首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
On 4 July 2013, three catastrophic debris flows occurred in the Hougou, Majingzi, and Xiongjia gullies in Shimian county and produced debris dams and river blockages, resulting in serious casualties and huge economic loss. Though debris flows have been identified prior to the catastrophic events, their magnitudes and destructive power were far beyond early recognition and hazard assessment. Our primary objective for this study was to explore the formation mechanism and typical characteristics and to summarize the lessons learned from these disastrous events in order to avoid the repeat of such disasters in the future. Based on field investigation and imagery interpretation of remote sensing carried out following the catastrophic events, four conclusions were drawn: (1) The catastrophic debris flows were initiated from surface-water runoff, and the triggering factor was attributed to the local intensive rainfall with an hourly intensity of more than 46.7 mm. (2) Entrainment was the most important sediment-supplying method for the debris flow occurrence, and the source materials transported by debris flows from the three gullies were estimated to be about 97?×?104 m3 in volume altogether. (3) As surface-water runoff eroded and entrained hillslope and channel materials persistently, debris flows were characterized by intensive incision at upper or middle reaches and significant magnification effect in flow discharge and volume downstream. Corresponding peak discharge surveyed at the outlets of the Hougou, Majingzi, and Xiongjia gullies was estimated up to 751.0 m3/s, 870.1 m3/s, and 758.7 m3/s, respectively. (4) Debris flows that occurred from the three gullies all belonged to viscous ones and the bulk densities were calculated more than 1.80 g/cm3, indicating a huge carrying capacity and destructive impacting power. In addition, the lessons learned from the catastrophic events were summarized, including recognition and assessment on debris flow hazard and utilization of deposition fan. In this paper, prevention suggestions on debris flow prone valleys with high-vegetation coverage and low occurrence frequency were also put forward. The results of this study contribute to a better understanding on the initiation mechanism, dynamic characteristics, and disaster mitigation of debris flows initiated from intense rainfall and surface-water runoff in mountainous areas.  相似文献   

2.
The Wenchuan earthquake has caused abundance of loose materials supplies for debris flows. Many debris flows have occurred in watersheds in area beyond 20 km2, presenting characteristics differing from those in small watersheds. The debris flows yearly frequency decreases exponentially, and the average debris flow magnitude increases linearly with watershed size. The rainfall thresholds for debris flows in large watersheds were expressed as I?=?14.7 D ?0.79 (2 h?<?D?<?56 h), which is considerably higher than those in small watersheds as I?=?4.4 D ?0.70 (2 h?<?D?<?37 h). A case study is conducted in Ergou, 39.4 km2 in area, to illustrate the formation and development processes of debris flows in large watersheds. A debris flow develops in a large watershed only when the rainfall was high enough to trigger the wide-spread failures and erosions on slope and realize the confluence in the watershed. The debris flow was supplied by the widely distributed failures dominated by rill erosions (14 in 22 sources in this case). The intermittent supplying increased the size and duration of debris flow. While the landslide dam failures provided most amounts for debris flows (57 % of the total amount), and amplified the discharge suddenly. During these processes, the debris flow velocity and density increased as well. The similar processes were observed in other large watersheds, indicating this case is representative.  相似文献   

3.
Glaciers are retreating and thinning in the high altitude of the Himalayas due to global warming, causing into formation of numerous glacial lakes. It is necessary to monitor these glacial lakes consistently to save properties and lives downstream from probable disastrous glacial lake outburst flood. In this study, image processing software ArcGIS and ERDAS Imagine have been used to analyse multispectral image obtained by Earth resource satellite Landsat for delineating the glacial lakes with the help of image enhancement technique like NDWI. Landsat data since 1972 through 2013 have been used and maximum seven glacial lakes (L1–L7) have been detected and delineated in Dhauliganga catchment, they are situated above 4000 masl. The Glacial Lake L2 (Lat 30°26′45″E and Long 80°23′16″N) is the largest whose surface area was 132,300 m2 in Sept 2009, and L6 (Lat 30°23′27″E and Long 80°31′52″N) is highly unstable with variation rate ?55 to +145 % with increasing trend. Additionally, glacial lakes L2 (Lat 30°26′45″E and Long 80°23′16″N) and L6 (Lat 30°23′27″E and Long 80°31′52″N) have been identified as potentially hazardous. These lakes may probably burst; as a result, huge reserve of water and debris may be released all on a sudden. This may transform into hazardous flash flood in downstream causing loss of lives, as well as the destruction of houses, bridges, fields, forests, hydropower stations, roads, etc. It is to note that Dhauliganga river considered in this study is a tributary of Kaliganga river, and should not be confused with its namesake the Dhauliganga river, which is a tributary of Alaknanda river.  相似文献   

