首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper comprehensively investigates the properties of self phase modulation based optical delay systems consisting of dispersion compensation fibre and highly nonlinear fibres. It researches into the impacts of power level launched into highly nonlinear fibres, conversion wavelength, dispersion slope, modulation format and optical filter bandwidth on the overall performance of optical delay systems. The results reveal that, if the power launched into highly nonlinear fibres is fixed, the time delay generally varies linearly with the conversion wavelength, but jumps intermittently at some conversion wavelengths. However, the time delay varies semi-periodically with the power launched into highly nonlinear fibres. The dispersion slope of highly nonlinear fibres has significant influence on the time delay, especially for the negative dispersion slope. The time delay differs with modulation formats due to the different combined interaction of nonlinearity and dispersion in fibres. The bandwidth of the optical filters also greatly affects the time delay because it determines the bandwidth of the passed signal in the self phase modulation based time delay systems. The output signal quality of the overall time delay systems depends on the conversion wavelength and input power level. The optimisation of the power level and conversion wavelength to provide the best output signal quality is made at the end of this paper.  相似文献   

2.
The Wigner-Ville distribution (WVD) function was originally proposed by Wigner in quantum mechanics and Ville applied it for signal analysis. This method has made it possible to represent a signal's power density spectrum in the time-frequency domain as a natural extension of the Fourier transform method (FTM). Recently, it has attracted great interest for its validity to analyze time-varying signals accomplished by the development of high-speed digital signal processing, and it is used for analyzing nonstationary signals. Conventionally, a sonar beamformer is constructed using delay lines, but the development of the high-speed processor has made it possible to apply the FTM for sonar beamforming. However, the bearing resolution of the beamformer is not enough for discriminating small underwater objects on the sea bottom by this method. To solve this problem, we aim to apply the WVD method, which can represent finer structure of signals as a natural extension of the FTM, for sonar beamforming to obtain sharper beam patterns than those of the beamforming method by FTM. Simulation results by computational calculations to clarify the resolution by the WVD method, which is presented in this paper, becomes approximately twice as high as by conventional FTM. The results of an experiment at sea also show the performance of this method  相似文献   

3.
The Three-Array Processor (TAP III) beamforming system incorporating both wide-band time-domain beamforming and narrow-band frequency-domain beamforming is described. This paper briefly develops the beamforming theory and shows how the fast Fourier transform (FFT) is applied to accomplish frequency-domain beamforming. The frequency-domain beamformer operates in the frequency domain to form beams and power spectrum data over narrow frequency bands of interest. A real-time digital filtering technique is used to extract the narrow bands of interest from the broad-band input signal. The frequency-domain beamformer accomplishes real-time digital filtering and beamforming by using a high-speed array processor to do the complex calculations and data handling required by the algorithm. The time-domain beamformer operates in parallel with the frequency-domain beamformer to form up to 16 broad-band beams in the time domain. A programmable all-pass digital filter is used to create the fine time delays required by the time-domain beamformer.  相似文献   

4.
A short finite impulse response (FIR) filter architecture for narrowband beamforming is presented that is well suited for active sonar applications. By applying the technique of adaptive modeling, a short FIR filter can be designed to carry out any required narrowband constant phase shift. A 4-tap FIR filter designed in this way can generate constant phase shift within bandwidths of 0.04 (relative to the sampling frequency), with an error of less than 1°. Thus a beam can be formed with a bank of short FIR filters, each filter corresponding to one sensor. Due to the light computational load of this method, it is rather convenient for digital signal processors (DSP) to implement beamforming in real time. Satisfactory sonar beam patterns are shown to result from a TMS320C25-based emulation of the architecture  相似文献   

5.
被动声纳中,目标定位的测定只能利用目标声源发出的信号或噪声,爆炸声源与常用的电声式脉冲声纳发射器比较起来,具有某些明显的优点,可代替发射换能器来实现距离和方位的测定.针对水下爆炸声源,采用三元标量阵进行研究,通过确定信号到达各个阵元的时延信息来测定其目标方位和距离,并利用内插方法提高定位精度.实验结果表明,不同位置处爆...  相似文献   

