首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The information acquired from Argo floats such as temperature and salinity profiles is used to study water mass properties in the Arabian Sea from 2002 to 2004. An examination of water mass structure at different locations reveals the presence of high salinity water of marginal seas in the Arabian Sea. During the southwest monsoon season, the impact of the early onset of southwesterlies is noticed in the upper ocean temperature and salinity structure over the Western Arabian Sea (WAS) during 2002. Surface density variations are found to be more during the southwest monsoon season due to strong wind forcing. Argo temperature and salinity profiles showed that the winter cooling and the formation of Arabian Sea High Salinity Water (ASHSW) over the Northern Arabian Sea (NAS) began during the second half of November within the upper 100 m depth. In the NAS, the Persian Gulf Water (PGW) salinity is above 36, as PGW moves towards the south along isopycnal layer of 26.6σθθ is potential density) salinity decreases. It is observed that the PGW high salinity water is not continuously prominent over the WAS in 2002 and in 2003. In the WAS the 27.2σθ isopycnal layer depth, corresponding to Red Sea Water (RSW), did not exactly follow the pattern of isotherms as is seen in the northern and eastern Arabian Sea. The variability related to RSW salinity is due to the underwater currents. The present study also confirms that RSW is prominent in the southeast Arabian Sea at the potential density of 27.2 with a maximum in summer monsoon compared to other seasons. The observed peak in the salinity at 27.2 density level during the spring intermonsoon is due to the influence of winter time spreading of RSW to the south of Socotra in 2002. Westward movement of Argo floats in the region east of Socotra during the winter is evident in both the observations and model studies. Water mass properties change when they move away from their source region due to the consistent horizontal advection. The changes in the water mass properties along the Argo float trajectory are confirmed by comparing with the climatological mean monthly values from the World Ocean Atlas 2001 data set.  相似文献   

2.
A general form of an equation that "explicitly" diagnoses SST change is derived. All other equations in wide use are its special case. Combining with the data from an ocean general circulation model (MOM2) with an integration of 10 years (1987-1996), the relative importances of various processes that determine seasonal variations of SST in the tropical Indian Ocean are compared mainly for January, April, July and October. The main results are as follows. (1) The net surface heat flux is the most important factor affecting SST over the Arabian Sea, the Bay of Bengal and the region south of the equator in January; in April, its influence covers almost the whole region studied; whereas in July and October, this term shows significance only in the regions south of 10°S and north of the equator, respectively. (2) The horizontal advection dominates in the East African-Arabian coast and the region around the equator in January and July; in October, the region is located south of 10°S. (3) The entrainment is s  相似文献   

3.
Sea surface electric field observations off the coast from Goa (15o25’N, 73o47’E) to Madras (13o04’N, 80o15’E) around Sri Lanka, in a distance range 25-135 km from coast, during 9-20 May 1983 were taken. In this paper we have examined the diurnal variation of electric field in the Arabian Sea, Indian Ocean and Bay of Bengal regions cov-ered during the cruise of the research ship ORV Gaveshani. An aspect of electric field dependence on coastal distance and Aitken Nuclei concentration has also been studied. An attempt to examine the latitude dependence of field was also made. Results obtained in the above studies are presented and compared with those obtained elsewhere.  相似文献   

4.
孟加拉湾西南季风与南海热带季风季节内振荡特征的比较   总被引:4,自引:2,他引:2  
李汀  琚建华 《气象学报》2013,71(3):492-504
采用美国国家环境预报中心的向外长波辐射和风场资料及日本气象厅的降水资料,用30-60d滤波后的夏季风指数在孟加拉湾和南海的区域平均值分别代表孟加拉湾西南季风和南海热带季风季节内振荡,对两支季风的季节内振荡特征进行比较分析,发现孟加拉湾西南季风的季节内振荡和南海热带季风的季节内振荡在夏季风期间(5-10月)都有约3次半的波动.夏季风期间,在阿拉伯海-西太平洋纬带上,夏季风的季节内振荡有4次从阿拉伯海的东传和3次从西太平洋的西传,其中7月后东传可直达西太平洋.孟加拉湾和南海在夏季风期间都有4次季节内振荡的经向传播,但孟加拉湾在约15°N以南为季节内振荡从热带东印度洋的北传,在约15°N以北则为副热带季风季节内振荡的南传;而在南海则是4次季节内振荡从热带的北传.在以孟加拉湾西南季风季节内振荡和南海热带季风季节内振荡分别划分的6个位相中,都存在1-3位相和4-6位相中低频对流、环流形势相反的特征,这是由热带东印度洋季节内振荡的东传和北传所致.热带印度洋季节内振荡沿西南-东北向经过约14d传到孟加拉湾,激发了孟加拉湾西南季风季节内振荡的东传,经过约6d到达南海,激发了南海热带季风季节内振荡的北传,经过约25d到达华南,形成热带印度洋季节内振荡向华南的经纬向接力传播(45d).孟加拉湾西南季风季节内振荡所影响的降水主要是在20°N以南的热带雨带随低频对流的东移而东移;而南海热带季风季节内振荡所影响的降水除了这种热带雨带随低频对流的东移外,还有在20°N以北的东亚副热带地区存在雨带随南海低频对流的北移而北移.  相似文献   