4.
The post-earthquake debris flows in the Wenjia Gully led to the exposure of the shortcomings in the design of the original conventional debris flow mitigation system. A predicament for the Wenjia mitigation system is a large amount of loose material (est. 50 × 106 m3) that has been deposited in the gully by the co-seismic landslide, providing abundant source material for debris flows under saturation. A novel design solution for the replacement mitigation system was proposed and constructed, and has exhibited excellent performance and resilience in subsequent debris flows. The design was governed by the three-phase philosophy of controlling water, sediment, and erosion. An Early Warning System (EWS) for debris flow that uses real-time field data was developed; it issues alerts based on the probabilistic and empirical correlations between rainfall and debris flows. This two-fold solution reduces energy of the debris flow by combining different mitigation measures while minimizing the impact through event forecasting and rapid public information sharing. Declines in the number and size of debris flows in the gully, with increased corresponding rainfall thresholds and mean rainfall intensity-duration (I-D) thresholds, indicate the high efficacy of the new mitigation system and a lowered debris flow susceptibility. This paper reports the design of the mitigation system and analyzes the characteristics of rainfall and debris flow events that occurred before and after implementation of the system; it evaluates the effectiveness of one of the most advanced debris flow mitigation systems in China.  相似文献   

5.
Rain-induced landslides are recognized as one of the most catastrophic hazards on hilly terrains. To develop strategies for landslide risk assessment and management, it is necessary to estimate not only the rainfall threshold for the initiation of landslides, but also the likely magnitudes of landslides triggered by a storm of a given intensity. In this study, the frequency distributions of both open hillside landslides and channelized debris flows in Hong Kong are established on the basis of the Enhanced Natural Terrain Landslide Inventory (ENTLI) with 19,763 records in Hong Kong up to 2013. The landslide magnitudes are measured in terms of the number, scar area, volume, or density of landslides. The mean values of the scar areas and volumes are 55.2 m2 and 102.0 m3, respectively, for the open hillside landslides and 91.3 m2 and 166.5 m3, respectively, for the channelized debris flows. Empirical correlations between the numbers, scar areas, and volumes of hillside landslides or channelized debris flows and the maximum rolling rainfall intensities of different periods have been derived. The maximum rolling 4- to 24-h rainfall amounts provide better predictions compared with those with the maximum rolling 1-h rainfall. Maximum rolling rainfall intensity-duration thresholds identifying the likely rainfall conditions that yield natural terrain landslides or debris flows of different magnitudes are also proposed. The initiation rainfall thresholds are identified as 75, 90, 100, 120, 150, 180, and 200 mm for the maximum rolling 1-, 2-, 4-, 6-, 8-, 12-, and 24-h rainfall, respectively.  相似文献   

