首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
全球新元古代冰期的记录和时限   总被引:7,自引:0,他引:7  
赵彦彦  郑永飞 《岩石学报》2011,27(2):545-565
化学沉淀碳酸盐矿物在沉积后很容易受到各种作用的影响,其中最重要的是其在成岩阶段所经历的成岩作用。碳酸盐沉积物在成岩过程中主要受大气降水、海水和埋藏过程中孔隙流体的控制,经历一系列压实、溶解、矿物的多相转变、重结晶、胶结等成岩作用,逐渐转变为固结的岩石。在成岩过程中,由于孔隙流体与沉积流体之间的异同以及温度的变化,碳酸盐沉积物的原始矿物成分、地球化学特征可能会很好的保存下来,但在许多情况下,也可能会改变,从而使我们无法准确反演碳酸盐沉积物在沉积时水体的特征。因此,我们在应用碳酸盐岩重建相关古环境和古气候变化的时候,必须要通过有效的方法来对碳酸盐岩是否受到成岩作用的影响进行鉴定。  相似文献   

2.
地下孔隙率和渗透率在空间和时间上的变化及影响因素   总被引:18,自引:5,他引:18  
黄思静  侯中健 《沉积学报》2001,19(2):224-231
地下岩石孔隙率和渗透率在空间和时间上的变化受众多因素控制,总的说来,包括沉积与成岩两个最为主要的因素。沉积盆地的性质和沉积环境控制了沉积物的组成、岩石的结构和原生孔隙。沉积作用所经历的时间相对较短而进程较快;成岩作用所经历的时间相对较长而进程较慢。从对孔隙率和渗透率的控制作用来说,成岩作用的研究难度相对较大。近年来,一些传统的形成地下岩石次生孔隙的机制受到挑战,这些传统机制中最为主要的是有机酸对铝硅酸溶解形成次生孔隙,但这会造成介质pH值的升高,碳酸盐矿物和高岭石的沉淀。地下岩石中碳酸水溶解产生的次生孔隙也是有限的。新的机制如大气淡水的溶解作用,深部冷却地下水的溶解作用,硅酸盐的水解都得到了人们的普遍接受,这对于次生孔隙成因的解释及地下岩石孔隙率和渗透率的预测十分重要。对于碳酸盐岩来说,与不整合面附近的古喀斯特有关的油气藏得到了更多的关注。深埋藏过程中碳酸盐岩成岩作用的研究中,温度和压力的影响对不同碳酸盐矿物溶解及沉淀作用的差异性控制了地下碳酸盐岩孔隙率和渗透率分布.  相似文献   

3.
碳酸盐岩层系中以碳酸盐岩矿物为主,其中所含有的少量非碳酸盐岩矿物与沉积过程、成岩过程或陆源碎屑物有关,非碳酸盐岩矿物类型与含量变化为判别沉积与成岩流体环境等提供了相对客观的依据。本文以塔里木盆地塔河地区深层TS2井上寒武统-中下奥陶统溶洞段及关键界面处的27件岩屑样品的系统矿物分析为例,探讨非碳酸盐矿物对层序界面成岩流体环境的指示意义。结果表明,该井下奥陶统鹰山组下段内部界面、上寒武统丘里塔格组顶面处的赤铁矿含量明显较高,表明这两个界面为沉积间断或不整合面;上寒武统丘里塔格组溶洞段砂泥岩充填物与上寒武统顶不整合面上下的矿物组合较一致,表明塔河深层上寒武统白云岩可能经历了大气淡水的成岩流体改造。  相似文献   

