首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
A study on the seismic response of massive flexible strip-foundations embedded in layered soils and subjected to seismic excitation is presented. Emphasis is placed on the investigation of the system response with the aid of a boundary element–finite element formulation proper for the treatment of such soil–structure interaction problems. In the formulation, the boundary element method (BEM) is employed to overcome the difficulties that arise from modeling the infinite soil domain, and the finite element method (FEM) is applied to model the embedded massive flexible strip-foundation. The numerical solution for the soil–foundation system is obtained by coupling the FEM with the BEM through compatibility and equilibrium conditions at the soil–foundation and soil layer interfaces. A parametric study is conducted to investigate the effects of foundation stiffness and embedment on the seismic response.  相似文献   

2.
A time-domain formulation is proposed for the transient response analysis of general, three-dimensional structures resting on a homogeneous, elastic halfspace subjected to either external loads or seismic motions. The formulation consists of two parts: (a) the time domain formulation of the soil behaviour and (b) the coupling of the corresponding soil algorithms to the Finite Element Code ANSYS. As far as the structure is concerned, this coupling opens the way for the analysis of non-linear soil–structure interaction. The approach is based on halfspace Green's functions for displacements elicited by Heaviside time-dependent surface point loads. Hence, the spatial discretisation can be confined to the contact area between the foundation and the soil, i.e. no auxiliary grid beyond the foundation as for conventional boundary element formulations is required. The method is applied to analyse the dynamic response of a railway track due to a moving wheel set by demonstrating the influence of ‘through-the-soil coupling’.  相似文献   

3.
A study of soil–structure–fluid interaction (SSFI) of a lock system subjected to harmonic seismic excitation is presented. The water contained lock is embedded in layered soils supported by a half-space bedrock. The ground excitation is prescribed at the soil–bedrock interface. The response is numerically obtained through a hybrid boundary element (BEM) finite element method (FEM) formulation. The semi-infinite soil and the fluid are modeled by the BEM and the lock is modeled by the FEM. The equilibrium equation for the lock system is obtained by enforcing compatibility and equilibrium conditions at the fluid–structure, soil–structure and soil–layer interfaces under conditions of plane strain. To the authors’ knowledge this is the first study of a lock system that considers the effects of dynamic soil–fluid–structure interaction through a BEM–FEM methodology. A numerical example and parametric studies are presented to examine the effects of the presence of water, lock stiffness, and lock embedment on the response.  相似文献   

4.
A general, rigorous, coupled Boundary Element–Finite Element (BE–FE) formulation is presented for non-linear seismic soil–structure interaction in two dimensions. The BE–FE method is applied to investigate the inelastic response of earth dams to transient SV waves. The dam body, consisting of heterogeneous materials modelled with a simple non-linear hysteretic model, is discretized with finite elements, whereas the elastic half-space is discretized with boundary elements. The study focuses on the combined effects of the material non-linearity and foundation flexibility. The results show the significant effect of the foundation flexibility in reducing the response through radiation of energy. For excitations with peak ground accelerations from 0·2gto 0·6g, the crest acceleration amplification ranges from 2·5 to 1·4 and seems to be comparable with field observations and results from other studies. Deamplification increasing with strain is reported at the lower part of the dam. The method is computationally powerful and can be used for efficient non-linear analysis of complex soil–structure systems. The efficiency of the BE–FE method allows further improvements with incorporation of a more advanced constitutive model and consideration of the generation and dissipation of pore-water pressures during the earthquake. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, the earthquake damage response of the concrete gravity dams is investigated with considering the effects of dam–reservoir interaction. A continuum damage model which is a second-order tensor and includes the strain softening behavior is selected for the concrete material. The mesh-dependent hardening technique is adopted such that the fracture energy dissipated is not affected by the finite element mesh size. The dynamic equilibrium equations of motion are solved by using the improved form of the HHT-α time integration algorithm. Two dimensional seismic analysis of Koyna gravity dam is performed by using the 1967 Koyna earthquake records. The effects of damage on the earthquake response of concrete gravity dams are discussed. Comparison of the Westergaard and Lagrangian dam–reservoir interaction solutions is made. The effects of viscous damping ratio on the damage response of the dam are also studied.  相似文献   