6.
The 12 May 2008 Wenchuan earthquake (Ms 8.0) in China, produced an estimated volume of 28 × 108 m3 loosened material, which led to debris flows after the earthquake. Debris flows are the dominant mountain hazards, and serious threat to lives, properties, buildings, traffic, and post-earthquake reconstruction in the earthquake-hit areas. It is very important to understand the debris flow initiation processes and characteristics, for designing debris flow mitigation. The main objective of this article is to examine the different debris flow initiation processes in order to identify suitable mitigation strategies. Three types of debris flow initiation processes were identified (designated as Types A, B, and C) by field survey and experiments. In “A” type initiation, the debris flow forms as a result of dam failure in the process of rill erosion, slope failure, landslide dam, or dam failure. This type of debris flow occurs at the slope of 10 ± 2°, with a high bulk density, and several surges following dam failure. “B” type initiation is the result of a gradual increase in headward down cutting, bank and lateral erosion, and then large amount of loose material interfusion into water flow, which increases the bulk density, and forms the debris flow. This type of debris flow occurs mainly on slopes of 15 ± 3° without surges. “C” type debris flow results from slope failures by surface flow, infiltration, loose material crack, slope failure, and fluidization. This type of debris flow occurs mainly on slopes of 21 ± 4°, and has several surges of debris flow following slope failure, and a high bulk density. To minimize the hazards from debris flows in areas affected by the Wenchuan earthquake, the erosion control measures, such as the construction of grid dams, slope failure control measures, the construction of storage sediment dams, and the drainage measures, such as construction of drainage ditches are proposed. Based on our results, it is recommend that the control measures should be chosen based on the debris flow initiation type, which affects the peak discharge, bulk density and the discharge process. The mitigation strategies discussed in this paper are based on experimental simulations of the debris flows in the Weijia, Huashiban, and Xijia gullies of old Beichuan city. The results are useful for post-disaster reconstruction and recovery, as well as for preventing similar geohazards in the future.  相似文献   

7.
Chao Ma  Jiayong Deng  Rui Wang 《Landslides》2018,15(12):2475-2485
The occurrence of debris flow from channel-bed failure is occasionally noted in small and steeply sloping watersheds where channelized water flow dominates debris flow initiation. On August 12, 2016, a debris flow from channel-bed failures occurred in the Caozhuangzi Watershed of the Longtan Basin, Miyun, Beijing. Rainfall records over 10-min intervals and field investigations including channel morphology measurements were used to study the triggering conditions and erosion process. The results indicated that the occurrence of this event lagged the peak 10-min rainfall interval and that the cumulative rainfall prior to the occurrence time played an important role in its formation. A mean 10-min rainfall intensity–duration expression in the form of I10?=?5.0?×?D?0.21, where I10 denotes the mean 10-min rainfall intensity and D is the rainfall duration ranging from 10 to 60 h, was proposed. The debris flows have low proportions of grain size fractions <?0.1 mm and higher fractions of grains 0.1–2 mm in size, indicating that the flow had low viscosity and was coarse-grain dominated. Channel morphology analysis revealed that abrupt changes in topography in the study area, including a steep section, a concave stream bank area, and a partial concave stream section were eroded more extensively than other sites. The maximum sediment erosion volume and erosion depth were not proportional to the variation in stream gradient. Consideration of the degree of erosion in the channel at sites with abrupt morphology changes, the maximum sediment erosion volume, and the erosion depth and volume at the initial channel site and downstream region of forest area together showed that the prime factor controlling erosion was entrained sediment volume. This work, thus, provides a case study regarding the triggering conditions of runoff-triggered debris flows and the topographical changes by debris flow erosion.  相似文献   

8.
During the three flood seasons following the Wenchuan earthquake in 2008, two catastrophic groups of debris flow events occurred in the earthquake-affected area: the 2008-9-24 debris flow events, which had a serious impact on rebuilding; and the 2010-8-13/14 debris flow events, which destroyed much of the progress made in rebuilding. The Wenjia gully is a typical post-earthquake debris flow gully and at least five debris flows have occurred there. As far as the 2010-8-13 debris flow is concerned, the deposits of the Wenjia gully debris flow reached a volume of 3.1 × 106 m3 in volume and hundreds of newly built houses were buried. This study took the Wenjia gully debris flow as an example and discussed the formation and characteristics of post-earthquake debris flow on the basis of field investigations and a remote sensing interpretation. The conclusions drawn from the investigation and analysis were as follows: (1) Post-earthquake debris flows were a joint result of both the earthquake and heavy rainfall. (2) Gully incision and loose material provision are key processes in the initiation and occurrence of debris flows and a cycle can be presented as the following process: runoff—erosion—collapse—engulfment—debris flow—further erosion—further collapse—further engulfment—debris flow enlargement. (3) The amount of rainfall that triggered debris flows from the Wenjia gully was significantly less than the average daily rainfall, while the intraday rainfall threshold decreased by at least 23.3%. (4) The occurrence mechanism of Wenjia gully debris flow was an erosion type and there was a positive relationship between debris flow magnitude and rainfall, which fitted an exponential model. (5) There were five representative characteristics of Wenjia gully debris flow: the long duration of the occurring process; the long distance of deposition chain conversion during the process of damage; magnification in the scale of debris flow; and the high frequency of debris flow events.  相似文献   

