首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in the urban atmosphere. An investigation on seasonal variation of PAHs in the urban atmosphere of Guangzhou, China was conducted in this study. 112 PM10 (particulate matter with aerodynamic diameter < 10 μm) samples were collected at two sites between June 2002 and June 2003. PAHs were analyzed with GC–MS (gas chromatography–mass spectrometry). The result showed that PAHs exhibit distinct seasonal variation. The seasonal concentration for the ∑PAHs ranged from 8.11 to 106.26 ng m− 3. The average ∑PAHs measured were highest in winter and lowest in summer. The PAHs distribution patterns were similar within each season at two sites. 5–6 ring PAHs were the abundant compounds, which accounted for 65–90% of ∑PAHs and benzo [b + k] fluoranthene dominated in four seasons. The PAHs concentration and distribution pattern fluctuated greatly in winter for the cold air current. Based on the different temperature in winter, the samples were split into two groups. PM10 and the abundance of the PAHs in winter-1 (temperature, 12–22 °C) were much greater than in winter-2 (temperature, 8–12 °C). In winter-1 benzo [b + k] fluoranthene and Indeno [1, 2, 3] pyrene dominated while chrysene and benzo [b + k] fluoranthene dominated in winter-2. Meteorological conditions such as wind speed and temperature had a strong influence on the seasonal variation. Potential sources of PAHs were identified using the molecular diagnostic ratios between PAHs. Results showed fossil fuel combustion may be the major source of PAHs at the two sites.  相似文献   

2.
ERA5再分析数据适用性初步评估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用山东省及周边地区10个站点的地面和高空观测资料对ERA5再分析资料的适用性进行了初步评估。结果表明:再分析的海平面气压和2 m温度与实况资料的相关性明显优于2 m相对湿度和10 m风场;高空温度和相对湿度在对流层中低层的适用性要好于高层,而位势高度和风场在中高层适用性较好;海平面气压再分析与实况的相关有着最明显的季节变化,2 m温度、2 m相对湿度和10 m风速则在部分站点有较明显的季节变化,而10 m风向的相关系数更多地表现出站点之间的差异,高空要素的适用性,季节和区域差异不明显。另外,对比发现,ERA5的适用性总体上要优于ERA-Interim再分析资料,地面和对流层低层的相对湿度、风场提高更为明显。  相似文献   

3.
库尔勒市历年沙尘天气发生特性分析   总被引:1,自引:0,他引:1  
本文根据1971~2010年库尔勒市气象实测资料,分析了库尔勒市沙尘天气40年变化特征,以及沙尘天气与平均风速,降水量,平均相对湿度,平均地面0cm温度和平均气温等气象因子之间的关系。结果表明:沙尘暴、扬沙、浮尘等沙尘天气在年际、季节与各月变化上具有一致性。20世纪的70年代沙尘天气发生日数最多,从1971~2005年沙尘天气发生日数呈波动下降趋势,1971年最高,共出现沙尘天气112d但不同沙尘天气发生日数最值出现的年份不同,2005~2010年沙尘天气发生日数又开始回升,到2010年沙尘天气的发生次数已接近70年代的平均水平。其次,沙尘天气呈现春夏季节发生日数多,秋冬发生日数少的季节变化趋势,每年的4月沙尘天气出现最多,1月沙尘天气出现最少。沙尘天气的发生与空气相对湿度、降水量呈现极显著的负相关,与风速呈现极显著的正相关,而与气温的变化关系不明显。根据2010年4月的沙尘颗粒物监测表明,沙尘天气使大气中的Ca、Mg、Fe等地壳元素含量增加。   相似文献   

4.
利用2016—2018年常州市区环境空气细颗粒物数据,结合同期地面气象资料,分析了常州市区PM2.5以及气象因素的变化特征,并统计分析气象因素对PM2.5浓度的影响。结果表明:常州市区PM2.5、降水量、相对湿度和气温等具有明显季节性,呈夏季较高冬季较低,而气压夏季较低冬季较高的特征。相对湿度与PM2.5呈正相关,即随着相对湿度的增加PM2.5超标率和平均浓度均增加;降水对PM2.5具有一定的清除作用,清除率与降水前PM2.5浓度、降水量、降水强度有关,降水量、降水强度越大,则降水清除效果越好,而降水前PM2.5浓度较小,则清除率不明显;常州市区偏西风时PM2.5的超标率和平均浓度较其他风向较高;风速对常州市区PM2.5的影响呈负相关,即风速越大PM2.5超标率和平均浓度均减小;常州市区地面天气形势可以分为两种类型,第一种类型表现为气压较低气温较高,PM2.5超标率以及平均浓度相对较低,而第二种类型表现为气压较高气温较低,PM2.5超标率以及平均浓度相对较高。  相似文献   