4.
川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用   总被引:16,自引:0,他引:16  
四川盆地东部三叠系飞仙关组是近年来我国发现的重要天然气储层, 高孔隙度、高渗透率的碳酸盐储层都分布于白云岩地层中, 因而碳酸盐的成岩作用, 尤其是白云岩化作用和白云岩的成因为石油地质学家和沉积学家高度关注.对四川盆地东部罗家寨构造三叠系飞仙关组42个碳酸盐岩样品进行了阴极发光分析, 结合与之有关的Mn、Fe、Mg元素分析和岩石学研究, 讨论了包括白云岩化作用在内的碳酸盐岩成岩过程中可能的成岩流体性质及来源.四川盆地东部三叠系飞仙关组碳酸盐岩普遍具有很弱的阴极发光性, 这与其很低的Mn、Fe含量有关, 说明沉积期后非海相流体对飞仙关组碳酸盐岩的影响非常有限, 海源流体在成岩过程中发挥了主导作用; 不同石灰岩类型和不同白云岩类型仍然具有不同的阴极发光性, 成岩组分含量越高的碳酸盐岩, 或者说与沉积期后流体(主要是孔隙流体) 关系越密切的碳酸盐岩的阴极发光强度越低, 说明随着埋藏成岩作用的进行, 四川盆地东部三叠系碳酸盐岩孔隙流体受海源流体的影响是逐渐增强的; 阴极发光分析结果表明, 作为四川盆地东部主要储集岩的结晶白云岩形成机制与埋藏过程中的深循环流体有关, 这种深循环流体没有或很少穿越铝硅酸盐地层, 但穿越了三叠系内部的某些海相地层, 这些海相地层可能是广泛存在于四川盆地三叠系的蒸发盐地层, 由蒸发盐成岩过程提供的海源流体参与了结晶白云岩的白云岩化作用.   相似文献   

5.
成岩温度的判别标志   总被引:1,自引:0,他引:1  
“沉积物沉积之后,在没有受到高压和岩浆热力影响时所经历的一切物理的和化学的变化”,Walther(1894)称之为成岩作用。这一定义包括了我们所谓的准同生作用、成岩作用和表生作用等阶段,即广义的成岩作用。成岩作用的主要控制因素是主岩成分、温度、压力和孔隙流体性质。其中温度是最关键的因素,人们也主要是根据温度来划分成岩作用和后生作用的界限。一般把浊沸石稳定的上  相似文献   

6.
朱芳冰  周红 《地球科学》2022,47(12):4724-4730
碳酸盐胶结物中氧碳同位素组成研究是分析成岩过程中流体-岩石相互作用的重要技术方法.综合运用岩石学、矿物学和地球化学方法,对辽河盆地西部凹陷沙河街组砂岩中碳酸盐胶结物的化学组成和碳酸盐胶结物及成岩流体同位素组成特征进行系统分析.研究表明,研究区碳酸盐岩主要为方解石和白云石,胶结物主要类型为嵌晶式胶结、孔隙式胶结、斑块状胶结和星点状胶结.碳、氧稳定同位素组成能有效地反映成岩-成矿流体及其他物质的来源,碳酸盐胶结物与现今浅层地下水氧同位素组成差异巨大而与变质水同位素组成具有相似性,反映了盆地演化过程中活动热流体对成岩作用的影响.包裹体的氢、氧同位素组成可表征成矿溶液的演化特征,砂岩碳酸盐胶结物包裹体更富集氢的轻同位素和氧的重同位素,表明发生了明显的“氧-18漂移”.碳酸盐胶结的成矿溶液表现出“受热雨水”的同位素组成特征,反映了深源活动热流体对成岩作用的影响.   相似文献   

7.
火山作用是熔岩(岩浆)、火山碎屑和火山气体通过火山口喷出到地球表面的现象。火山爆发带来大量火山碎屑物质和气体进入到大气、海洋和陆地环境系统中,这将对其中碳酸盐沉积物的成分、结构、沉积构造、相序及沉积演化过程产生重要影响。火山物质含量的增加不仅会干扰碳酸盐沉积,还能够改变其物理化学性质等,火山沉积物在空间上也遵循粒度分异的规律。在组合方式上往往出现狭义和广义的混合沉积,记录了火山活动的演化。碳酸盐岩主要形成于海洋、湖泊等环境,火山作用可以通过控制基底形态、热液喷涌、不同性质火山碎屑的输入和分布、台地的差异沉降/隆起等,影响生物、沉积水体性质等古环境参数。然而就生物而言,这种影响通常具有破坏性和建设性作用。例如火山灰的埋藏及释放有毒物质会导致生物死亡,而后期火山灰溶解又会释放PO3-、Fe3+、Mn2+等营养离子利于生物生长。就成岩作用及流体性质而言,不同类型的火山物质含不同元素、矿物等,导致流体性质的变化,进而影响成岩作用类型等,如火山灰可以提供Mg2+促进白云石化作用,有利于孔隙的形成,对碳酸盐岩储层的形成有积极作用。因此,研究火山作用对碳酸盐岩沉积、成岩的影响,对油气地质勘探有现实意义。  相似文献   

