首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《地球》2017,(1)
<正>2016年以来,受强降雨影响,我国南方泥石流灾害频发。5月,福建泰宁县发生泥石流灾害;7月,四川九寨沟县发生特大泥石流;9月,四川攀枝花因特大暴雨过程,引发洪水及泥石流暴发,多处山体塌方,同月,云南元谋发生特大山洪泥石流。而7月湖南湘西古丈县传出的一段泥石流现场视频  相似文献   

2.
川滇地区Lg波Q值层析成像   总被引:7,自引:2,他引:5       下载免费PDF全文
利用云南和四川数字地震观测台网记录的数字化地震资料,开展了川滇地区不同频率的QLg层析成像研究,反演结果的空间分辨率小于100 km.反演结果表明,川滇地区介质的横向不均匀性强烈,QLg高低值差异显著.川滇地区显著的高衰减区有川滇菱形块体的东南边界(即沿鲜水河至安宁河以及思茅—澜沧—普洱区),滇西北地区、龙门山断裂以西松潘—茂文地区、巴塘及理塘强震区等,Lg波高衰减区的分布与构造活动强烈、强震活动或大震破裂造成介质破碎区、低速区等相关,表明构造活动强烈或大震破裂造成的介质破碎、热物质沿活动断裂上涌等可能是川滇地区低QLg的主要成因.显著的低衰减区有川东盆地、滇东南地区以及金沙江、怒江断裂的中段区域,滇中块体内部也呈现出相对的低衰减特征.Lg波低衰减区与地震活动性弱、速度正异常等相关,表明川滇地区Lg波的低衰减区与地壳变形、地震活动性及水热活动弱、块体稳定等有关.  相似文献   

3.
大渡河长河坝水电站区域泥石流特征及危险性评价   总被引:1,自引:0,他引:1  
沈远  邓荣贵  张丹 《地震学刊》2012,(3):359-364
2009年7月23日,四川省甘孜州康定县舍联乡长河坝水电站施工区响水沟发生特大泥石流灾害,造成重大人员伤亡和财产损失。响水沟是大渡河上游段右岸一级支沟,近百年来泥石流活动不明显。由于之前近一个月的连续降雨,沟谷内的不稳定堆积物已基本处于饱水状态,当日的强降雨直接诱发了此次泥石流灾害。本文根据现场调查资料,就该沟泥石流的形成条件、灾害成因及特征进行分析,并应用灰色系统理论关联分析方法和沟谷泥石流危险度计算分析综合评价其危险性。结果表明,在极端气象条件下,响水沟仍有可能发生中等至大规模暴雨型粘性泥石流。  相似文献   

4.
本文揭示了建国以来中国山洪灾害时空演变格局,探测了影响历史山洪灾害空间分布的驱动因子.采用6万多个山洪灾害历史记录数据,利用重心对比方法,从重心地理位置、聚集程度、移动趋势3个方面揭示了1951~2015年中国山洪灾害时空演变特征,初步分析了降雨、人口与山洪灾害之间时空演变的关系.进一步选取2000~2015年间相关数据,基于自然流域单元,构建了降雨、人类活动、地表环境相关因子,利用地理探测器分析方法,探测影响历史山洪灾害空间分布的驱动因子.分析结果表明,建国以来,中国历史山洪灾害空间分布转移与降雨和人口分布的变化趋势呈现出明显的相关性; 2000~2015年间山洪灾害空间分布呈现出区域分异特征,降雨因子的驱动大于人类活动因子和地表环境因子,地表环境和人类活动在成灾环境中具有交互作用.研究结果揭示了山洪灾害驱动因子具有明显的时空异质性,中国山洪高风险区包括川渝生态区、华南生态区、云贵高原和长江中下游地区;低风险度区包括西北干旱区、青藏高原、内蒙古高原和东北生态区.研究结果有助于科学理解山洪成灾环境、山洪灾害风险度分区,也为进一步做好治灾防灾工作提供了科学依据.  相似文献   