5.
The non-polar organic composition of airborne particulate matter was analysed over a two year period in an urban area under oceanic climate conditions (Errenteria, Basque Country, Spain). In addition, the distribution of polycyclic aromatic hydrocarbons (PAH) among different aerosol particle sizes was determined. Clues as to the origin of various particle types were gained by using scanning electron microscopy to view the morphology of the particulates in each size fraction. Samples were collected on glass fibre filters and analysed by means of soxhlet extraction and gas chromatography (either with a flame ionization detector or coupled to a mass spectrometry). In general, total PAH levels were moderate (0.96–50 ng m− 3) as compared to other studies conducted in Europe, and showed clear seasonal variation with maxima in winter and minima in summer. Vehicular traffic was identified as a major source of PAHs in the study area. Regarding particle size, a bimodal distribution was observed. The large sized particles exhibited an apparent seasonal variation with higher concentrations in winter than in summer. The dependences between particle size, PAH distribution and meteorological variables were studied with multivariate statistics. Three main sources of organic compounds were identified: combustion, vegetation, and atmospheric oxidation.  相似文献   

6.
南京大气能见度变化规律及影响因子分析   总被引:7,自引:1,他引:6       下载免费PDF全文
利用累积百分率法、Ridit中值分析法、"非常好"能见度出现频率法以及平均能见度年际和季节变化法,对1980—2005年南京大气能见度年际变化趋势进行分析,发现1980—1984年能见度呈上升趋势,1985年以后则在波动中呈明显下降趋势。26 a中,日均大气能见度最小值为0.55 km,最大值为29.25 km,平均值为8.59 km。大气能见度具有明显的日变化和季节变化特征,一日之中,14时最好,08时最差;一年之中,冬季能见度最低,夏季最高。能见度与相对湿度呈负相关,与风速呈正相关,与温度和气压的相关性相对较小。PM10是影响南京地区大气能见度的首要污染物,通过对能见度与PM10平均质量浓度进行曲线拟合发现,二者呈负相关,复相关系数在秋季最高,夏季最低。由统计预报方程可知,空气污染和气象条件协同作用对能见度的影响在春季、秋季、冬季较为明显,夏季则相对较差。  相似文献   

7.
The levels of PM.25 PAHs at Mt. Halla site, Jeju Island, a background site in Korea were observed between March 1999 and March 2002. A seasonal variation was observed for the particulate PAHs concentrations with high levels during cold season similar to Gosan, a nearby coastal background site, due to the seasonal variations of fossil fuel usage in Asia. The total average concentration of ambient particulate PAHs was 404 ± 579 pg m 3, about one order lower than the ambient level at Gosan. However, the ratios of the anthropogenic inorganic ion concentrations between Mt. Halla and Gosan were smaller, 1.5 for non sea-salt (nss) sulfate and 2.7 for nitrate. Two possible explanations for these characteristics are (1) two sites measured different air parcels and/or (2) the effect of local emissions were different at two sites. Based on the Bep/BaP ratio result, upper air wind direction data, backward trajectory analysis, and LIDAR measurement data at Gosan, it was found that the degree of the effects of local emissions to the sampling sites be the major reason for the different PAHs levels at two sites though, in some cases, the air parcels arriving at Mt. Halla were different from those arriving at Gosan. For secondary aerosol such as nss sulfate, the lower concentration difference indicates both site are affected by regional transport. It points that the measurement result for directly emitted species such as PAHs at Gosan might be significantly influenced by local emissions.  相似文献   

8.
利用2015年1月至2017年6月桂林国家基本气象站能见度、相对湿度、气温、气压、降水等气象要素和PM10、PM2.5、PM1.0颗粒物质量浓度资料,分析桂林城区大气能见度与颗粒物浓度和气象因子之间关系。结果表明:桂林城区大气能见度和PM10、PM2.5、PM1.0呈对数关系,相关系数分别为-0.341、-0.461、-0.509,颗粒物对大气能见度影响在相对湿度为60%—70%时最为显著。在各气象因子中,大气能见度与风速的相关性最好,其次为相对湿度,与风速呈二次函数关系,与相对湿度呈幂指数关系,与温度相关性较小,与气压在秋冬季节呈正相关,相关系数冬季可达0.301,但在春、夏季节相关性不显著;利用颗粒物浓度和气象要素建立8种大气能见度非线性统计回归模型,比较后发现利用PM1.0、风速、相对湿度、气温等因子建立的不同季节大气能见度拟合公式在实际检验中效果最优,能较好地模拟桂林地区大气能见度的变化。  相似文献   

