首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
利用2016—2018年常州市区环境空气细颗粒物数据,结合同期地面气象资料,分析了常州市区PM2.5以及气象因素的变化特征,并统计分析气象因素对PM2.5浓度的影响。结果表明:常州市区PM2.5、降水量、相对湿度和气温等具有明显季节性,呈夏季较高冬季较低,而气压夏季较低冬季较高的特征。相对湿度与PM2.5呈正相关,即随着相对湿度的增加PM2.5超标率和平均浓度均增加;降水对PM2.5具有一定的清除作用,清除率与降水前PM2.5浓度、降水量、降水强度有关,降水量、降水强度越大,则降水清除效果越好,而降水前PM2.5浓度较小,则清除率不明显;常州市区偏西风时PM2.5的超标率和平均浓度较其他风向较高;风速对常州市区PM2.5的影响呈负相关,即风速越大PM2.5超标率和平均浓度均减小;常州市区地面天气形势可以分为两种类型,第一种类型表现为气压较低气温较高,PM2.5超标率以及平均浓度相对较低,而第二种类型表现为气压较高气温较低,PM2.5超标率以及平均浓度相对较高。  相似文献   

2.
利用2013~2017年贵阳市10个国控空气质量监测站点PM2.5逐时监测数据,分析了贵阳市大气污染物污染水平及其时空分布特征。结果表明:(1)贵阳市PM2.5年均浓度为36.14 ug·m-3,基本处于国家空气质量二级标准范围内,污染程度较轻;(2)贵阳市PM2.5浓度冬季浓度为一年中最高,最高值出现在12月,夏季浓度最低,最小值出现在7月;(3)气象要素对PM2.5浓度的影响是显著的,尤其是在分季节的情况下,气象要素对PM2.5的影响差异较大。PM2.5浓度与太阳辐射、日照时数、气压呈显著正相关,与降水、相对湿度、风速、气温呈显著负相关。太阳辐射夏季对PM2.5影响最大,日照时数春季对PM2.5的影响最大,气温在夏、秋季与PM2.5浓度呈显著负相关。春季降水对PM2.5的相关性更为显著,风速对夏、冬季与PM2.5浓度具有显著负相关性。   相似文献   

3.
利用成都市城区2015年12月~2019年12月污染物浓度及气象资料,对PM10、PM2.5、CO、O3、 SO2、NO2六种大气污染物浓度变化特征以及与气象要素之间的相关性进行分析。结果表明:2016~2019年成都市空气质量冬季最差,秋季最好,年内整体以良为主,重度污染和严重污染的天气较少出现,空气质量逐年变好;主要污染物浓度除O3外在冬季最高,夏季最低,春秋两季相差不大,O3浓度变化则相反;主要污染物的日变化特征也较为明显。空气质量综合指数、PM10、PM2.5、CO、NO2浓度与气温和降水存在显著负相关性,与气压存在显著正相关性,还与相对湿度呈不同程度的负相关,但与风速相关性不显著;O3浓度不仅与风速、气温和降水存在显著的正相关,还与气压呈显著的负相关,却与相对湿度的负相关性不显著。   相似文献   

4.
利用2015年1月至2017年6月桂林国家基本气象站能见度、相对湿度、气温、气压、降水等气象要素和PM10、PM2.5、PM1.0颗粒物质量浓度资料,分析桂林城区大气能见度与颗粒物浓度和气象因子之间关系。结果表明:桂林城区大气能见度和PM10、PM2.5、PM1.0呈对数关系,相关系数分别为-0.341、-0.461、-0.509,颗粒物对大气能见度影响在相对湿度为60%—70%时最为显著。在各气象因子中,大气能见度与风速的相关性最好,其次为相对湿度,与风速呈二次函数关系,与相对湿度呈幂指数关系,与温度相关性较小,与气压在秋冬季节呈正相关,相关系数冬季可达0.301,但在春、夏季节相关性不显著;利用颗粒物浓度和气象要素建立8种大气能见度非线性统计回归模型,比较后发现利用PM1.0、风速、相对湿度、气温等因子建立的不同季节大气能见度拟合公式在实际检验中效果最优,能较好地模拟桂林地区大气能见度的变化。  相似文献   