8.
塔西南坳陷不同时代碎屑储集岩成岩环境经历了由酸性向碱性演变的过程,成岩环境地球化学性质的这种转变直接控制了发生在碎屑岩成岩体系中的流体—岩石相互作用特征。酸性成岩环境形成于烃源岩—储集岩系统中有机—无机反应最活跃时期,主要分布在早成岩阶段A、B期和晚成岩阶段A期,当古地温小于90℃,Ro值在<0.5%~1.3%之间,酸性的孔隙介质与骨架颗粒之间主要发生蚀变、溶解和氧化硅沉淀作用。当古地温达到90℃以上,Ro值在1.3%~>2%时,有机质脱羧基停止,有机酸发生分解,CO2来源减小,使孔隙流体性质由酸性向碱性变化,成岩环境呈碱性,这时晚期含铁碳酸盐矿物交代作用最为活跃,同时伴随自生伊利石和绿泥石沉淀、陆源伊利石重结晶成绢云母、高岭石向伊利石或绿泥石转变等作用。成岩环境在其演化过程中,由于孔隙流体性质的转变,破坏了早期成岩环境的物理化学平衡状态,使旧的成岩反应停止,新的成岩反应开始,从而形成多种矿物蚀变→交代→溶解→沉淀过程,导致碎屑储集岩结构和孔隙组合特征上的差异,流体-岩石相互作用的强度和范围决定了碎屑储集岩的储集性能及分布特征。  相似文献   

9.
1.物源区和沉积相对成岩作用的控制:原始沉积特征是成岩变化的依据,物源区和沉积环境是影响沉积特征的最主要因素。原始沉积物的各种组分,包括他生的和自生的有机及无机组分、组构、孔隙性及隙间流体的各种特征,都会对成岩作用发生深刻的影响。Williams研究过沉积相和物源区对美国怀俄明州下第三系绿河组陆相矿物砂岩成岩作用的控制。绿河组中有由三个不同物源区和两种常见沉积环境中形成的同期砂岩。河流相石英砂岩被早期的方解石胶结,次生孔隙发育好。边缘湖相石英砂岩被方解石和铁白云石胶结。由泥晶胶结的  相似文献   

10.
海水化学演化对生物矿化的影响综述   总被引:1,自引:1,他引:0       下载免费PDF全文
显生宙非骨屑碳酸盐矿物经历了文石海和方解石海的交替,主要造礁生物和沉积物生产者的骨骼矿物与非骨屑碳酸盐矿物具有同步变化的趋势。这种长期的变化趋势可以用海水化学Mg/Ca摩尔比的变化来解释。流体包裹体、同位素和微量元素等证据也证实了海水化学在地质历史中经历过剧烈的变化。虽然生物诱导矿化和生物控制矿化的相对重要性一直存在争议,但古生物地层记录和人工海水养殖实验结果都表明,海水化学演化对生物矿化有重要的影响,体现在造礁生物群落的兴衰、生物起源时对骨骼矿物类型的选择以及微生物碳酸盐岩在地质历史中的分布等。这些为研究前寒武纪海水化学演化、古气候和古环境的重建、同位素地层对比以及碳酸盐的沉积和成岩等问题提供了新的思路。  相似文献   