5.
马涛  阮菊华 《高原地震》2012,24(3):58-61
循化县南山一带共发育了17条泥石流沟,严重影响了县城内人民生命财产的安全。南山泥石流群物源丰富,沟道纵坡降大,因此只要有足够的降雨就可以形成泥石流。在对循化泥石流群灾害特征分析的基础上,针对各泥石流沟不同的地质环境条件提出了相应的防治对策。  相似文献   

6.
杨峰 《地震》2021,41(3):42-58
利用区域固定台站和中国地震科学探测台阵记录的7349个近震事件的60471个Pg波绝对走时和196465个相对走时数据,采用双差地震层析成像获得滇西北地区(25°~28.2°N,99.5°~101.5°E)横向分辨率为0.2°的中、上地壳的三维P波速度模型,重点分析了区域内各主要断裂带及其邻区的速度结构特征.结果表明:金沙江—红河断裂带北段15 km以上的P波速度较低,重定位后中、小地震的震中主要位于低速异常的内部,且震源深度在断裂带两侧相似;推测金沙江—红河断裂带作为川滇菱形块体西南边界的剪切控制作用已弱化,分界能力局部减弱,并且断裂带下方主体的低速异常可能为跨越断裂的动力传递提供条件.丽江—小金河断裂带(西南段)两侧存在大范围的P波低速异常,推测此低速体可能是青藏高原东南向挤出的物质,而程海断裂带以东从近地表至25 km深处明显的P波高速异常体则可能会阻挡高原物质东南向的逃逸.  相似文献   

7.
四川西部的理塘—巴塘地区以近SN向的断裂构造为主,并发育 1组NNE和NW向的共轭剪切破裂带。文中在详细的TM卫片和航空照片判译的基础上,以活动构造地貌学为主线,重点解析了该地区断裂构造晚更新世—全新世以来活动的表现形式,确定近SN向的金沙江断裂带晚第四纪以来的近EW向的缩短速率为 2~3mm/a,NNE向巴塘断裂的右旋水平滑动平均速率为1. 3~2. 7mm/a,NW向理塘断裂的左旋水平滑动平均速率为 2 .6~4. 4mm/a。结合地球物理场、震源机制解、GPS测量等资料,分析了该地区现今地壳运动的总体态势及其所导致的块体运移规律,指出 1989年巴塘 6 .7级震群的成因,是由于NNE向巴塘断裂和NW向理塘断裂共轭剪切所派生的近EW向正断层的张性破裂所致,揭示了一个挤压构造环境内正断层发震的典型震例  相似文献   

8.
2008年5月12日四川龙门山断裂带发生了汶川8.0级地震,之后四川境内发生了两次7.0级地震(其中一个是芦山地震),为了研究汶川地震之后龙门山断裂带及周边区域的地震活动性,本研究收集了国家地震台网和四川区域地震台网2010年1月1日—2017年12月31日四川地区发生的17次M≥5.0地震以及120多次5.0>M≥4.0地震的波形资料,利用波形拟合法反演了震源机制解及区域应力场.反演结果显示,位于龙门山断裂带上的地震,震源机制以逆冲型为主,鲜水河断裂带地震震源机制以走滑型为主,而川滇块体西南部的理塘断裂、金沙江断裂附近,震源机制解以正断层为主.根据震源机制解反演得到的龙门山地区、鲜水河地区的主压应力场方向为WNW、近EW向.川滇块体的巴塘、理塘等地区,其主压应力轴方向为12°左右,接近SN向,且仰角接近40°左右.本研究利用面波振幅谱特征对震源深度进行了精确定位,定位结果与中国地震台网中心(CENC),美国地震调查局(USGS),国际地震中心(ISC)等机构地震目录进行了对比.结果显示,四川地区强震震源深度主要分布在20km以上的中上地壳.龙门山地区震源优势分布在10~20km,鲜水河断裂地震震源深度在10km左右,川滇块体西南部的理塘断裂,巴塘断裂,金沙江断裂等地区,震源深度一般在5~10km范围.  相似文献   

