的特殊行为方式,不同构造环境和岩石化学成分下的变质反应及其热动力学过程。由此提出超高温变质作用成因研究中的科学问题:包括不同类型和地质属性的高温-超高温麻粒岩的成因特征;麻粒岩的形成条件演化过程和构造背景;高温-超高温变质过程中部分熔融和重新水化过程中流体的作用以及岩体形变过程中的部分熔融;变质反应以及变质作用P-T-t轨迹、元素地球化学和熔体作用行为;岩石保留的可能的变质事件和年代学记录,定量评价高温-超高温过程中变质演化的时间跨度和演化速率。  相似文献   

11.
This essay in honour of Mike Brown addresses aspects of chemical equilibrium and equilibration in rocks, with a focus on the role that chemical potentials play. Chemical equilibrium is achieved by diffusive flattening of chemical potential gradients. The idea of equilibration volume is developed, and the way equilibration volumes may evolve along a pressure–temperature path is discussed. The effect of the environment of an equilibration volume is key to understanding the evolution of the equilibration volume with changing conditions. The likely behaviour of equilibration volumes is used to suggest why preservation of equilibrium mineral assemblages and mineral compositions from metamorphism tends to occur. This line of logic then provides the conceptual support to conventional equilibrium thermodynamic approaches to studying rocks, using, for example, thermobarometry and pseudosections.  相似文献   

12.
In the classical view of metamorphic microstructures, fast viscous relaxation (and so constant pressure) is assumed, with diffusion being the limiting factor in equilibration. This contribution is focused on the only other possible scenario – fast diffusion and slow viscous relaxation – and brings an alternative interpretation of microstructures typical of high‐grade metamorphic rocks. In contrast to the pressure vessel mechanical model applied to pressure variation associated with coesite inclusions in various host minerals, a multi‐anvil mechanical model is proposed in which strong single crystals and weak grain boundaries can maintain pressure variation at geological time‐scales in a polycrystalline material. In such a mechanical context, exsolution lamellae in feldspar are used to show that feldspar can sustain large differential stresses (>10 kbar) at geological time‐scales. Furthermore, it is argued that the existence of grain‐scale pressure gradients combined with diffusional equilibrium may explain chemical zoning preserved in reaction rims. Assuming zero net flux across the microstructure, an equilibrium thermodynamic method is introduced for inferring pressure variation corresponding to the chemical zoning. This new barometric method is applied to plagioclase rims around kyanite in felsic granulite (Bohemian Massif, Czech Republic), yielding a grain‐scale pressure variation of 8 kbar. In this approach, kinetic factors are not invoked to account for mineral composition zoning preserved in rocks metamorphosed at high grade.  相似文献   

13.
In this paper we show that thermodynamic forward modelling, using Gibbs energy minimisation with consideration of element fractionation into refractory phases and/or liberated fluids, is able to extract information about the complex physical and chemical evolution of a deeply subducted rock volume. By comparing complex compositional growth zonations in garnets from high-and ultra-high pressure samples with those derived from thermodynamic forward modelling, we yield an insight into the effects of element fractionation on composition and modes of the co-genetic metamorphic phase assemblage. Our results demonstrate that fractionation effects cause discontinuous growth and re-crystallisation of metamorphic minerals in high pressure rocks. Reduced or hindered mineral growth at UHP conditions can control the inclusion and preservation of minerals indicative for UHP metamorphism, such as coesite, thus masking peak pressure conditions reached in subducted rocks.Further, our results demonstrate that fractional garnet crystallisation leads to strong compositional gradients and step-like zonation patterns in garnet, a feature often observed in high-and ultra-high pressure rocks. Thermodynamic forward modelling allows the interpretation of commonly observed garnet growth zonation patterns in terms of garnet forming reactions and the relative timing of garnet growth with respect to the rock's pressure–temperature path. Such a correlation is essential for the determination of tectonic and metamorphic rates in subduction zones as well as for the understanding of trace element signatures in subduction related rocks. It therefore should be commonplace in the investigation of metamorphic processes in subduction zones.  相似文献   