5.
北京地区PM2.5的成分特征及来源分析   总被引:12,自引:0,他引:12       下载免费PDF全文
选用2003—2004年初PM2.5连续观测资料,统计分析了北京地区PM2.5的特征、PM2.5与PM10以及PM2.5与地面气象要素的相互关系。结果表明:四季中夏季PM2.5浓度最低,冬、春两季浓度较高。PM2.5与PM10比值平均为0.55,非采暖期两者比值为0.52,采暖期两者比值为0.62;夏季该比值主要分布在0.3~0.6之间,春、秋两季该比值分布在0.3~0.8之间,冬季采暖期该比值分布在0.4~0.9之间。PM2.5与PM10比值日变化与气象条件日变化、人们日常生活习惯密切相关,沙尘天气和交通运输高峰期扬起地面粗颗粒物会导致PM2.5在PM10中的比例下降,而冬季取暖以及夏季光化学反应则会引起PM2.5的比例升高。PM2.5的浓度与地面气象要素中本站气压、相对湿度和风速有很好的的相关性,与气温的相关性较差。SO42-,NO3-和NH4+为北京地区PM2.5中主要离子。PMF源解析方法确定了北京地区5类细粒子污染源,分别是:土壤尘、煤燃烧、交通运输、海洋气溶胶以及钢铁工业。  相似文献   

6.
利用2015—2017年唐山市空气质量日空气质量指数、小时PM2.5浓度和气象数据,分析了唐山市重污染特征及PM2.5重污染生成、消散气象条件。结果表明:2015—2017年唐山市重污染天数为减少趋势,年平均重污染天数36 d。冬季发生重污染天数最多,秋季次之。重污染天气中首要污染物为PM2.5、PM10和O3,PM2.5为首要污染物占比87%,PM10占比6%,O3占比7%。小时PM2.5浓度与相对湿度、总云量、24 h变温正相关,与风速、气温、风向、1 h降水负相关。冬季相关性最好,其次是秋季和春季。90%PM2.5重污染相对湿度均为50%以上,冬季和秋季高达98%;风速大于4 m·s-1时,有0.7%的PM2.5达到重污染;降水对PM2.5有一定清除作用。升温、湿度增加和负变压有助于污染天气形成,生成过程中平均风速为1.8 m·s-1,主导风向为SW,其次是S、W。降温、湿度下降、正变压、降水有助于污染天气消散,消散过程中平均风速为3.1 m·s-1,主导风向为E,其次是NE、N。各方位3 m·s-1的风具有清除能力,偏北风具有较好清除能力,风速较其他方向风速小。  相似文献   

7.
利用2016年12月至2017年5月海南省3个地级市(三沙市永兴岛、三亚、海口)监测的PM2.5、PM10数据,对比分析其污染特征。结果表明:相较于海口、三亚,永兴岛空气质量最好,细粒子污染程度最轻且PM2.5、PM10质量浓度日变化最平稳,其主要原因是人类生产活动对空气质量的影响不大。进一步通过分析3个站点的PM2.5质量浓度与近地面气象要素(相对湿度、月总降水量、能见度)发现,永兴岛PM2.5质量浓度与能见度整体呈负相关,永兴岛在不同风速、风向上的PM2.5质量浓度最小,三亚次之,海口最大。永兴岛PM2.5的大值区主要出现在东北风向上,其他方向上的气流则相对比较清洁,且在静风或者微风条件下,永兴岛的初始PM2.5质量浓度比较低。通过每天逐6 h的72 h后向轨迹分析发现,冬季、夏季风影响期间,永兴岛分别受来源于西太平洋、南海的海洋性气流影响,这与永兴岛的空气质量有直接关系。  相似文献   