11.
The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleoproterozoic to the Neoproterozoic period. Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies. However, the subtle controls of facies variation, depositional setting and post-depositional diagenesis on stable isotope compositions are not yet clearly understood. The Vindhyan Supergroup hosts four carbonate units, exhibiting a wide variability in depositional processes and paleogeography. A detailed facies-specific carbon and oxygen isotope study of the carbonate units was undertaken by us to investigate the effect of these processes and to identify the least altered isotope values. It is seen that both carbon and oxygen isotope compositions have been affected by early meteoric water diagenesis. The effect of diagenetic alteration is, however, more pronounced in case of oxygen isotopes than carbon isotopes. Stable isotope compositions remained insensitive to facies only when sediments accumulated in a shallow shelf setting without being exposed. Major alteration of original isotope ratios was observed in case of shallow marine carbonates, which became exposed to meteoric fluids during early diagenetic stage. Duration of exposure possibly determined the magnitude of alteration and shift from the original values. Moreover, dolomitization is found to be accompanied by appreciable alteration of isotope compositions in some of the carbonates. The present study suggests that variations in sediment depositional settings, in particular the possibility of subaerial exposure, need to be considered while extracting chronostratigraphic significance from δ13C data.  相似文献   

12.
Charcoal is a key component of the Black Carbon (BC) continuum, where BC is characterized as a recalcitrant, fire-derived, polyaromatic material. Charcoal is an important source of palaeoenvironmental data, and of great interest as a potential carbon sink, due to its high apparent environmental stability. However, at least some forms of charcoal are clearly susceptible to environmental alteration and degradation over relatively short timescales. Although these processes have importance for the role of charcoal in global biogeochemistry, they remain poorly understood.Here we present results of an investigation into the susceptibility of a range of charcoal samples to oxidative degradation in acidified potassium dichromate. The study examines both freshly-produced charcoal, and charcoal exposed to environmental conditions for up to 50,000 years. We compare the proportion of carbon present in different forms between the samples, specifically with respect to the relative chemical resistance of these forms. This was undertaken in order to improve understanding of the post-depositional diagenetic changes affecting charcoal within environmental deposits.A wide range in chemical compositions are apparent both within and between the sample groups. In freshly-produced charcoal, material produced at 300 °C contains carbon with more labile forms than charcoal produced at ?400 °C, signifying a key chemical change over the 300-400 °C temperature range. Charcoal exposed to environmental depositional conditions is frequently composed of a highly carboxylated aromatic structure and contains a range of carbon fractions of varying oxidative resistance. These findings suggest that a significant number of the environmental charcoals have undergone post-depositional diagenetic alteration. Further, the data highlight the potential for the use of controlled progressive oxidative degradation as a method to characterize chemical differences between individual charcoal samples.  相似文献   

13.
Halite-impregnated carbonates in the Dawson Bay Formation of Saskatchewan lie between beds of halite and are buried to a depth of 1 km. They exhibit two different diagenetic styles – some resisted compaction and had high pre-salt porosities; others contain compaction-broken fossils and pressure-solution seams. The uncompacted rocks, together with the difficulty of explaining how halite cement could enter the Dawson Bay after overlying bedded halites were deposited, suggest that halite cementation occurred early with only a few tens of metres of overburden. Early diagenetic compaction is suggested by the presence of unbroken, displacive skeletal halite crystals, which cross-cut compaction structures, and by the difficulty of explaining how (1) later compaction could occur in halite-cemented rocks and (2) how pore-fluids could be expelled after surrounding rocks lost their permeability. The organic-rich nature of many carbonates may explain why compaction was both early and extensive, but this explanation fails to explain how similar compaction developed in horizons with lower organic contents. Chemical compaction may also have been enhanced by aragonite dissolution during seawater evaporation or brine dilution. Early chemical compaction in Dawson Bay carbonates indicates that compaction in other carbonates need not signify deep burial diagenesis; neither can compaction be used indiscriminately to identify other diagenetic events as being of deep burial origin. Early halite cementation, as in the Dawson Bay Formation, preserves carbonates at early diagenetic stages and may thus preserve geochemical information unmodified by later diagenesis.  相似文献   