5.
Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula-South China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean, Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation. In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS. However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes, so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.  相似文献   

6.
北半球夏季,北印度洋环流主要受到西南季风流控制,将热带印度洋水体从西向东进行跨海盆输运,然而在斯里兰卡南部沿岸存在一支与西南季风流方向相反的西向沿岸流,即南斯里兰卡沿岸流(SSLCC).本文主要利用ECCO2资料进行南斯里兰卡沿岸流的动力学特征研究.结果表明,SSLCC的形成和孟加拉湾局地环流密切相关.当斯里兰卡穹顶区(SLD)环流偏强时,斯里兰卡南部形成局地气旋式涡旋,斯里兰卡东部沿岸流在SLD西部向南流动,随着气旋式涡旋北部转向西流形成强的SSLCC.相比之下,SLD较弱时,沿岸流仅存在斯里兰卡东部沿岸,斯里兰卡东部沿岸流无法向西转向,SSLCC和西南季风流一起向东流动,其可能的主要原因是局地风应力对SLD产生的强度影响.研究还表明,SLD强度对SSLCC流向和强度有着重要影响.  相似文献   

7.
关于亚洲夏季风爆发的动力学研究的若干近期进展   总被引:6,自引:1,他引:5  
资料分析显示,与850 hPa风场相比,地面风的变化能更好地表征亚洲各季风系统的特征。基于地面风的季节性反转和降水的显著变化所构建的亚洲夏季风(ASM)爆发指数和等时线图表明:亚洲热带夏季风(TASM)在5月初首先在孟加拉湾(BOB)东南部爆发后不是向西传播,而是向东经中印半岛向东推进,于5月中到达中国南海(SCS),6月初到达热带西北太平洋。印度夏季风的表面低压系统源于近赤道阿拉伯海地区,于6月初到达印度西南部喀拉拉邦,印度夏季风随之爆发。亚洲副热带夏季风(STASM)5月初在西北太平洋日本本州东南的海区发生后向西南伸展,于6月初与南海季风降水区连接,形成东北—西南向雨带,夏季风在中国东南沿海登陆,日本的“梅雨”(Baiu)开始。6月中该雨带向北到达长江流域和韩国,江淮梅雨和韩国的“梅雨”(Changma) 开始。本文还回顾了亚洲热带夏季风爆发的动力学研究的若干近期进展。春季青藏高原和南亚海陆分布的联合强迫作用使海表温度(SST)在BOB中东部形成短暂但强盛的暖池,在高层南亚高压的抽吸作用下,常伴有季风爆发涡旋(MOV)发展,使冬季连续带状的副高脊线在孟加拉湾东部断裂,导致亚洲热带季风首先在BOB爆发。BOB东/西部有东/西风型垂直切变,利于激发/抑制对流活动,并增加/减少海洋向大气的表面感热加热,从而使得亚洲夏季风爆发的向西传播在BOB西海岸遇到屏障。季风爆发逐渐向东伸展引发南海和热带西太平洋夏季风相继爆发。季风降水释放的强大潜热使南亚高压发展西伸,纬向非对称位涡强迫显著增强;在阿拉伯半岛强烈的表面感热加热所诱发的中层阿拉伯反气旋的共同作用下,位于阿拉伯海近赤道的低压系统北移发展成为季风爆发涡旋,导致印度季风爆发。由此可见,历时约一个月的亚洲热带夏季风爆发的三个阶段(孟加拉湾、南海和印度季风爆发)是发生在特定的地理环境下受特定的动力—热力学规律驱动的接续过程。  相似文献   