9.
利用成都市城区2015年12月~2019年12月污染物浓度及气象资料,对PM10、PM2.5、CO、O3、 SO2、NO2六种大气污染物浓度变化特征以及与气象要素之间的相关性进行分析。结果表明:2016~2019年成都市空气质量冬季最差,秋季最好,年内整体以良为主,重度污染和严重污染的天气较少出现,空气质量逐年变好;主要污染物浓度除O3外在冬季最高,夏季最低,春秋两季相差不大,O3浓度变化则相反;主要污染物的日变化特征也较为明显。空气质量综合指数、PM10、PM2.5、CO、NO2浓度与气温和降水存在显著负相关性,与气压存在显著正相关性,还与相对湿度呈不同程度的负相关,但与风速相关性不显著;O3浓度不仅与风速、气温和降水存在显著的正相关,还与气压呈显著的负相关,却与相对湿度的负相关性不显著。   相似文献   

10.
辽宁中部城市群大气能见度变化趋势及影响因子分析   总被引:38,自引:5,他引:33  
通过分析辽宁中部相对集中分布的5个城市群1987-2002年间的大气能见度、影响能见度的气象因子和污染物的变化特征及能见度与气象因子、污染物浓度之间的相关关系等,得到以下结论:(1)各城市能见度有明显的月、季和年际变化特征,能见度月变化呈双峰型,第一个峰值在5月份,第二个峰值在9,10月份;冬季能见度的值最低,春、秋季高;本溪市的能见度在逐年变好;沈阳的能见度从1987-1997年逐年变好,1997年以后又逐年变差;其它城市的能见度呈逐年变差的趋势。(2)各城市影响能见度的气象因子的年际变化特征基本是一致的;5个城市TSP,SO2污染浓度年均值均呈下降趋势,NOx的年际变化趋势不明显。(3)能见度与湿度、雾的相关关系都呈负相关且非常显著;与降雨量、风速及温度之间的关系比较复杂;与各种污染物的相关都呈负相关。  相似文献   

11.
利用2015年1月至2017年12月中国环境监测总站全国城市空气质量实时发布平台中公布的克拉玛依5个监测点数据和同时期克拉玛依国家基本气象站的观测数据,分别研究了克拉玛依市4个行政区的PM2.5浓度的时空变化特征以及气象条件对克拉玛依PM2.5浓度变化的影响。结果表明:从月份上看,克拉玛依每年的1月、2月、12月PM2.5浓度最高,3月、11月PM2.5浓度较高,其中,独山子每年2月的PM2.5浓度均最高,2016年2月独山子PM2.5平均浓度最高,达到134 μg·m-3,超过国家一级标准值的2.8倍,属于中度污染,从季节上看,克拉玛依四季PM2.5浓度变化呈现波峰波谷变化趋势,表现为冬季最高,春季次之,夏季、秋季各区变化不一的特点,采暖期的PM2.5浓度高于非采暖期的PM2.5浓度;克拉玛依PM2.5浓度在空间上的总体分布为:独山子区>白碱滩区>克拉玛依区>乌尔禾区;从风向、风速、气温、气压和相对湿度等气象要素与PM2.5浓度的相关性来看,气压、相对湿度与PM2.5浓度呈显著正相关,气温、风速、风向与PM2.5浓度呈负相关,其中气温、风向与PM2.5浓度呈显著负相关。  相似文献   