9.
On 6 December 2004, the Villagrande Strisaili area (middle-east Sardinia), was struck by debris flows; 330 mm of rainfall took place within 3 h with an hourly intensity of 120 mm, which is far more above than normal for the study area. In the urban center stony and driftwood deposits accounted for a total volume estimated as 10,000 m3. The event claimed huge amount of infrastructural loss and two human lives. According to the chronicle reports, the area experienced two debris-flow events in the last century. The present paper is the outcome of an intensive study of such debris-flow events including their physical processes and geomorphological effects through both field survey and laboratory analysis.  相似文献   

10.
Bin Yu  Yu Ma  Yufu Wu 《Natural Hazards》2013,65(1):835-849
The debris flow, which was triggered in the Wenjia Gully on August 13, 2010, is an extreme example of mass movement events, which occurred after the Wenchuan earthquake of May 12, 2008. This Earthquake triggered in the Wenjia Gully the second largest co-seismic landslide, which can be classified as a rockslide-debris avalanche. A lot of loose sediments was deposited in the basin. In the main so called Deposition Area II of this landslide, with a volume of 30?×?106?m3, flash floods can easily trigger debris flows because of the steep bottom slope and the relative small grain sizes of the sediments. The largest debris flow of August 13, 2010 destroyed the most downstream dam in the catchment during a heavy rain storm. The debris flow with a peak discharge of 1,530?m3/s and a total volume of 3.1?×?106?m3 caused the death of 7 persons, 5 persons were missing, 39 persons were injured and 479 houses buried. After three rainy seasons, only 16?% of the landslide-debris deposition was taken away by 5 large-scale debris flow events. Since the threshold for rainfall triggered debris flows in the Wenjia Gully and other catchments drastically decreased after the Wenchuan Earthquake, new catastrophic events are expected in the future during the rainy season.  相似文献   

11.
The total area of debris flow territories of the Russian Federation accounts for about 10% of the area of the country. The highest debris flow activity areas located in Kamchatka-Kuril, North Caucasus and Baikal debris flow provinces. The largest debris flow events connected with volcano eruptions. Maximum volume of debris flow deposits per one event reached 500 × 106 m3 (lahar formed during the eruption of Bezymyanny volcano in Kamchatka in 1956). In the mountains of the Greater Caucasus, the maximum volume of transported debris material reached 3 × 106 m3; the largest debris flows here had glacial reasons. In the Baikal debris flow province, the highest debris flow activity located in the ridges of the Baikal rift zone (the East Sayan Mountains, the Khamar-Daban Ridge and the ridges of the Stanovoye Highland). Spatial features of debris flow processes within the territory of Russia are analyzed, and the map of Debris Flow Hazard in Russia is presented. We classified the debris flow hazard areas into 2 zones, 6 regions and 15 provinces. Warm and cold zones are distinguished. The warm zone covers mountainous areas within the southern part of Russia with temperate climate; rain-induced debris flows are predominant there. The cold zone includes mountainous areas with subarctic and arctic climate; they are characterized by a short warm period, the occurrence of permafrost, as well as the predominance of slush flows. Debris flow events are described for each province. We collected a list of remarkable debris flow events with some parameters of their magnitude and impact. Due to climate change, the characteristics of debris flows will change in the future. Availability of maps and information from previous events will allow to analyze the new cases of debris flows.  相似文献   