8.
Summary Daily rainfall observations during the principal rainy seasons over a large part of Tropical Asia and the equatorial Pacific are analysed for persistence by fitting Markov chains of various order. Daily rainfall data of 98 stations from India, Sri Lanka and Thailand falling in the monsoonal regime and 9 stations in the non-monsoonal regime of the equatorial Pacific are examined.The appropriate order of Markov chain is determined by analyzing wet and dry spell length characteristics and by applying the Schwarz Baysian Criterion to the arbitrary sequences of 5-day length. Markov chains of order greater than 1 are found to characterize the persistence in rainfall over India and to some extent over wet zones of Sri Lanka and central equatorial Pacific. Simple Markov chains are suggested for Thailand, the dry zone of Sri Lanka and the stations of central equatorial Pacific lying some what away from the equator.With 5 Figures  相似文献   

9.
This study explores the characteristics of high temperature anomalies over eastern China and associated influencing factors using observations and model outputs. Results show that more long-duration (over 8 days) high temperature events occur over the middle and lower reaches of the Yangtze River Valley (YRV) than over the surrounding regions, and control most of the interannual variation of summer mean temperature in situ. The synergistic effect of summer precipitation over the South China Sea (SCS) region (18°-27°N, 115°-124°E) and the northwestern India and Arabian Sea (IAS) region (18°-27°N, 60°-80°E) contributes more significantly to the variation of summer YRV temperature, relative to the respective SCS or IAS precipitation anomaly. More precipitation (enhanced condensational heating) over the SCS region strengthens the western Pacific subtropical high (WPSH) and simultaneously weakens the westerly trough over the east coast of Asia, and accordingly results in associated high temperature anomalies over the YRV region through stimulating an East Asia-Pacific (EAP) pattern. More precipitation over the IAS region further adjusts the variations of the WPSH and westerly trough, and eventually reinforces high temperature anomalies over the YRV region. Furthermore, the condensational heating related to more IAS precipitation can adjust upper-tropospheric easterly anomalies over the YRV region by exciting a circumglobal teleconnection, inducing cold horizontal temperature advection and related anomalous descent, which is also conducive to the YRV high temperature anomalies. The reproduction of the above association in the model results indicates that the above results can be explained both statistically and dynamically.  相似文献   

10.
Most of the annual rainfall over India occurs during the Southwest (June?CSeptember) and Northeast (October?CDecember) monsoon periods. In March 2008, however, Southern peninsular India and Sri Lanka received the largest rainfall anomaly on record since 1979, with amplitude comparable to summer-monsoon interannual anomalies. This anomalous rainfall appeared to be modulated at intraseasonal timescale by the Madden Julian Oscillation, and was synchronous with a decaying La Ni?a event in the Pacific Ocean. Was this a coincidence or indicative of a teleconnection pattern? In this paper, we explore factors controlling rainfall over southern India and Sri Lanka between January and April, i.e. outside of the southwest and northeast monsoons. This period accounts for 20% of annual precipitation over Sri Lanka and 10% over the southern Indian states of Kerala and Tamil Nadu. Interannual variability is strong (about 40% of the January?CApril climatology). Intraseasonal rainfall anomalies over southern India and Sri Lanka are significantly associated with equatorial eastward propagation, characteristic of the Madden Julian Oscillation. At the interannual timescale, we find a clear connection with El Ni?o-Southern Oscillation (ENSO); with El Ni?os being associated with decreased rainfall (correlation of ?0.46 significant at the 98% level). There is also a significant link with local SST anomalies over the Indian Ocean, and in particular with the inter-hemispheric sea surface temperature (SST) gradient over the Indian Ocean (with colder SST south of the equator being conducive to more rainfall, correlation of 0.55 significant at the 99% level). La Ni?as/cold SSTs south of the equator tend to have a larger impact than El Ni?os. We discuss two possible mechanisms that could explain these statistical relationships: (1) subsidence over southern India remotely forced by Pacific SST anomalies; (2) impact of ENSO-forced regional Indian Ocean SST anomalies on convection. However, the length of the observational record does not allow distinguishing between these two mechanisms in a statistically significant manner.  相似文献   