12.
利用2015-2019年太行山南麓(即山西省晋城市)O3浓度和中国太阳总辐射资料,分析了该地区O3浓度的时空变化特征,及其与风、相对湿度、降水、雾霾、气温、太阳总辐射等气象因子的关系。结果表明:O3浓度呈逐年增加趋势,夏季浓度明显高于冬季,月变化为单峰型,峰值出现在6月,谷值出现在1月,日变化白天高于夜间;O3浓度的空间分布有明显的地域差异,呈现中部和南部高,东西部和北部低的特征,表现出与气候倾向率一致的特性。风速对O3浓度影响明显,风速小于1.5 m·s-1时,O3浓度升高速度快,大于2.5 m·s-1时,O3浓度迅速减小;O3浓度与相对湿度为负相关,峰值出现在相对湿度为30%-70%的区域;不同量级降水对O3浓度的影响差异较大,中雨时O3浓度较低,其他量级较高;无降水日O3浓度明显大于有降水日。有雾霾时O3浓度明显低于无雾霾天气;O3浓度与气温具有明显正相关,与太阳总辐射也呈正相关,但是相关性低于O3浓度与气温的相关性。  相似文献   

13.
利用2019—2021年金华市空气负氧离子浓度和气象环境资料,研究不同区域(平原城区、平原公园、水边景区、山林景区)负氧离子浓度时空分布特征,分析人类活动最多的城区负氧离子浓度与气象环境因素不同时间尺度的相关性,以及不同天空状况的差异。结果表明:负氧离子浓度呈现平原低、山区高的分布特征,植被茂密、动态水流可增加负氧离子浓度和提高浓度等级。山林景区日出和日落前后负氧离子浓度较高,水边景区凌晨和午后出现高值,平原地区则在下午达到高峰。不同区域四季日变化趋势整体较一致,但不同季节负氧离子浓度峰值大小、日较差和出现峰值时刻存在差异。四季不同区域负氧离子浓度有所差异,主要表现为6—9月高,其中尤以8月山林景区为最。负氧离子浓度与气象环境因素的相关性在不同时间尺度上差异较大:时尺度上与气温、风速、雨量和O3呈显著正相关,而与PM2.5呈显著负相关。四季看,负氧离子浓度春季与风速相关性最高,夏季为气温,秋季为O3,冬季为PM2.5。日尺度上则与相对湿度、风速、雨量呈显著正相关,与PM2.5和O3呈显著负相关,且雨天负氧离子浓度明显高于其他天空状况,差异在冬季达最大。  相似文献   

14.
利用2014年夏季成都市3个国控环境监测站(金泉两河,君平街和梁家巷)O3、NO2及PM2.5逐时观测数据,结合国家基准站温江站的气温、湿度、风速、风向、太阳辐照度、降雨等地面气象要素观测资料,分析O3的日、月变化及空间分布特征;探究前体物及气象因子对O3浓度的影响。结果表明:成都市O3-8 h平均浓度为104.4 μg·m-3,O3超标率为2.8%—15.3%。O3浓度6月最高,8月最低;呈现明显的“单峰型”日变化特征,午后15:00达到峰值。O3与NO2呈现负相关,相关系数为-0.5;与PM2.5无显著相关性。高温、低湿、强太阳辐射有利于O3的形成;风速为2.5—3.0 m·s-1,风向为南风时,O3浓度相对较高。  相似文献   

15.
利用2013~2017年贵阳市10个国控空气质量监测站点PM2.5逐时监测数据,分析了贵阳市大气污染物污染水平及其时空分布特征。结果表明:(1)贵阳市PM2.5年均浓度为36.14 ug·m-3,基本处于国家空气质量二级标准范围内,污染程度较轻;(2)贵阳市PM2.5浓度冬季浓度为一年中最高,最高值出现在12月,夏季浓度最低,最小值出现在7月;(3)气象要素对PM2.5浓度的影响是显著的,尤其是在分季节的情况下,气象要素对PM2.5的影响差异较大。PM2.5浓度与太阳辐射、日照时数、气压呈显著正相关,与降水、相对湿度、风速、气温呈显著负相关。太阳辐射夏季对PM2.5影响最大,日照时数春季对PM2.5的影响最大,气温在夏、秋季与PM2.5浓度呈显著负相关。春季降水对PM2.5的相关性更为显著,风速对夏、冬季与PM2.5浓度具有显著负相关性。   相似文献   

16.
基于2015、2016年河南省环境监测中心站获取的郑州市9个监测点颗粒物浓度和逐日气象数据,对气象因素和颗粒物浓度相关性进行了研究。结果表明:郑州市大气颗粒物浓度受季节影响较强,总体呈现冬季高、夏季低的趋势。降水量与大气颗粒物浓度呈现明显的负相关。相对湿度的增高不利于PM_(2. 5)浓度的降低,而PM_(10)的浓度则随着相对湿度的增高有所降低。春夏秋三季的主要风向为东北偏东,当春季风为东南风和西风时,颗粒物浓度最低;当夏季风为东北偏东风时,颗粒物浓度最低;秋季吹东北风时,颗粒物浓度最低。冬季吹西北风(郑州冬季盛行风向)时,大气颗粒物质量浓度最低。  相似文献   