14.
Shell aragonite from ammonites collected in the Upper Cretaceous of West Greenland was investigated by means of macroscopic/microscopic visual evaluation, analyses of calcite/aragonite ratios, carbon and oxygen isotopic compositions and Sr and Mg concentrations of shell carbonate and of amino acid compositions of organic matrices. The results are: (1) Material visually classified as well preserved may have suffered diagenetic modifications of mineralogical and chemical composition. (2) Of the chemical and mineralogical parameters studied, amino acid composition, calcite/aragonite ratios and magnesium concentrations were found to be most sensitive to post-depositional modifications, while oxygen isotope composition and strontium concentrations showed detectable diagenetic modifications only after more pronounced alterations. (3) Based on the Mg/Ca ratios and calcite concentrations of the shell aragonite, a diagenetic classification has been proposed grouping the material into well preserved, moderately preserved and poorly preserved. (4) The chemical and mineralogical composition of the best preserved material suggests that the Upper Cretaceous ammonites had a shell composition similar to that of modern Nautilus and other aragonite-shelled molluscs.  相似文献   

15.
The Darlington (Sakmarian) and Berriedale (Artinskian) Limestones are neritic deposits that accumulated in high‐latitude environments along the south‐eastern margin of Pangea in what is now Tasmania. These rocks underwent a series of diagenetic processes that began in the marine palaeoenvironment, continued during rapid burial and were profoundly modified by alteration associated with the intrusion of Mesozoic igneous rocks. Marine diagenesis was important but contradictory; although dissolution took place, there was also coeval precipitation of fibrous calcite cement, phosphate and glauconite, as well as calcitization of aragonite shells. These processes are interpreted as having been promoted by mixing of shelf and upwelling deep ocean waters and enabled by microbial degradation of organic matter. In contrast to warm‐water carbonates where meteoric diagenesis is important, the Darlington and Berriedale Limestones were largely unaffected by meteoric diagenesis. Only minor dissolution and local cementation took place in this diagenetic environment, although mechanical compaction was ubiquitous. Correlation with burial history curves indicates that chemical compaction became important as burial depths exceeded 150 m, promoting precipitation of extensive ferroan calcite. This effect resulted from burial by rapidly deposited, overlying, thick, late Permian and Triassic terrestrial sediments. This diagenetic pathway was, however, complicated by the subsequent intrusion of massive Mesozoic diabases and associated silicifying diagenetic fluids. Finally, fractures most probably connected with Cretaceous uplift were filled with late‐stage non‐ferroan calcite cement. This study suggests that both carbonate dissolution and precipitation occur in high‐latitude marine palaeoenvironments and, therefore, the cold‐water diagenetic realm is not always destructive in terms of diagenesis. Furthermore, it appears that for the early Permian of southern Pangea at least, there was no real difference in the diagenetic pathways taken by cool‐water and cold‐water carbonates.  相似文献   

16.
Carbonate concretions, lenses and bands in the Pleistocene, Palaeogene and Upper Triassic coalfields of Japan consist of various carbonate minerals with varied chemical compositions. Authigenic carbonates in freshwater sediments are siderite > calcite > ankerite > dolomite >> ferroan magnesite; in brackish water to marine sediments in the coal measures, calcite > dolomite > ankerite > siderite >> ferroan magnesite; and in the overlying marine deposits, calcite > dolomite >> siderite. Most carbonates were formed progressively during burial within a range of depths between the sediment-water interface and approximately 3 km. The mineral species and the chemical composition of the carbonates are controlled primarily by the initial sedimentary facies of the host sediments and secondarily by the diagenetic evolution of pore water during burial. Based on the regular sequence and burial depth of precipitation of authigenic carbonates in a specific sedimentary facies, three diagenetic stages of carbonates are proposed. Carbonates formed during Stage I (< 500 m) strongly reflect the initial sedimentary facies, e.g. low Ca-Mg siderite in freshwater sediments which are initially rich in iron derived from lateritic soil on the nearby landmass, and Mg calcite and dolomite in brackish-marine sediments whose pore waters abound in Ca2+ and Mg2+ originating in seawater and calcareous shells. Carbonates formed during Stage II (500–2000 m) include high Ca-Mg siderite, ankerite, Fe dolomite and Fe–Mg calcite in freshwater sediments. The assemblage of Stage II carbonates in brackish-marine sediments in the coal measures is similar to that in freshwater sediments. This suggests similar diagenetic environments owing to an effective migration and mixing of pore water due to the compaction of host sediments. Carbonates formed during Stage III (> 2000 m) are Fe calcite and extremely high Ca-Mg siderite; the latter is exclusively in marine mudstones. The supply of Ca is partly from the alteration of silicates in the sediments at elevated burial temperatures. After uplift, calcite with low Mg content precipitates from percolating groundwater and fills extensional cracks.  相似文献   