11.
Using 1979-2000 daily NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data (version 1, hereafter referred to as NCEP1; version 2, hereafter referred to as NCEP2), ECMWF (European Center for Medium-range Weather Forecasts) reanalysis data(ERA),and the Global Asian Monsoon Experiment (GAME) reanalysis data in summer 1998, the vertically integrated heat source hQ1i in summer is calculated, and results obtained using different datasets are compared. The distributions of hQ1i calculated by using NCEP1 are in good agreement with rainfall observations over the Arabian Sea/Indian Peninsula, the Bay of Bengal (BOB), and East China. The distributions of hQ1i revealed by using NCEP2 are unrealistic in the southern Indian Peninsula, the BOB, and the South China Sea. Using ERA, the heat sources over the tropical Asia are in accordance with the summer precipitation,however, the distributions of hQ1i in East China are unreasonable. In the tropical region, the distributions of the summer heat source given by NCEP1 and ERA seem to be more accurate than those revealed by NCEP2. The NCEP1 and NCEP2 data are better for calculating heat sources over the subtropical and eastern regions of mainland China.  相似文献   

12.
Summary In this study, we have analyzed the temporal oscillations of precipitation in meso-scale zones of Sri Lanka to examine potential existence of periodic oscillatory behavior in rainfall. Only a few statistically significant cycles were identified: a 3.5-year cycle in most of central Sri Lanka during the January–March rainfall regime and a cycle of the same length in southwestern Sri Lanka during the October regime. A 2.1-year cycle marks the northeastern parts of Sri Lanka during the December/April contrast rainfall regime. This cycle is shown to be strongly related to Quasi-Biennial Oscillation. October and November rainfall are found to be coupled with ENSO fluctuations, and on average, more than 900 mm more rainfall is observed per month over all stations during El Ni?o than during La Ni?a years. Analysis of relationships between the observed meso-scale rainfall regions and the Sea Surface Temperatures (SSTs) in the Indian Ocean north of the Equator showed that the northern Indian Ocean can be divided into three particular regions based on similarity in the SST fluctuations: (a) a region with cool upwelling water, (b) non upwelling water, and (c) the Indian Ocean Warm Pool. We found that there are no statistically significant relationships between the observed SST regions in the Indian Ocean and the meso-scale precipitation patterns in Sri Lanka.  相似文献   

13.
Delayed impact of El Niño on Tropical Indian Ocean (TIO) Sea Surface Temperature (SST) variations and associated physical mechanisms are well documented by several studies. However, TIO SST evolution during the decay phase of La Niña and related processes are not adequately addressed before. Strong cooling associated with La Niña decay over the TIO could influence climate over the Indian Oceanic rim including Indian summer monsoon circulation and remotely northwest Pacific circulation. Thus understanding the TIO basin-wide cooling and related physical mechanisms during decaying La Niña years is important. Composite analyses revealed that negative SST anomalies allied to La Niña gradually dissipate from its mature phase (winter) till subsequent summer in central and eastern Pacific. In contrast, magnitude of negative SST anomalies in TIO, induced by La Niña, starts increasing from winter and attains their peak values in early summer. It is found that variations in heat flux play an important role in SST cooling over the central and eastern equatorial Indian Ocean, Bay of Bengal and part of Arabian Sea from late winter to early summer during the decay phase of La Niña. Ocean dynamical processes are mainly responsible for the evolution of southern TIO SST cooling. Strong signals of westward propagating upwelling Rossby waves between 10°S to 20°S are noted throughout (the decaying phase of La Niña) spring and summer. Anomalous cyclonic wind stress curl to the south of the equator is responsible for triggering upwelling Rossby waves over the southeastern TIO. Further, upwelling Rossby waves are also apparent in the Arabian Sea from spring to summer and partly contributing to the SST cooling. Heat budget analysis reveals that negative SST/MLT (mixed layer temperature) anomalies over the Arabian Sea are mostly controlled by heat flux from winter to spring and vertical advection plays an important role during early summer. Vertical and horizontal advection terms primarily contribute to the SST cooling anomalies over southern TIO and the Bay of Bengal cooling is primarily dominated by heat flux. Further we have discussed influence of TIO cooling on local rainfall variations.  相似文献   