9.
防护堤选型对于泥石流的工程防治具有重要意义.以四川阿坝州曾达沟"6.27"泥石流灾害为例,通过对曾达沟地形地貌的遥感解译和对泥石流灾害的现场调查分析了单、双边防护堤选型的灾害特征,利用筛分实验、马尔文实验和室内直接剪切等实验、泥石流动力学和阻力计算等方法对曾达沟防治工程中的排导槽防护堤进行了研究与评价.研究结果表明,单...  相似文献   

10.
利用四川数字地震台网和流动地震台站在芦山MS7.0地震震后(2013年4月20日—6月23日)记录到的2026次区域地震事件的28188条P波到时资料,采用地震层析成像方法反演得到了芦山地震震源区及其周边区域中上地壳P波三维速度结构. 结果表明,浅部地壳的P波速度异常分布特征与地表地质构造、 地形和岩性密切相关,即成都断陷盆地表现出与第四纪沉积有关的低速异常区;犍为、 乐山一带的川中微升区和川青块体龙门山以西的邻近地带均表现为与构造抬升有关的高速异常;宝兴、 康定附近分布的基性火山岩及火山碎屑岩均呈局部高速异常分布. 芦山地震震源位于高低速异常分界线附近且偏向高速体一侧,其下方存在明显的低速异常分布,可能与流体的存在有关. 流体的作用导致中上地壳内部发震层的弱化,使孕震断层易于破裂,可能对芦山地震起到了触发作用. 芦山地震与汶川地震两次地震的余震密集区相距50 km,这50 km地震空区震源体的深度范围附近目前正处于高速异常区内,加之龙门山断裂带西南段又具有比较典型的断错地貌发育,使得该段地震空区(大邑—邛崃活动断裂破裂空段)现在所处的深浅部构造环境变得复杂,其潜在的地震危险性仍值得进一步关注.   相似文献   

11.
Debris flow is one of the dominant processes distributing large wood (LW) within mountainous catchments. However, little has been reviewed on wood-laden debris flow (WLDF), presumably owing to limited reviewable works. This article, therefore, navigates the international readers through 40 years of WLDF studies, most of which have been published only in Japanese. Firstly, we reviewed the historical development of Japanese WLDF particularly focusing on the 1980s and the 1990s. A series of post-disaster fieldworks from the July 1982 Nagasaki flood to the July 1990 Kumamoto flood provided 32 catchment-scale wood budgeting data; empirical relationships among drainage area, dominant tree species, sediment yield, and wood loads associated with single debris flow disasters were illustrated. Secondly, the characteristics of WLDF were summarized based on relevant previous studies on the recruitment, transport, and deposition processes of LW during debris flows. Thirdly, we discussed the connectivity between those Japanese WLDF studies and international LW studies by relating/contrasting their research approaches and spatiotemporal scales. In contrast to global LW research trends, Japanese WLDF studies have almost exclusively regarded LW as hazardous materials (i.e., “driftwood” or “woody debris”) that need to be retained upstream of the inhabited areas. Those practice-oriented WLDF studies were concentrated on drainage areas of 10−2 to 100 km2, representing 1–6 orders of magnitude smaller spatial scales than those generally covered by existing international LW studies. Strongly motivated by engineering requirements, “dynamic” interactions between debris flows and LW during floods have also been physically presented, mainly based on unique laboratory experiments involving steep flume (> 0.05) and mobile bed conditions. Finally, some future works for WLDF were briefly stated from practical and scientific perspectives. By “rediscovering” those WLDF studies domestically developed in Japanese debris flow channels since the 1980s, a more comprehensive understanding of LW dynamics in the river system may be achieved.  相似文献   