6.
Wave scattering and dam–foundation interaction are important aspects of a realistic earthquake analysis of arch dams. In the first part of this paper it is shown how the motion obtained from a two-dimensional scattering analysis can be used as an input for a three-dimensional dam–foundation analysis. In the second part, a method for calculating the scattered motion is explained. The scattered motion is obtained via the two-dimensional dynamic stiffness matrix. The dynamic stiffness matrix for an out-of-plane motion is calculated by the Complementary-Domain Method (CDM). Some examples are presented to verify the method and to show the influence of the scattering of the seismic ground motion.  相似文献   

7.
8.
An approach is formulated for the linear analysis of three-dimensional dynamic soil–structure interaction of asymmetric buildings in the time domain, in order to evaluate the seismic response behaviour of torsionally coupled buildings. The asymmetric building is idealized as a single-storey three-dimensional system resting on different soil conditions. The soil beneath the superstructure is modeled as linear elastic solid elements. The contact surface between foundation mat and solid elements of soil is discretised by linear plane interface elements with zero thickness. An interface element is further developed to function between the rigid foundation and soil. As an example, the response of soil–structure interaction of torsionally coupled system under two simultaneous lateral components of El Centro 1940 earthquake records has been evaluated and the effects of base flexibility on the response behaviour of the system are verified.  相似文献   

9.
Main purpose of this study is to evaluate the dynamic behavior of fluid–rectangular tank–soil/foundation system with a simple and fast seismic analysis procedure. In this procedure, interaction effects are presented by Housner's two mass approximations for fluid and the cone model for soil/foundation system. This approach can determine; displacement at the height of the impulsive mass, the sloshing displacement and base forces for the soil/foundation system conditions including embedment and incompressible soil cases. Models and equations for proposed method were briefly explained for different tank–soil/foundation system combinations. By means of changing soil/foundation conditions, some comparisons are made on base forces and sloshing responses for the cases of embedment and no embedment. The results showed that the displacements and base shear forces generally decreased, with decreasing soil stiffness. However, embedment, wall flexibility, and soil–structure interaction (SSI) did not considerably affect the sloshing displacement.  相似文献   

10.
The seismic response analysis of a base-isolated liquid storage tank on a half-space was examined using a coupling method that combines the finite elements and boundary elements. The coupled dynamic system that considers the base isolation system and soil–structure interaction effect is formulated in time domain to evaluate accurately the seismic response of a liquid storage tank. Finite elements for a structure and boundary elements for liquid are coupled using equilibrium and compatibility conditions. The base isolation system is modeled using the biaxial hysteretic element. The homogeneous half-space is idealized using the simple spring-dashpot model with frequency-independent coefficients. Some numerical examples are presented to demonstrate accuracy and applicability of the developed method.Consequently, a general numerical algorithm that can analyze the dynamic response of base-isolated liquid storage tanks on homogeneous half-space is developed in three-dimensional coordinates and dynamic response analysis is performed in time domain.  相似文献   

11.
A technique for modeling transient wave propagation in unbounded media is extended and applied to seismic soil–structure interaction analysis in the time domain. The technique, based on the discontinuous Galerkin method, requires lower computational cost and less storage than the boundary element method, and the time‐stepping scheme resulting from Newmark's method in conjunction with the technique is unconditionally stable, allowing for efficient and robust time‐domain computations. To extend the technique to cases characterized by seismic excitation, the free‐field motion is used to compute effective forces, which are introduced on the boundary of the computational domain containing the structure and the soil in the vicinity of the structure. A numerical example on a dam–foundation system subjected to seismic excitation demonstrates the performance of the method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
This paper compares the use of local and global shape functions in a boundary element method that is used in a prediction model for traffic induced vibrations. The boundary element formulation describes the interaction problem between a linear elastic layered half-space and a longitudinally invariant structure representing a road or a railway track. The boundary element formulation in the frequency–wavenumber domain is obtained by means of a weighted residual method. Constant element shape functions, as well as Legendre and Chebyshev shape functions are considered. Their effect on both accuracy and computational effort is investigated. The presence of a singularity in the Chebyshev based shape functions allows to obtain a better approximation for the soil tractions. The theory is applied to road traffic induced vibrations where the response is calculated in a large number of output points.  相似文献   