8.
利用2014年夏季成都市3个国控环境监测站(金泉两河,君平街和梁家巷)O3、NO2及PM2.5逐时观测数据,结合国家基准站温江站的气温、湿度、风速、风向、太阳辐照度、降雨等地面气象要素观测资料,分析O3的日、月变化及空间分布特征;探究前体物及气象因子对O3浓度的影响。结果表明:成都市O3-8 h平均浓度为104.4 μg·m-3,O3超标率为2.8%—15.3%。O3浓度6月最高,8月最低;呈现明显的“单峰型”日变化特征,午后15:00达到峰值。O3与NO2呈现负相关,相关系数为-0.5;与PM2.5无显著相关性。高温、低湿、强太阳辐射有利于O3的形成;风速为2.5—3.0 m·s-1,风向为南风时,O3浓度相对较高。  相似文献   

9.
利用2018年12月至2019年2月滨州、德州和聊城PM2.5、PM10、NO2、SO2、CO和O3逐日质量浓度及其对应的气象资料,分析了鲁西北大气污染特征和影响因子。结果表明:2018年冬季鲁西北大气污染比较严重,聊城、德州和滨州轻度及以上污染天数分别占61%、60%和54%,重度以上染污天数分别占24%、11%和9%;首要污染物均为PM2.5、PM10和NO2,其中PM2.5占60%以上。PM2.5、PM10、SO2、NO2和CO日变化呈双峰双谷型,谷值分别出现在04-07时和15-17时,且下午比清晨更低,峰值出现在上午和下午交通高峰期后2-3 h,且峰值上午大于下午;O3呈单峰型分布,09时出现极小值,18-19时出现极大值。PM2.5是鲁西北主要的首要污染物,与PM10、CO、NO2均为显著正相关,并通过0.01水平显著性检验,与NO2的相关性在低相对湿度(< 60%)时大于高相对湿度(≥ 60%),与CO的相关性在高相对湿度时大于低相对湿度;污染时段(PM2.5>75 μg·m-3)的平均相对湿度和平均温度明显大于清洁时段(PM2.5 ≤ 75 μg·m-3),清洁时段风速和气压比污染时段明显偏大。  相似文献   

10.
天津2011年秋冬季PM2.5组分特征及其对能见度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011年能见度、相对湿度、风速逐时观测资料和11月16日至12月13日期间颗粒物膜采样数据,分析天津市大气能见度与PM2.5组分的关系。结果表明:天津颗粒物质量浓度与能见度变化总体呈负相关,PM2.5和相对湿度对能见度的影响作用明显。能见度与颗粒物中TC质量浓度变化呈负相关,SO42-,NO3-,OC和EC是影响大气能见度的主要组分,其中SO42-浓度对能见度影响最大,其次为OC浓度、EC浓度,NO3-浓度对能见度的影响相对较小。后向轨迹和混合层高度分析表明,气象条件是造成PM2.5质量浓度分布差异的重要原因。  相似文献   

11.
利用2015年黄石市5个监测站点可吸入颗粒物(PM10)和细颗粒物(PM2.5)的在线监测数据和风向、风速、气温、气压等常规地面气象要素观测资料,分析了黄石市大气PM10和PM2.5的质量浓度水平分布特征及其与气象参数的关系。结果表明:2015年黄石市5个监测站点大气PM10和PM2.5年均浓度范围分别为95.8—108.6μg·m^-3和64.3—68.9μg·m^-3,均超过国家二级标准;季均质量浓度呈现显著的冬季高夏季低的变化规律,冬季PM10和PM2.5的质量浓度分别为(143.9±62.2)μg·m^-3和(95.5±44.5)μg·m^-3,夏季PM10和PM2.5的质量浓度分别为(75.2±24.0)μg·m^-3和(50.7±17.3)μg·m^-3。5个监测站中,下陆区、西塞山区和铁山区的PM10和PM2.5颗粒物污染较为严重;各站点大气PM10和PM2.5质量浓度显著相关。大气颗粒物浓度与气象因素的分析显示,黄石市大气颗粒物浓度与气温呈显著的负相关关系,与气压呈正相关关系,与风速和相对湿度的相关性不显著,受风向影响变化较大。  相似文献   