14.
The NCEP reanalyzed data, OLR and SST observations are used to study the onset time and the multi-time scales features of the South China Sea (SCS) summer monsoon in 1998 and its interaction with the sea surface temperature and the effect on the precipitation in Guangdong province. It is found that the 1998 SCS summer monsoon set in on May 17 (in the fourth pentad of the month). The year witnesses a weak monsoon with the OLR oscillating at cycles of about 1 month and the Southwest Monsoon of about 1/2 month. The mon-soon over the Bay of Bengal and the cross-equatorial current near 105°are two driving forces for low-frequency variations of the SCS monsoon. The weak activity in the year was resulted from positive anomalies of SST in the equatorial eastern Pacific in early spring and subsequent formation of positive anomalies of SST in the SCS through the Arabian Sea.  相似文献   

15.
MJO活动对云南5月降水的影响   总被引:5,自引:3,他引:2  
李汀  严欣  琚建华 《大气科学》2012,36(6):1101-1111
本文分析了1979~2008年5月MJO(Madden and Julian Oscillation)不同位相上大尺度环流对流和水汽输送的异常情况及其对云南5月降水的影响。按MJO活动中心位置从西向东分为8个位相, 在不同位相上, 云南5月降水呈现出明显的差异:第4~6位相(MJO对流中心位于赤道印度洋中部至西太平洋)降水偏多, 而第7~8位相(赤道太平洋中部以东)和第1~3位相(赤道印度洋中西部)降水偏少, 其中以第6位相的降水正异常和第2位相的负异常最为显著。在MJO 1~8位相中, 对流主体从热带印度洋东移。在第1~3位相, 孟加拉湾还未形成西南向水汽输送, 而云南又处于水汽辐散区, 降水较少;第4位相时对流主体到达90°N附近, 部分对流云系向孟加拉湾北传, 并在孟加拉湾生成气旋性环流, 向云南输送水汽, 云南降水增多;第5位相时对流主体传到南海, 部分对流云系在南海北传, 同时在南海形成北传的气旋性环流;第6位相时赤道MJO对流主体虽然东移出孟加拉湾, 但孟加拉湾和南海的两个气旋性环流依然继续北传, 孟加拉湾气旋东部的西南风和南海气旋西部的东北风在云南交汇, 云南被强烈的水汽辐合区控制, 降水最充沛。第7~8位相时, 对流主体减弱, 东移到南海和西太平洋一带, 孟加拉湾转向为偏北风, 停止向云南输送水汽, 且云南处于水汽辐散区控制, 降水偏少。因此, MJO主体在东传过程中, 激发了热带对流在孟加拉湾和南海两条通道上的北传, 强盛的水汽输送和两个海区气旋环流的有利配置是造成云南5月降水的重要原因。  相似文献   

16.
以2004年5月初及5月中旬我国华南等地两次较大暴雨过程为例, 分析了西南季风潮与我国前汛期降水的关系。初步结论指出:西南季风潮的爆发与我国华南降水, 特别是大暴雨的形成关系极为密切, 而这次西南季风潮的爆发又与来自南半球的越赤道气流直接有关。同时指出, 这次西南季风潮的爆发主要与来自85°~95°E孟加拉湾地区所在经度的越赤道气流有关, 它们是印度洋“半球间宏观系统”的一个部分。而南海季风潮仅仅是西南季风潮的一种特例, 在这两次重大降水过程中没有南海季风潮的爆发和影响。  相似文献   

17.
通过SODA再分析资料和AVISO观测资料研究了斯里兰卡穹顶区(SLD)的迁移和消散机制.斯里兰卡穹顶区是孟加拉湾西南部的一个气旋涡旋,主要出现在西南季风(5-9月)期间,与西南季风海流侵入孟加拉湾同时存在.正风应力旋度引起的Ekman抽吸是形成SLD的主要原因.回归分析结果表明SLD区域的风应力旋度与Ekman抽吸存在较强的正相关(r2=0.93,p>0.5).此外,结果表明SLD在发展过程中的移动主要受正风应力旋度移动的影响,SLD的消减与该正风应力旋度减弱和西传的暖Rossby波有关,而冷Rossby波的传播有益于SLD的发展.在SLD消减时期,孟加拉湾涡旋(BBD)独立发展并进一步与SLD融合,回归分析发现BBD区域的Ekman抽吸与当地风应力旋度的关系密切(r2=0.76,p>0.5),这表明了BBD在形成阶段由局地的风应力主导.9月之后,风应力旋度减弱,BBD和SLD开始了合并过程.动力方面,EKE分析显示SLD衰退的同时,BBD的EKE大幅增加;热力方面,10-11月时,由Ekman抽吸引起的SLD和BBD次表层冷水汇合,清晰地表明了二者之间的热动力学联系.  相似文献   