12.
One of the most far-reaching glacier-related hazards in the Tian Shan Mountains of Kyrgyzstan is glacial lake outburst floods (GLOFs) and related debris flows. An improved understanding of the formation and evolution of glacial lakes and debris flow susceptibility is therefore essential to assess and mitigate potential hazards and risks. Non-stationary glacier lakes may fill periodically and quickly; the potential for them to outburst increases as water volume may change dramatically over very short periods of time. After the outburst or drainage of a lake, the entire process may start again, and thus these non-stationary lakes are of particular importance in the region. In this work, the Teztor lake complex, located in Northern Kyrgyzstan, was selected for the analysis of outburst mechanisms of non-stationary glacial lakes, their formation, as well as the triggering of flows and development of debris flows and floods downstream of the lakes. The different Teztor lakes are filled with water periodically, and according to field observations, they tend to outburst every 9–10 years on average. The most important event in the area dates back to 1953, and another important event occurred on July 31, 2012. Other smaller outbursts have been recorded as well. Our study shows that the recent GLOF in 2012 was caused by a combination of intense precipitation during the days preceding the event and a rapid rise in air temperatures. Analyses of features in the entrainment and depositional zones point to a total debris flow volume of about 200,000 m3, with discharge ranging from 145 to 340 m3 s?1 and flow velocities between 5 and 7 m s?1. Results of this study are key for a better design of sound river corridor planning and for the assessment and mitigation of potential GLOF hazards and risks in the region.  相似文献   

13.
Riedel  Jon L.  Sarrantonio  Sharon M. 《Natural Hazards》2021,106(3):2519-2544

We examine the magnitude, frequency, and precipitation threshold of the extreme flood hazard on 37 low-order streams in the lower Stehekin River Valley on the arid eastern slope of the North Cascades. Key morphometric variables identify the magnitude of the hazard by differentiating debris flood from debris flow systems. Thirty-two debris flow systems are fed by basins?<?6 km2 and deposited debris cones with slopes?>?10°. Five debris flood systems have larger drainage areas and debris fans with slopes 7–10°. The debris flood systems have Melton ruggedness ratios from 0.42–0.64 compared to 0.78–3.80 for debris flow basins. We record stratigraphy at seven sites where soil surfaces buried by successive debris flows limit the age of events spanning 6000 years. Eighteen radiocarbon ages from the soils are the basis for estimates of a 200 to1500-year range in recurrence interval for larger debris flows and a 450?±?50-year average. Smaller events occur approximately every 100 years. Fifteen debris flows occurred in nine drainage systems in the last 15 years, including multiple flows on three streams. Summer storms in 2010 and 2013 with peak rainfall intensities of 7–9 mm/h sustained for 8–11 h triggered all but one flow; the fall 2015 event on Canyon Creek occurred after 170 mm of rain in 78 h. A direct link between fires and debris flows is unclear because several recent debris flows occurred in basins that did not burn or burned at low intensity, and basins that burned at high intensity did not carry debris flows. All but one of the recent flows and fires occurred on the valley’s southwest-facing wall. We conclude that fires and debris flows are linked by aspect at the landscape scale, where the sunny valley wall has flashy runoff due to sparse vegetation from frequent fires.

  相似文献   

14.
Bin Yu 《Natural Hazards》2011,58(1):391-406
The accurate prediction of debris flows occurrence that will allow the reduction or prevention of economic losses and human casualties is presently the most difficult aspect of debris flows studies but also the aspect that receives most attention. Most prediction methods are based on rainfall as the basic parameter, with the moment of occurrence as only result, and without a prediction of debris flow travel time and size. This paper takes Jiangjia Gully in Dongchuan of Yunnan Province as an example, and considers, on the basis of the fulfillment of the essential condition: the abundant availability of loose materials, the conditions for the formation of debris flows. Based on the mechanism of the initiation of debris flows in channels and the volume of rainfall in the basin, this paper also gives a systematic analysis on the travel time and size of the debris flow and suggests that the hydrological condition for forming debris flow is the unit discharge of the flood ≥0.35 m3/s.m. It uses the 10-min rainfall intensity to calculate both the run-off of the rainfall and the unit discharge caused by the run-off, thus predicting the occurrence of debris flows. The velocity and the travel time of a debris flow can also be determined using the unit discharge of the run-off. The total volume of debris flows can be calculated using the 10-min intensity of rainfall and the total volume of the run-off, together with the volume concentration of the sediment in a debris flow.  相似文献   