6.
For a low-frequency active sonar (LFAS) with a triplet receiver array, it is not clear in advance which signal processing techniques optimize its performance. Here, several advanced beamformers are analyzed theoretically, and the results are compared to experimental data obtained in sea trials. Triplet arrays are single line arrays with three hydrophones on a circular section of the array. The triplet structure provides the ability to solve the notorious port-starboard (PS) ambiguity problem of ordinary single-array receivers. More importantly, the PS rejection can be so strong that it allows to unmask targets in the presence of strong coastal reverberation or traffic noise. The theoretical and experimental performance of triplet array beamformers is determined in terms of two performance indicators: array gain and PS rejection. Results are obtained under several typical acoustic environments: sea noise, flow noise, coastal reverberation, and mixtures of these. A new algorithm for (beam space) adaptive triplet beamforming is implemented and tuned. Its results are compared to those of other triplet beamforming techniques (optimum and cardioid beamforming). These beamformers optimize for only one performance indicator, whereas in theory, the adaptive beamformer gives the best overall performance (in any given environment). The different beamformers are applied to data obtained with an LFAS at sea. Analysis shows that adaptive triplet beamforming outperforms conventional beamforming algorithms. Adaptive triplet beamforming provides strong PS rejection, allowing the unmasking of targets in the presence of strong directional reverberation (e.g., from a coast) and at the same time provides positive array gain in most environments.  相似文献   

7.
The effects of both small perturbations and large deformations to the array's shape on both conventional and adaptive beamformers are shown for two frequencies: the spatial Nyquist frequency (or design frequency) of the array and a frequency about three times greater. Large shape deformations lead to a decrease in the conventional beamformer's output power for a beam steered in the direction of the signal source, together with an increase in the sidelobe levels (or secondary maxima), while small perturbations in the array shape have little effect. Signal suppression is observed to be far greater for the adaptive beamformer because it is very sensitive to system errors. The imposition of a weight norm constraint on the adaptive beamformer reduces the signal suppression only for small shape perturbations array shape estimation techniques are needed to reduce signal suppression for large shape deformations. The adverse effects of a nonlinear array shape on both conventional and adaptive beamforming are shown to be substantially reduced by applying techniques that estimate the coordinates of the hydrophones prior to beamforming  相似文献   

8.
Passive sonar systems that localize broadband sources of acoustic energy estimate the difference in arrival times (or time delays) of an acoustic wavefront at spatially separated hydrophones, The output amplitudes from a given pair of hydrophones are cross-correlated, and an estimate of the time delay is given by the time lag that maximizes the cross correlation function. Often the time-delay estimates are corrupted by the presence of noise. By replacing each of the omnidirectional hydrophones with an array of hydrophones, and then cross-correlating the beamformed outputs of the arrays, the author shows that the effect of noise on the time-delay estimation process is reduced greatly. Both conventional and adaptive beamforming methods are implemented in the frequency domain and the advantages of array beamforming (prior to cross-correlation) are highlighted using both simulated and real noise-field data. Further improvement in the performance of the broadband cross-correlation processor occurs when various prefiltering algorithms are invoked  相似文献   

9.
Spatial processing, including beamforming and diversity combining, is widely used in communications to mitigate intersymbol interference (ISI) and signal fading caused by multipath propagation. Beamforming suppresses ISI (and noise) by eliminating multipath (and noise) arrivals outside the signal beam. Beamforming requires the signals to be highly coherent between the receivers. Diversity combining combats ISI as well as signal fading by taking advantage of the independent information in the signal. Classical (spatial) diversity requires that signals are independently fading, hence are (spatially) uncorrelated with each other. In the real world, the received signals are neither totally coherent nor totally uncorrelated. The available diversity is complex and not well understood. In this paper, we study the spatial processing gain (SPG) as a function of the number of receivers used, receiver separation, and array aperture based on experimental data, using beamforming and multichannel combining algorithms. We find that the output symbol signal-to-noise ratio (SNR) for a multichannel equalizer is predominantly determined by the array aperture divided by the signal coherence length, with a negligible dependence on the number of receivers used. For a given number of receivers, an optimal output symbol SNR (OSNR) is achieved by spacing the receivers equal to or greater than the signal coherence length. We model the SPG in decibels as the sum of the noise suppression gain (NSG, equivalent to signal-to-noise enhancement) and the ISI suppression gain (ISG, equivalent to signal-to-ISI enhancement) both expressed in decibels; the latter exploits the spatial diversity and forms the basis for the diversity gain. Data are interpreted using the modeled result as a guide. We discuss a beam-domain processor for sonar arrays, which yields an improved performance at low-input SNR compared to the element-domain processor because of the SNR enhancement from beamforming many sensors.  相似文献   