13.
The seismic response of the intake–outlet towers has been widely analyzed in recent years. The usual models consider the hydrodynamic effects produced by the surrounding water and the interior water, characterizing the dynamic response of the tower–water–foundation–soil system. As a result of these works, simplified added mass models have been developed. However, in all previous models, the surrounding water is assumed to be of uniform depth and to have infinite extension. Consequently, the considered added mass is associated with only the pressures created by the displacements of the tower itself. For a real system, the intake tower is usually located in proximity to the dam and the dam pressures may influence the equivalent added mass. The objective of this paper is to investigate how the response of the tower is affected by the presence of the dam. A coupled three‐dimensional boundary element‐finite element model in the frequency domain is employed to analyze the tower–dam–reservoir interaction problem. In all cases, the system response is assumed to be linear, and the effect of the internal fluid and the soil–structure interaction effects are not considered. The results suggest that unexpected resonance amplifications can occur due to changes in the added mass for the tower as a result of the tower–dam–reservoir interaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A fully coupled finite element code based on mixture theory is developed. Prévost's multi-surface constitutive model is tailored to three-dimensional loads and used to predict effective stresses. A new viscous boundary is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb the two dilatational waves and the shear wave.Two soil deposits and two dams, with different slopes, composed by loose and dense sands have been subjected to the Pacoima accelerogram. Results show how the liquefaction propagates in the soil deposits and earth dams. The importance of the coupling between dilatancy–contractancy and filtration is highlighted by a parametric investigation. Phenomena such as liquefaction and cyclic mobility are reproduced, indicating the robustness of the constitutive model and finite element simulations. As an outcome of the parametric analysis, the seismic stability of dams cannot be improved by decreasing the upstream or downstream slopes.  相似文献   

15.
Two prediction models for calculating vibration from underground railways are developed: the pipe-in-pipe model and the coupled periodic finite element–boundary element (FE–BE) model.The pipe-in-pipe model is a semi-analytical three-dimensional model that accounts for the dynamic interaction between the track, the tunnel and the soil. The continuum theory of elasticity in cylindrical coordinates is used to model two concentric pipes: an inner pipe to represent the tunnel wall and an outer pipe to represent the surrounding soil. The tunnel and soil are coupled accounting for equilibrium of stresses and compatibility of displacements at the tunnel–soil interface. This method assumes that the tunnel is invariant in the longitudinal direction and the problem is formulated in the frequency–wavenumber domain using a Fourier transformation. A track, formulated as an Euler–Bernoulli beam, is then coupled to this model. Results are transformed to the space domain using the inverse Fourier transform.The coupled periodic FE–BE model is based on a subdomain formulation, where a boundary element method is used for the soil and a finite element method for the tunnel. The Craig–Bampton substructuring technique is used to efficiently incorporate the track in the tunnel. The periodicity of the tunnel is exploited using the Floquet transformation to formulate the track–tunnel–soil interaction problem in the frequency–wavenumber domain and to compute the wave field radiated into the soil.An invariant concrete tunnel, embedded in a homogeneous full space is analyzed using both approaches. The pipe-in-pipe model offers an exact solution to this problem, which is used to validate the coupled periodic FE–BE model. The free field response due to a harmonic load in the tunnel is predicted and results obtained with both models are compared. The advantages and limitations of both models are highlighted. The coupled periodic FE–BE model has a greater potential as it can account for the complex periodic geometry of the tunnel and the layering in a soil medium. The effect of coupling a floating slab to the tunnel–soil system is also studied with both models by calculating the insertion gain.  相似文献   

16.
A computational procedure for two-dimensional finite-element analysis of dam–water–sediment–rock systems subjected to seismic excitations is reviewed. In particular, the semidiscrete approximation of the water–sediment–rock region on the upstream side of the dam by means of a hyperelement is described in detail. The sediment is represented in the hyperelement as a fluid-filled porous solid on the basis of the Biot theory of wave propagation in poroelastic media while the water is taken as a compressible, inviscid fluid and the rock as a viscoelastic solid. An application of the procedure to a study of the effects of sediment porosity and thickness on the response of a model dam to horizontal and vertical ground motions is presented and discussed.  相似文献   