12.
The rheology of debris flows is difficult to characterize owing to the varied composition and to the uneven distribution of the components that may range from clay to large boulders, in addition to water. Few studies have addressed debris flow rheology from observational, experimental, and theoretical viewpoints in conjunction. We present a coupled rheological‐numerical model to characterize the debris flows in which cohesive and frictional materials are both present. As a first step, we consider small‐scale artificial debris flows in a flume with variable percentages of clay versus sand, and measure separately the rheological properties of sand–clay mixtures. A comparison with the predictions of a modified version of the numerical model BING shows a reasonable agreement between measurements and simulations. As application to a field case, we analyse a recent debris flow that occurred in Fjærland (Western Norway) for which much information is now available. The event was caused by a glacial lake outburst flood (GLOF) originating from the failure of a moraine ridge. In a previous contribution (Breien et al., Landslides, 2008 , 5: 271–280) we focused on the hydrological and geomorphological aspects. In particular we documented the marked erosion and reported the change in sediment transport during the event. In contrast to the laboratory debris flows, the presence of large boulders and the higher normal pressure inside the natural debris flow requires the introduction of a novel rheological model that distinguishes between mud‐to–clast supported material. We present simulations with a modified BING model with the new cohesive‐frictional rheology. To account for the severe erosion operated by the debris flow on the colluvial deposits of Fjærland, we also suggest a simple model for erosion and bulking along the slope path. Numerical simulations suggest that a self‐sustaining mechanism could partly explain the extreme growth of debris flows running on a soft terrain.  相似文献   

13.
1 RESISTANCE TO WATER-STONE FLOW As a special sort of debris flow, water-stone flow, or as generally called, sub-viscous debris flow, always occurs in channel of steep slope, dominantly in composition of coarse grains of bedload and laminated load with less suspended load. In some literature, water-stone flow is defined for convenience of study as that without suspended fine grains in composition, and it follows from this definition that transportation concentration of this kind of …  相似文献   

14.
In the Dolomitic region, abundant coarse hillslope sediment is commonly found at the toe of rocky cliffs. Ephemeral channels originate where lower permeability bedrock surfaces concentrate surface runoff. Debris flows initiate along such channels following intense rainfall and determine the progressive erosion and deepening of the channels. Sediment recharge mechanisms include rock fall, dry ravel processes and channel-bank failures. Here we document debris flow activity that took place in an active debris flow basin during the year 2015. The Cancia basin is located on the southwestern slope of Mount Antelao (3264 m a.s.l.) in the dolomitic region of the eastern Italian Alps. The 2.5 km2 basin is incised in dolomitic limestone rocks. The data consist of repeated topographic surveys, distributed rainfall measurements, time-lapse (2 s) videos of two events and pore pressure measurements in the channel bed. During July and August 2015, two debris flow events occurred, following similarly intense rainstorms. We compared rainfall data to existing rainfall triggering thresholds and simulated the hydrological response of the headwater catchment with a distributed model in order to estimate the total and peak water discharge. Our data clearly illustrate how debris entrainment along the channel is the main contributor to the overall mobilized volume and that erosion is dominant when the channel slope exceeds 16°. Further downstream, sediment accumulation and depletion occurred alternately for the two successive events, indicating that sediment availability along the channel also influences the flow behaviour along the prevailing-transport reach. The comparison between monitoring data, topographical analysis and hydrological simulation allows the estimation of the average solid concentration of the two events and suggests that debris availability has a significant influence on the debris flow volume. © 2020 John Wiley & Sons, Ltd.  相似文献   

15.
Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E–W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures. High mobility is related to factors such as water content and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). The ratio of fall height to runout distance commonly used for hazard zonation of debris avalanches is not valid for debris flows, which are more effectively modeled with the relation inundated area to failure or flow volume coupled with the topography of the inundated area.  相似文献   