15.
The Atlantic ribbed mussel, Geukensia demissa, is found in salt marshes along the North American Atlantic Coast. As a first step to study the possibility of future cultivation and harvest of ribbed mussels for nutrient removal from eutrophic urban environments, the feeding behavior of ribbed mussels in situ was studied from July to October 2011. Two locations approximately 80 km apart were used as study sites: Milford Harbor (Connecticut; 41°12′42.46″N, 73°3′7.75″W) and Hunts Point (Bronx, New York; 40°48′5.99″N, 73°52′17.76″W). Total particulate matter was higher at Hunts Point than at Milford Harbor, but the organic content was higher at Milford than at Hunts Point. The relatively low quantity of organic content in Hunts Point seston resulted in a much higher production of pseudofeces by mussels. Mussel clearance and absorption rates were higher at Milford Harbor than at Hunts Point. Nevertheless, mussels at both sites had the same absorption efficiency, suggesting that mussels are able to adapt to conditions at both locations. Ribbed mussels decreased clearance rate when the seston quantity was high at both sites. At Hunts Point, ribbed mussels increased the gut transit time of ingested particles when the amount of inorganic particulates in the water increased. This study does not quantify nutrient removal capacity of G. demissa; however, the environmental tolerance demonstrated here, and current lack of commercial harvest, suggests that this species may be a good candidate for nutrient bioextraction in highly impacted urban environments.  相似文献   

16.
Viorel Ilinca 《Landslides》2014,11(3):505-512
This paper focuses on characteristics of debris flows from the lower part of the Lotru River basin (South Carpathians, Romania). The damage produced by these debris flows has included burial of agricultural land, roads covered by debris flows, and even the obstruction of the Lotru River. Simple statistical analysis has been used to emphasize the characteristics of the debris flow sites. The collected data show that heavy rainfall is the main triggering mechanism of debris flow events in the Lotru hydrographic basin. The daily rainfall data for this region show that important debris flow events generally occur when rainfall exceeds 40 mm in 24 h, while rainfall levels between 25 and 40 mm in 24 h result in hyperconcentrated flows. For 11 of 14 studied debris flow sites, the fan area is greater than the source area, probably due to the thickness of the regolith, which is up to 5–10 m deep. Both source area and deposition area are very dynamic. The retreat rate calculated for five debris flow sites ranges from 5 to 30 m in 30 years (from 1975 to 2005). Channel cross section measurements on one of the debris flows show that velocity values vary from 1.31 to 2.64 m/s; corresponding discharge values vary from 4 to 10.03 m3/s.  相似文献   

17.
The 2008 Ms 8.0 Wenchuan earthquake triggered a large number of extensive landslides. It also affected geologic properties of the mountains such that large-scale landslides followed the earthquake, resulting in the formation of a disaster chain. On 10 July 2013, a catastrophic landslide–debris flow suddenly occurred in the Dujiangyan area of Sichuan Province in southeast China. This caused the deaths of 166 people and the burying or damage of 11 buildings along the runout path. The landslide involved the failure of ≈1.47 million m3, and the displaced material from the source area was ≈0.3 million m3. This landslide displayed shear failure at a high level under the effects of a rainstorm, which impacted and scraped an accumulated layer underneath and a heavily weathered rock layer during the release of potential and kinetic energies. The landslide body entrained a large volume of surface residual diluvial soil, and then moved downstream along a gully to produce a debris flow disaster. This was determined to be a typical landslide–debris flow disaster type. The runout of displaced material had a horizontal extent of 1200 m and a vertical extent of 400 m. This was equivalent to the angle of reach (fahrböschung angle) of 19° and covered an area of 0.2 km2. The background and motion of the landslide are described in this study. On the basis of the above analysis, dynamic simulation software (DAN3D) and rheological models were used to simulate the runout behavior of the displaced landslide materials in order to provide information for the hazard zonation of similar types of potential landslide–debris flows in southeast China following the Wenchuan earthquake. The simulation results of the Sanxicun landslide revealed that the frictional model had the best performance for the source area, while the Voellmy model was most suitable for the scraping and accumulation areas. The simulations estimated that the motion could last for ≈70 s, with a maximum speed of 47.7 m/s.  相似文献   