17.
A three-dimensional soil–structure–liquid interaction problem is numerically simulated in order to analyze the dynamic behavior of a base-isolated liquid storage tank subjected to seismic ground motion. A dynamic analysis of a liquid storage tank is carried out using a hybrid formulation, which combines the finite shell elements for structures and the boundary elements for liquid and soil. The system is composed of three parts: the liquid–structure interaction part, the soil–foundation interaction part, and the base-isolation part. In the liquid–structure interaction part, the tank structure is modeled using the finite elements and the liquid is modeled using the internal boundary elements, which satisfy the free surface boundary condition. In the soil–foundation interaction part, the foundation is modeled using the finite elements and the half-space soil media are modeled using the external boundary elements, which satisfy the radiation condition in the infinite domain. Finally, above two parts are connected with the base-isolation system to solve the system's behavior. Numerical examples are presented to demonstrate the accuracy of the developed method, and an earthquake response analysis is carried out to demonstrate the applicability of the developed technique. The properties of a real LNG tank located in the west coast of Korea are used. The effects of the ground and the base-isolation system on the behavior of the tank are analyzed.  相似文献   

18.
The arch dam–foundation rock dynamic interaction and the nonlinear opening and closing effects of contact joints on arch dam are important to the seismic response analysis of arch dams. Up to date, there is not yet a reasonable and rigorous procedure including the two factors in seismic response analysis. The methods for the analysis of arch dam–foundation rock dynamic interaction in frequency domain are not suitable to the problem with nonlinear behaviors, in this paper, so an analysis method in time domain is proposed by combining the explicit finite element method and the transmitting boundary, and the dynamic relaxation technique is adopted to obtain the initial static response for dynamic analysis. Moreover, the influence of arch dam–foundation dynamic interaction with energy dispersion on seismic response of designed Xiaowan arch dam in China is studied by comparing the results of the proposed method and the conventional method with the massless foundation, and the local material nonlinear and nonhomogeneous behaviors of foundation rock are also considered. The reservoir water effect is assumed as Westergaard added mass model in calculation. The influence of the closing–opening effects of contact joints of arch dam on the seismic response will be studied in another paper.  相似文献   

19.
For a class of civil engineering structures, that can be accurately represented by ‘coupled shear walls’ (CSWs), a discrete model for the analysis of the dynamic interaction with the underlying soil is proposed. The CSWs, with one or more rows of openings, rest on a rigid foundation embedded in the elastic or viscoelastic half-space. A hierarchical finite element model based on an equivalent continuum approach is adopted for the structure. A frequency-domain boundary element method is used to represent the half-space. Finally, the set of equations governing the response of the coupled soil-structure system to harmonic lateral loads acting on the structure is also given. The frequency deviation effect with respect to the fixed-base structure and the effects of radiation and material damping in the soil are presented for different characteristics of the structure and different soil properties.  相似文献   

20.
In this study, two different earthquake input models are introduced, i.e. massless foundation model and viscous-spring boundary input model considering radiation damping. Linear elastic and nonlinear contraction joint opening analyses of the 210 m high Dagangshan arch dam under construction in China are performed using the two different earthquake input models. First, the responses of the three-dimensional (3-D) canyon without the dam are analyzed, respectively, with massless-truncated foundation and with viscous-spring boundary; second, linear and nonlinear analyses of the dam–foundation system are performed and compared by using the two input models. Hydrodynamic effects are considered using finite element discretization for incompressible reservoir fluid. It is concluded that stresses and displacements and contraction joint opening in the dam are significantly reduced both in linear and nonlinear analyses when using viscous-spring boundary model. Interestingly, in the case of linear analysis of the Dagangshan, the massless foundation input model with a relatively higher damping ratio of 10% leads to a comparable response of the dam to that using viscous-spring boundary model. In addition, the maximum tensile stresses from nonlinear analysis are 10–25% larger than that of the corresponding linear cases due to a partial release of the arch action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号