12.
利用2014—2017年汕头市PM2.5的日浓度资料、以及汕头市国家基准气象观测站的同期地面气象资料,重点分析了汕头市PM2.5浓度的变化特征以及风、混合层厚度、降水等气象条件对PM2.5浓度的影响,同时探讨了污染物浓度变化的成因。在此基础上,根据汕头市的气候特点,采用BP (Back-Propagation)人工神经网络方法针对汛期和非汛期分别建立了PM2.5质量浓度预报模型。结果表明:与多数内陆城市不同,汕头市PM2.5浓度日变化为单峰型,这与汕头地处沿海受海陆风影响有关;PM2.5浓度日峰值出现在08时左右,除早高峰污染物排放增加的因素外,与早晨时段的低风速环境有关;PM2.5日均浓度随着风速的增大呈现减小趋势,PM2.5日均浓度与08时混合层厚度显著相关(相关系数为-0.143);汕头市非汛期PM2.5浓度比汛期高,这与汕头市的亚热带季风气候特征有关,汛期各量级降水(暴雨以上除外)对PM2.5的清除效果无明显差别,而非汛期降水对PM2.5浓度有明显清除作用;BP人工神经网络模型的预报效果表明,汛期和非汛期的PM2.5级别命中率TS分别为100%和90.3%,准确指数分别为87.7%和89.9%,总体预报效果良好。不同时期预报模型出现正误差的数量和程度均大于负误差,汛期预报模型在有强降水发生时误差较大,而非汛期预报模型在有冷空气入侵时误差较大。  相似文献   

13.
北京地区夏末秋初气象要素对PM2.5污染的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
利用北京宝联站及北京上甸子大气本底站2006—2008年的7—9月PM2.5连续观测资料以及北京市观象台的探空数据、海淀气象站的风廓线雷达和降水量等资料,对北京地区夏末秋初PM2.5的质量浓度特征及其与气象要素的关系进行了统计分析。结果表明:城区站各月平均PM2.5质量浓度明显高于郊区站,高空偏南气流的输送是造成城区及本底地区出现细颗粒物污染的主要原因。从地面风速来看,城区当北风和南风分别达到2 m·s-1和3.5 m·s-1以上时能起到扩散作用;郊区在低风速的北风条件下也能起到扩散和稀释作用,而南风基本上对郊区的颗粒物无扩散作用。PM2.5质量浓度在降水前后的清除量与降水量、初始质量浓度均呈正相关关系,城区及郊区的云下清除过程更多取决于降水前污染物的浓度,降水量作用较弱。当混合层高度突破1500 m时,垂直扩散对污染物的稀释扩散效果明显。  相似文献   

14.
彭州市大气污染物浓度变化特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用2017年彭州市大气污染物(SO2、NO2、O3、CO、PM10、PM2.5)小时浓度数据并结合地面气象观测资料,统计分析了该地区大气污染物浓度的演变规律及影响因素。结果表明:该地区细粒子(PM10和PM2.5)污染较为严重,O3次之,其它污染物浓度水平则低于国家新二级标准限值。观测期间,各污染物浓度表现出明显的日变化与季节变化,其中SO2、O3呈单峰型日变化,NO2、CO和细粒子则呈双峰型日变化;污染物浓度的季节变化基本表现为冬高夏低、春秋次之的变化特征(O3为夏高冬低),并且固态污染物(PM10、PM2.5)与气态污染物(NO2、CO)之间有显著的相关性。在污染物浓度与气象要素相关性分析中表明,湿度对于污染物浓度的影响整体上要弱于温度和风速,除了O3与温度、风速呈正相关外,其它污染物与两者均呈负相关。除此以外,风向对于当地各种大气污染物的积累与清除也有直接的影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号