18.
“05.6”华南特大暴雨过程大尺度水汽输送特征   总被引:5,自引:3,他引:2  
利用NCEP/NCAR再分析资料、FY-2C卫星逐时云顶亮温TBB资料(0.05°×0.05°分辨率)、自动气象站逐时降水资料、实时地面加密观测资料和实况探空资料等,对“05.6”华南持续性暴雨过程期间大尺度水汽输送特征进行了深入分析。结果表明:南海夏季风的活动与本次暴雨过程水汽输送有密切关系。南亚季风在经过中南半岛后与伸入南海的副高西侧气流汇合,使得西南气流发生“S”形转换,从而演变为副热带季风并持续向华南地区输送水汽。暴雨期间,来自南海中北部和孟加拉湾的水汽输送带一直稳定在18°-27°N,水汽通量大值输送带和水汽通量辐合大值带均随高度向北明显倾斜,显示偏南方向的水汽输送特征,来自南海中北部的水汽是最主要源地,而来自孟加拉湾的输送通道仅对本次过程起到补充作用。过程期间,由于南北向净流入明显大于东西向净流出,故华南地区水汽总收支为净流入,水汽净流入量以低层横向(南北)为主,以行星边界层的水汽输入为最大。  相似文献   

19.
近50年来中国夏季降水及水汽输送特征研究   总被引:15,自引:3,他引:12  
利用1951-2006年中国448站夏季降水资料、NCEP/NCAR VersionⅠ的再分析资料,研究了近50年来中国夏季降水年代际变化特征及其分区,并从季风性水汽输送的变化角度出发,讨论了影响中国一些主要地区降水变化的可能机制.研究发现:(1)从总体上来说,自1951年至今,中国夏季降水存在3个突变时段,即1956-1960年,1980年前后以及1993年以后.且90°E以东突变后的主要变化特征都是多雨区由北向南传播,而90°E以西则是多雨区由南向北传播;2)近56年来就110°E以东的中国东部夏季降水而言,1980年以后多雨区由华北南移到长江中下游,又于1993年以后由长江中下游继续南移至华南;3)中国东部各地区降水和850 hpa风场、整层水汽输送场的相关分布一致表明,中国110°E以东各降水区以南为来自偏东偏南的季风性异常水汽输送,而以北为来自偏北风和相应的异常水汽输送,两者在降水区汇合造成风和水汽输送异常辐合.因而,西太平洋副热带高压南侧的东南季风及其异常水汽输送、北方冷槽的偏北风及其异常水汽输送是中国东部夏季降水异常的主要成员,这和一般认为的这些地区降水异常来自孟加拉湾的季风性异常水汽输送的观点不同,需要作进一步研究.总之,对于中国东部旱涝的形成,应该重点注意来自西北太平洋副热带高压西侧的直接或间接经南海到达的异常四南季风性水汽输送.  相似文献   

20.
敖婷  ;李跃清 《干旱气象》2014,(2):175-183
利用1958~2012年JRA55月平均再分析资料和我国西北地区33站降水资料,通过EOF、相关、合成、SVD等统计方法,分析了500 hPa广义位温场与我国西北地区夏季降水的关系。结果表明:夏季500 hPa关键区(40°E~80°E,30°N~60°N)广义位温场与我国西北地区降水关系最为密切,当里海、咸海、贝加尔湖以北地区对流层中层偏暖湿,中亚南部偏冷干时,我国西北地区西部降水偏多,而东部降水偏少。尤其是在新疆南部及甘肃北部降水偏多更为显著,而甘肃南部降水偏少则最为明显;反之亦然。前期2月500 hPa广义位温场自赤道阿拉伯海沿南亚印度北部、中国西北至北亚,呈西南东北向的"+﹣﹢﹣"分布时,随后夏季西北地区降水西部多、东部少。并且,夏季关键区对流层中层广义位温场的异常变化,对应着不同的大气环流场异常,而这种环流形势则进一步影响我国西北地区东西部的降水异常。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号