16.
Due to their potentially long runout, debris flows are a major hazard and an important geomorphic process in mountainous environments. Understanding runout is therefore essential to minimize risk in the near-term and interpret the pace and pattern of debris flow erosion and deposition over geomorphic timescales. Many debris flows occur in forested landscapes where they mobilize large volumes of large woody debris (LWD) in addition to sediment, but few studies have quantitatively documented the effects of LWD on runout. Here, we analyze recent and historic debris flows in southeast Alaska, a mountainous, forested system with minimal human alteration. Sixteen debris flows near Sitka triggered on August 18, 2015 or more recently had volumes of 80 to 25 000 m3 and limited mobility compared to a global compilation of similarly-sized debris flows. Their deposits inundated 31% of the planimetric area, and their runout lengths were 48% of that predicted by the global dataset. Depositional slopes were 6°–26°, and mobility index, defined as the ratio of horizontal runout to vertical elevation change, ranged from 1.2 to 3, further indicating low mobility. In the broader southeast Alaskan region consisting of Chichagof and Baranof Islands, remote sensing-based analysis of 1061 historic debris flows showed that mobility index decreased from 2.3–2.5 to 1.4–1.8 as average forest age increased from 0 to 416 years. We therefore interpret that the presence of LWD within a debris flow and standing trees, stumps, and logs in the deposition zone inhibit runout, primarily through granular phenomena such as jamming due to force chains. Calibration of debris flow runout models should therefore incorporate the ecologic as well as geologic setting, and feedbacks between debris flows and vegetation likely control the transport of sediment and organic material through steep, forested catchments over geomorphic time. © 2020 John Wiley & Sons, Ltd.  相似文献   

17.
On August 7th, 2010, Sanyanyu and Luojiayu debris flows triggered by a heavy rain have lashed Zhouqu City around midnight, leading to catastrophic destruction which killed 1 765 people and resulted in enormous economic loss. The ZHQ Seismic Station is located approximately 170 m west of the outlet of the Sanyanyu Gully. The seismometer deployed at the seismic station started recording seismic signals of ever-enlarging amplitude around 10 minutes before the debris flow rushed out of the Sanyanyu Gully, showing ever approaching seismic source, i.e. the debris flow. In this study, we analyze this seismic event and propose an inversion algorithm to estimate the velocity of the debris flow by searching the best-fitting pairs of envelopes in the synthetic seismograms and the corresponding field seismic records in a least-square sense. Inversion results reveal that, before rushing out of the outlet, the average velocity of the debris flow gradually increased from 6.2 m/s to 7.1 m/s and finally reached 15 m/s at approximately 0.5 km above the outlet and kept this value since then. Obviously, the ever-increasing velocity of the debris flow is the key factor for the following disasters. Compared with other studies, our approach can provide the velocity distribution for the debris flow before its outbreak; Besides, it has the potential to provide technological support for a better understanding of the disaster process of a debris flow.  相似文献   

18.
The advance of technology has led to more competent countermeasures, but lives and properties still continue to suffer from water‐induced disasters, such as floods, landslides, and debris flows. To increase the effectiveness of counter systems, improved methods of planning and designing such systems are prerequisite. This paper describes briefly a methodological approach for predicting debris flow characteristics, and proposes techniques for evaluating and improving the mitigative effectiveness of check dams against debris flows in steep mountain torrents. Additionally, a non‐dimensional parameter, namely potential storage volume, is introduced to generalize the evaluation processes. As an example, the 1999 debris‐flow event in the San Julian River, Venezuela, is chosen for discussion. The paper also proposes a method of evaluating the control function of a series of check dams as well as the criteria for the selection of their sizes, numbers and locations. It is hoped that this work will help to determine which combinations of check dams will fit best together for the optimal control of debris flows and available resources in any river basin. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The geomorphological characteristics of small debris flows in a maritime sub‐Antarctic environment are described. The morphological and sedimentological characteristics of the debris flows are comparable to debris flows documented for other parts of the world; their initiation appears closely linked to the unusual environment in which they are found. Sediment supply is generated by diurnal frost heave of loamy sediment associated with Azorella selago. The debris flows are triggered by sediment mobilization upon saturation of the frost‐heaved surface gravel and overland flow over the low‐permeability and frost‐susceptible slope materials. Morphological effects of the flows are short‐lived due to obliteration by subsequent frost heave activity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号