18.
This paper uses the catastrophic rockslide at Sanxicun village in Dujianyan city as an example to investigate the formation mechanism of a rapid and long run-out rockslide-debris flow of fractured/cracked slope, under the application of a rare heavy rainfall in July 2013. The slope site could be affected by the Wenchuan Ms 8.0 Earthquake in 2008. The sliding involved the thick fractured and layered rockmass with a gentle dip plane at Sanxicun. It had the following formation process: (1) toppling due to shear failure at a high-level position, (2) shoveling the accumulative layer below, (3) forming of debris flow of the highly weathered bottom rockmass, and (4) flooding downward along valley. The debris flow destroyed 11 houses and killed 166 people. The run-out distance was about 1200 m, and the accumulative volume was 1.9?×?106 m3. The rockslide can be divided into sliding source, shear-shoveling, and flow accumulative regions. The stability of this fractured rock slope and the sliding processes are discussed at four stages of cracking, creeping, separating, and residual accumulating, under the applications of hydrostatic pressure and uplift pressure. This research also investigates the safety factors under different situations. The double rheological model (F-V model) of the DAN-W software is utilized to simulate the kinematic and dynamic processes of the shear-shoveling region and debris flow. After the shear failure occurred at a high-level position of rock, the rockslide moved for approximately 47 s downward along the valley with a maximum velocity of 35 m/s. This is a typical rapid and long run-out rockslide. Finally, this paper concludes that the identification of the potential geological hazards at the Wenchuan mountain area is crucial to prevent catastrophic rockslide triggered by heavy rainfall. The identified geological hazards should be properly considered in the town planning of the reconstruction works.  相似文献   

19.
Mass movements in tropical Pacific small island developing states (SIDS) can be devastating although studies are relatively few and contributing environmental factors are not often investigated in detail. On 25 January 2012, following 3 days of heavy monsoonal rainfall (c. 550 mm) during a La Niña episode, more than 150 debris flows were triggered in the western part of the Ba river catchment of northwest Viti Levu island, Fiji. Reconnaissance field survey and geographical information system (GIS) analyses using high-resolution satellite imagery were carried out to investigate factors that may have led to the occurrence of the debris flows in the catchment. We evaluated the correlation between the density of mass movements (number of mass movements/km2) and several continuous variables using data measured within the GIS. There was a weak but significant positive correlation between mass movement density and elevation (r = 0.38, p value < 0.01), cyclonic precipitation (r = 0.37, p value < 0.01) and stream density (r = 0.31, p value < 0.01). Ninety-three percent of the mass movements occur within a plantation of Pinus caribaea (Caribbean pine) on slopes oriented mainly to the northeast and east on (trade) windward slopes and may be significant factors for their development. Although forests generally have a stabilizing effect on slopes, the plantation at Ba was a mature stand on its second plantation cycle and is a species that has a shallow rooting system making it more susceptible to failure.  相似文献   

20.
In the mountain area of Southwestern China, there are large quantities of runoff-generated debris flows that are threatening the local people and facilities seriously. Gangou is a typical runoff-generated debris flow; its source is old deposit from floods and the debris flows downstream of the channel. On June 30, 2005, Gangou occurred debris flow, the debris flow destroying the road, the communications facilities and the farmland at the gully mouth. Unlike the formation mechanisms of other debris flows, the formation of 2005 debris flow in Gangou has its distinctive characteristics as follows. (1) The supply of the loose sources is intensive and distribute near the mouth of the gully; it is rare to see any debris flow initiate at such a lower location. (2) The debris flow finishes its initiation, flow and deposition around the 700-m-long channel, accompanied with the blocking process in the gully when the debris flow ran out; however, 10 min later, it releases and amplifies the peak flow about three times. (3) The topographic condition of the basin does not contribute much to the formation of the 2005 debris flow; instead, its formation is the result of the co-effort of continuous rainfall and a short-time heavy rainfall. In other words, the previous cumulative precipitation enables the moisture content of the soil on the right bank of the gully to reach saturation; then the soil slides into the channel under the action of the heavy rainfall at a later time. Meanwhile, the heavy rainfall accelerates the formation of gully run-off and initiates the loose mass in the channel from slide, thus forming the debris flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号