10.
A simple numerical technique is developed for generating pseudorandom realizations of three-dimensional (3-D) transient acoustic waves that are scattered from two-dimensional (2-D) patches of randomly rough surfaces. The rough surface height of a patch is represented numerically in the 2-D horizontal wavenumber plane by choosing a scheme for interpolation between pseudorandom complex coefficients. Using this approach, the realizations of the patches can be generated from experimentally measured roughness power spectra, and phase information is generated in the frequency domain that leads to time spreads in the time domain. The acoustic scattering is modeled here with first-order perturbation theory. The boundary conditions considered here are pressure-release, rigid, and fluid-fluid. Three different spatial windows are considered for defining the patches. In the time domain, the time spreads of the scattered waveforms agree with predictions. In the frequency domain, the phase is seen as a random walk. The solutions developed here can be used with normal mode propagation models or ray propagation models  相似文献   

11.
Two adaptive algorithms for multipath time delay estimation   总被引:1,自引:0,他引:1  
The problem of time delay estimation (TDE) with multipath transmissions arises often in many sonar and radar systems. Two adaptive algorithms based on a parameter estimation approach are proposed to estimate the difference in arrival times of a signal at two separated sensors in the presence of multipath propagation. The first method uses an adaptive IIR filter to eliminate the multipath signal in each transmission channel prior to applying a constrained delay estimation algorithm to extract the time difference between the two received outputs. The second employs two constrained adaptive FIR filters to perform equalization of the multipath arrivals, and time delay is then derived using a constrained delay estimator similar to that in the first method. Computer simulations are presented to compare and contrast the tracing capability and convergence behavior of these multipath TDE methods  相似文献   

12.
采用模型试验和数值模拟研究了不同水深工况下半潮堤前的反射形态及时均流速场。基于Hilbert变换建立了叠合波的时频分离技术,同时获取了入射波和反射波的波面过程及相位关系,通过试验数据证明其适用于不同反射程度的波浪信号分析。不同水深工况下,半潮堤前形成了部分立波系统,腹点和节点分别以四分之一波长的偶数倍和奇数倍交替增加。半潮堤前底床水质点水平速度包络图与波面包络图相差四分之一周期的相位,水平速度的极大值和极小值分别出现在波面包络图的节点和腹点,意味着节点处易形成冲刷,腹点处易形成淤积。3种工况的周期平均速度场均在迎浪基床上方的堤脚处存在一个小型环流系统,可能引起局部冲刷,此处需加强防护。淹没工况下,半潮堤前的周期平均速度场形成一个大型环流系统,表层水流向堤后,中下层水流向海侧,意味着底床悬起的泥沙很可能向离岸方向流失。  相似文献   

13.
Underwater noise due to snapping shrimp is highly impulsive, and often dominates the ambient noise environment of warm, shallow waters at frequencies above 1 kHz. We report here on the statistics of bandpass snapping shrimp noise data, and on the modeling of the joint distribution of the in-phase and quadrature components using bivariate versions of the generalized Gaussian (GG), generalized Cauchy, and Gaussian-Gaussian mixture models. We evaluate the performance of several generalized energy detectors for passive bandpass detection, by inserting stochastic signals into the noise data. Detection thresholds were measured for an integration time of 0.5 s and false alarm probabilities down to 1%. The locally optimum detector based on the mixture model gave the best weak signal detection performance, with an 8 dB reduction in detection threshold over conventional energy detection. A significance test detector based on the GG model performed 1-2 dB worse, but exhibited better strong signal performance  相似文献   