14.
大别山超高压变质带的构造背景   总被引:8,自引:4,他引:8  
江来利  徐树桐 《地质论评》1995,41(3):229-237
大别山南部的超高压变质带具有特征的榴辉岩相矿物组合,榴辉岩的岩石化学及稀土元素特征及其伴生的岩石组合,表明这个带是以陆壳成分为主混有少量上地幔及洋壳成分的混杂岩,榴辉岩相围岩和大别群具有不同的变质和变形特征。超高压变质带形成于扬子和中朝板块大陆碰撞的构造环境,是扬子板块陆壳向北俯冲到一定深度的变质产物。  相似文献   

15.
Prograde P–T paths recorded by the chemistry of minerals of subduction‐related metamorphic rocks allow inference of tectonic processes at convergent margins. This paper elucidates the changing P–T conditions during garnet growth in pelitic schists of the Sambagawa metamorphic belt, which is a subduction related metamorphic belt in the south‐western part of Japan. Three types of chemical zoning patterns were observed in garnet: Ca‐rich normal zoning, Ca‐poor normal zoning and intrasectoral zoning. Petrological studies indicate that normally‐zoned garnet grains grew keeping surface chemical equilibrium with the matrix, in the stable mineral assemblage of garnet + muscovite + chlorite + plagioclase + paragonite + epidote + quartz ± biotite. Pressure and temperature histories were inversely calculated from the normally‐zoned garnet in this assemblage, applying the differential thermodynamic method (Gibbs' method) with the latest available thermodynamic data set for minerals. The deduced P–T paths indicate slight increase of temperature with increasing pressure throughout garnet growth, having an average dP/dT of 0.4–0.5 GPa/100 °C. Garnet started growing at around 470 °C and 0.6 GPa to achieve the thermal and baric peak condition near the rim (520 °C, 0.9 GPa). The high‐temperature condition at relatively low pressure (for subduction related metamorphism) suggests that heating occurred before or simultaneously with subduction.  相似文献   

16.
多硅白云母地质压力计的研究进展   总被引:4,自引:1,他引:4  
魏春景  朱文萍 《地质通报》2007,26(9):1123-1130
白云母是变质岩中分布最广泛的矿物之一,在大多数矿物组合中白云母的Si含量随着变质作用压力的增加而增加,可作为地质压力计。对KMASH体系3个有限组合中多硅白云母的Si含量与温压条件关系的实验研究结果表明,多硅白云母Si含量地质压力计明显与矿物组合有关。因此,不能把这些实验结果简单地外延到矿物组合不同的天然岩石中。在KMASH体系的温压视剖面图上模拟白云母的Si含量等值线与质量较好的实验结果非常接近,由此可以把这种方法推广到KFMASH或更复杂的体系中。在利用多硅白云母Si的含量确定天然矿物组合的变质作用压力时,最好利用视剖面图的方法。  相似文献   

17.
Summary The polymetamorphic evolution of metamorphosed Mesozoic ophiolitic rocks in NE Hungary was studied by microtextural and mineral chemical analyses of metagabbros and metabasalts. Both rock types preserved their original textures remarkably well. By contrast, magmatic minerals (especially clinopyroxene) were preserved only in the metagabbros. The original magmatic whole-rock and mineral chemical features had a strong influence on the formation and preservation of the various metamorphic assemblages as testified by the chemically different amphiboles (and other major minerals) formed in various microdomains. The calculated metamorphic P-T conditions are in part different for metabasalts and metagabbros. These results are in accordance with the observed petrographic features, among which the sequence of crystallisation of Na-amphibole and actinolite in the two rock types is most characteristic. Crystallisation of actinolite is followed by Na-amphibole in metabasalts, while Na-amphibole formed first in the metagabbros. Overall equilibrium conditions were not attained throughout the NE Hungarian Mesozoic ophiolite unit during Alpine metamorphic evolution. Additionally, various disequilibrium metamorphic assemblages with several generations of chemically complex amphiboles were formed even on the thin section scale. Various P-T paths during the tectonic evolution of the accretionary wedge were experienced by parts of the dismembered ophiolite sequence, which originally formed a coherent unit, and were brought back into close spatial relationship only during the post-metamorphic exhumation processes.  相似文献   