17.
Measurements of surface ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx=NO+NO2) and meteorological parameters have been made at Agra (North Central India, 27°10??N, 78°05??E) in post monsoon and winter season. The diurnal variation in O3 concentration shows daytime in situ photochemical production with diurnal maximum in noon hours ranging from 51 to 54 ppb in post monsoon and from 76 to 82 ppb in winter, while minimum (16?C24 ppb) during nighttime and early morning hours. Average 8-h O3 concentration varied from 12.4 to 83.9 ppb. The relationship between meteorological parameters (solar radiation intensity, temperature, relative humidity, wind speed and wind direction) and surface O3 variability was studied using principal component analysis (PCA), multiple linear regression (MLR) and correlation analysis (CA). PCA and MLR of daily mean O3 concentrations on meteorological parameters explain up to 80 % of day to day ozone variability. Correlation with meteorology is strongly emphasized on days having strong solar radiation intensity and longer sunshine time.  相似文献   

18.
负氧离子是评价空气新鲜和清洁程度的重要指标。利用2018—2021年福建省负氧离子观测站数据分析负氧离子浓度的时空变化特征,并采用多元线性回归方法、多元逻辑回归方法和LightGBM机器学习方法建立负氧离子浓度预测模型。结果表明:福建省负氧离子资源十分丰富,中海拔区(350~550 m)年平均负氧离子浓度最高,低海拔区次之,高海拔区最小。负氧离子浓度日变化特征呈一峰一谷型,04:00—06:00(北京时,下同)达到峰值,12:00—13:00达到谷值;中海拔区负氧离子浓度季节变化较大,季节平均浓度从大到小依次为春季、夏季、冬季、秋季,而高、低海拔区季节变化相对较小。福建省不同海拔地区负氧离子浓度与湿度、降水和能见度均呈显著正相关,负氧离子浓度与气温、风速和气压显著相关,但不同海拔地区的相关性有所不同。机器学习方法对不同海拔地区负氧离子浓度数值的拟合效果比多元线性回归方法有明显提升,对负氧离子浓度等级拟合的准确率比多元逻辑回归方法提高7%~12%,且在绝大部分等级上的准确率均高于多元逻辑回归方法。  相似文献   

19.
周洋  蔡蕊  陆杰英 《广东气象》2014,36(6):44-49
利用广州市区和增城市1982—2013年的气象观测资料,应用数据对比和相关分析的方法,从年际和季节变化两个角度,分析了两地气象要素的差异性;运用拉格朗日模式,模拟了2个个例的水汽来源,分析两站降水量差异性的可能原因。结果表明:城市热岛效应导致广州市区温度高于增城市,而相对湿度低于增城市;城市冠层作用使得广州市区风速明显低于增城市。差异性存在明显的季节不同,温度和相对湿度在秋季差异最明显,风速在冬季差异最明显,而降水量在夏季差异最明显。通过相关性分析得到两站的温度以及相对湿度的相关系数达到0.99和0.89,可利用经验公式联系两地的预报结果。HYSPLIT模式模拟水汽来源表明,不同的水汽来源可以导致广州市区和增城市降水先后顺序以及降水量的差异。  相似文献   

20.
石文静  肖子牛 《气象》2013,39(1):39-45
利用近60年(1951-2010年)的NCEP/NCAR再分析风、比湿、地面气压及降水资料,建立了一个越赤道水汽输送强度指数来表征索马里急流的强度,并从季节、年际、年代际变化及突变等不同侧面出发,比较系统地分析了索马里急流越赤道水汽输送强度的变化特征,并进一步分析了它与我国初夏降水异常的关系及这种关系随时间的年代际变化特点.分析结果表明:进入20世纪90年代之后,索马里急流风速强度有明显的减弱趋势,而水汽输送强度无显著变化;与索马里急流风速强度相比,水汽输送强度与我国初夏6月降水量的关系更为密切.索马里急流弱年对应长江以北的华北地区初夏降水偏少,反之亦然.此外,索马里水汽输送对我国北方初夏降水的影响在1982年后明显加强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号