14.
This paper presents the basis of acoustic method used for temperature field measurement of seafloor hydrothermal vent and two techniques of the parabolic interpolation and the bending compensation of propagation paths of acoustic signal are introduced. Experimental research is performed to exactly rebuild the temperature field around hot springs on the floor of Qiezishan Lake, Yunnan, China. The accuracy of the travel time estimation has been improved based on the aforementioned technique and method. At the same time, by comparison of the results of temperature field with different means, the max absolute error, the maximum relative error and the root mean square error are given. It shows that the technique and the method presented in the paper can be applied to the temperature field measurement detector around the seafloor hydrothermal vent. It also has a good accuracy.  相似文献   

15.
The two-dimensional wavelet transform is a very efficient bandpass filter, which can be used to separate various scales of processes and show their relative phase/location. In this paper, algorithms and techniques for automated detection and tracking of mesoscale features from satellite imagery employing wavelet analysis are developed. The wavelet transform has been applied to satellite images, such as those from synthetic aperture radar (SAR), advanced very-high-resolution radiometer (AVHRR), and coastal zone color scanner (CZCS) for feature extraction. The evolution of mesoscale features such as oil slicks, fronts, eddies, and ship wakes can be tracked by the wavelet analysis using satellite data from repeating paths. Several examples of the wavelet analysis applied to various satellite images demonstrate the feasibility of this technique for coastal monitoring  相似文献   

16.
A numerical technique for mathematically modeling the steady-state and transverse dynamic motion of an underwater towed sonar array is presented. The transverse vibration response of the array is modeled using the finite difference method; the array itself is assumed to be nonneutrally buoyant and possesses a complex modulus and hence inherent damping. The results obtained from this model should provide useful information for further studying the beamforming and passive-ranging performance degradation and predicting the self-noise level of the towed array system.  相似文献   

17.
传统罗兰C接收机为避免天波信号干扰,采用固定的采样时刻,以致接收机信噪比下降,直接影响了接收机的整体工作性能.分析了三种测量天波时间延迟的现代信号处理方法,并进行了实验仿真分析比对,验证了该方法对于测量天波延迟地波时间的准确性和有效性.  相似文献   

18.
In this paper, we present a nonconventional matched-mode procedure for localizing a broadband source in the time-frequency domain. This hybrid coherent and incoherent approach exploits both the temporal and spatial characteristics of the multimode arrival structure at a receiving sensor array. In the previous work, a time-domain technique was developed to deal with narrowband signals coherently. It consists of the following three steps. The first step employs a receiving sensor array to separate the modes by the conventional modal filtering approach. The second step is to estimate the energy and relative arrival times of the various modes which arrive at the receiver. The last step uses the differences of modal travel times to estimate the source range, and uses the ratios of modal energies to estimate the source depth. Here, we employ bandpass filters to divide the received broadband signal into several subfrequency bands, and apply the first and second steps of the previously developed coherent narrowband technique to the subfrequency bands in the time domain. The results obtained from subfrequency bands are then combined incoherently in the frequency domain to produce an estimate of the source position. Numerical simulation of an experiment with explosive sources at the shallow water site of the Yellow Sea is presented  相似文献   

19.
A sonic well log was obtained within the basement complex of the Walvis Ridge during Deep Sea Drilling Project Leg 74. The top of the basement complex is characterized by smooth acoustic reflectors. The rocks recovered within the basement complex consist of basalts with intercalated sediments. According to the log ~-50% of the upper 75 m of basement are igneous rocks and the other 50% sedimentary. Sonobuoy results indicate that the ratio of sediments to basalt increases with depth for an additional 225 m until a typical oceanic velocity structure is observed. Paleontological results suggest that the processes forming this upper 300 m of the basement complex was accomplished within a short time interval.  相似文献   

20.
In this work a bottom return signal model and accompanying signal processor are described for a wide swath bottom mapping system. An incoherent scattering model is employed under the assumptions that the bottom is a random rough surface composed of a large number of independent scatters with spatial correlation distance negligible relative to the ensonified area. The envelope of the signal received from the various spatial directions is modeled as a smooth, nearly Gaussian-shaped function representing the effects of the twoway spatial beam pattern, angle of incidence, and depth corrupted by multiplicative and additive noise stochastic processes. A signal processor is derived which makes use of the a priori information vested in this smooth function to provide a matched filter for the received signal envelope for each spatial direction. Computer simulation results are presented and the performance of the signal processor examined in a qualitative fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号