18.
变质地质学研究中的一些困难问题   总被引:6,自引:4,他引:2  
吴春明 《岩石学报》2018,34(4):873-894
变质地质学研究中,首先需要准确判明变质过程是属于多期或单期、多峰或单峰变质作用。研究中应该对同一研究区不同类型的变质岩石开展综合研究,查明各种变质反应结构,以期对变质反应结构的解释尽可能准确,并对变质反应进行定量论证。同一变质岩内前、后两个世代变质矿物组合之间,并不存在所谓的热力学局部平衡。在应用方面,矿物温度计与压力计属于反演方法,热力学视剖面图模拟属于正演方法。本文指出了它们之间的相同之处和各种区别。众所周知,目前反演出的变质作用压力并无方向性,差异应力对总应力的贡献尚不明朗。最好根据同一视域或同一块变质岩石,来反演变质作用P-T-t轨迹。实际上,P-T-t轨迹一般不应该是圆滑的曲线,其构造意义的解释也还存在不确定性。同一地区变质作用PT条件的突变、P-T-t轨迹的明显差异,表明地质体之间存在断层接触关系。变形作用与变质作用的耦合研究需要加强,变质作用的定年也不能仅仅局限于变质副矿物。特别值得注意的是,同一造山带内范围有限的地域,也未必属于同一变质相系。  相似文献   

19.
The metamorphic evolution of micaschists in the north‐eastern part of the Saxothuringian Domain in the Central European Variscides is characterized by the early high‐pressure M1 assemblage with chloritoid in cores of large garnet porphyroblasts and a Grt–Chl–Phe–Qtz ± Pg M2 assemblage in the matrix. Minerals of the M1–M2 stage were overprinted by the low‐pressure M3 assemblage Ab–Chl–Ms–Qtz ± Ep. Samples with the best‐preserved M1–M2 mineralogy mostly appear in domains dominated by the earlier D1 deformation phase and are only weakly affected by subsequent D2 overprint. Thermodynamic modelling suggests that mineral assemblages record peak‐pressure conditions of ≥18–19 kbar at 460–520 °C (M1) followed by isothermal decompression 10.5–13.5 kbar (M2) and final decompression to <8.5 kbar and <480 °C (M3). The calculated peak P–T conditions indicate a high‐pressure/low‐temperature apparent thermal gradient of ~7–7.5 °C km?1. Laser ablation inductively coupled plasma mass spectrometry isotopic dating and electron microprobe chemical dating of monazite from the M1–M2 mineral assemblages give ages of 330 ± 10 and 328 ± 6 Ma, respectively, which are interpreted as the timing of a peak pressure to early decompression stage. The observed metamorphic record and timing of metamorphism in the studied metapelites show striking similarities with the evolution of the central and south‐western parts of the Saxothuringian Domain and suggest a common tectonic evolution along the entire eastern flank of the Saxothuringian Domain during the Devonian–Carboniferous periods.  相似文献   

20.
The reaction muscovite+cordierite→biotite+Al2SiO5 +quartz+H2O is of considerable importance in the low pressure metamorphism of pelitic rocks: (1) its operation is implied in the widespread assemblage Ms + Crd +And± Sil + Bt + Qtz, a common mineral assemblage in contact aureoles and low pressure regional terranes; (2) it is potentially an important equilibrium for pressure estimation in low pressure assemblages lacking garnet; and (3) it has been used to distinguish between clockwise and anticlockwise P–T paths in low pressure metamorphic settings. Experiments and thermodynamic databases provide conflicting constraints on the slope and position of the reaction, with most thermodynamic databases predicting a positive slope for the reaction. Evidence from mineral assemblages and microtextures from a large number of natural prograde sequences, in particular contact aureoles, is most consistent with a negative slope (andalusite and/or sillimanite occurs upgrade of, and may show evidence for replacement of, cordierite). Mineral compositional trends as a function of grade are variable but taken as a whole are more consistent with a negative slope than a positive slope. Thermodynamic modelling of reaction 1 and associated equilibria results in a low pressure metapelitic petrogenetic grid in the system K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) which satisfies most of the natural and experimental constraints. Contouring of the Fe–Mg divariant interval represented by reaction 1 allows for pressure estimation in garnet‐absent andalusite+cordierite‐bearing schists and hornfelses. The revised topology of reaction 1 allows for improved analysis of P–T paths from mineral assemblage sequences and microtextures in the same rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号