17.
The detrital mineralogy as well as diagenetic characters of the Dhosa Sandstone Member of Chari Formation exposed at the Lerdome, south of Bhuj was studied. In order to assess the potential of the Dhosa Sandstone as a reservoir, it is substantial to understand the diagenetic processes that are controlled largely by post-depositional cementation and compaction in addition to framework composition and original depositional textures. The petrologic analysis of 33 thin sections was carried out to discern primary composition and diagenetic features including primary and secondary porosity patterns. Monocrystalline quartz dominates the detrital mineralogy followed by polycrystalline quartz. Among the polycrystalline variety recrystallized metamorphic quartz surpasses stretched metamorphic quartz in terms of abundance. Feldspars comprise microcline and plagioclase where the former is dominant over the latter. Orthoclase too comprises a very small percentage. Mica, chert, rock fragments, and heavies form the remaining detrital constituent in descending order of their constituent percentage. The diagenetic precipitates are mainly carbonate (8.30%) and iron (7.80%) followed by clay (0.66%) and silica (0.88%) that are minor constituent of the total cementing material. The main paragenetic events identified are early cementation, mechanical compaction, late cementation, dissolution, and authigenesis of clays. The overall reservoir quality seems to be controlled by compaction and authigenic carbonate cementation. The minus cement porosity average 29.4%. The porosity loss due to compaction is 21.92% and by cementation is 29.71%. The loss of original porosity was due to early cementation followed by moderate mechanical compaction during shallow burial. Preservation of available miniscule primary porosity was ascribed to dissolution of carbonates and quartz overgrowth which resisted chemical compaction during deep burial. The studied sandstones may have low reservoir quality owing to existing porosity of less than 9%. More carbonate dissolution and its transformation in dolomite in sub-surface condition and macro-fracture porosity may result in enhanced secondary porosity and good diagenetic traps.  相似文献   

18.
Magnetic measurements were carried out on samples from two saltmarshes deposited during the last century on the north-west coast of Ireland. Based on profiles from cliffed saltmarsh edge, mid-marsh and supratidal locations, the processes that affect the generation and persistence of magnetic properties in environments were investigated. This was done to help in understanding the geochemical processes affecting north-west Irish coast saltmarshes and to determine the frequency and provenance of sediment-laden flooding events; hence, disentangling the importance of clastic and organic contributions to saltmarsh growth. Magnetic properties indicate depositional and post-depositional effects varying on both temporal and spatial scales. The interpretations presented here suggest that both biogenic and diagenetic processes have a strong effect on the magnetic properties recorded: in the former case, the growth of magnetotactic bacteria is the main process; in the latter case, it is reductive diagenesis, associated with organic matter decomposition, that is important. The biogenic and diagenetic effects overprint and degrade the detrital magnetic signatures respectively. This suggests that magnetic measurements within the context of north-west Irish coast saltmarshes can provide limited information on clastic sediment input to these environments. Comparisons between sites on the north-west coast of Ireland show similar magnetic properties, despite differences in deposition rates, implying that significant post-depositional alteration of magnetic properties occurs within the first 20–40 years after deposition. Magnetic properties of north-west coast Irish saltmarshes are put into a regional context by comparison with magnetic profiles from similar sites.  相似文献   

19.
Isotope-geochemical features of the formation of carbon and oxygen isotopic compositions in sedimentary and diagenetic carbonates are considered. Isotopic criteria for the identification of early diagenesis zone are proposed. The transition from sedimentogenesis to diagenesis (upper boundary of the early diagenesis zone) is accompanied by the alteration of carbon isotopic composition in the HCO 3(hydrosphere)–HCO 3(pore water of sediment)system. The lower boundary of early diagenesis zone is registered by the alteration of oxygen isotopic composition in the pore water of sediments and authigenic carbonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号