首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design of seismic resistant concrete gravity dam necessitates accurate determination of hydrodynamic pressure developed in the adjacent reservoir. The hydrodynamic pressure developed on structure is dependent on the physical characteristics of the boundaries surrounding the reservoir including reservoir bottom. The sedimentary material in the reservoir bottom absorbs energy at the bottom, which will affect the hydrodynamic pressure at the upstream face of the dam. The fundamental parameter characterizing the effect of absorption of hydrodynamic pressure waves at the reservoir bottom due to sediment is the reflection coefficient. The wave reflection coefficient is determined from parameters based on sediment layer thickness, its material properties and excitation frequencies. An analytical or a closed-form solution cannot account for the arbitrary geometry of the dam or reservoir bed profile. This problem can be efficiently tackled with finite element technique. The need for an accurate truncation boundary is felt to reduce the computational domain of the unbounded reservoir system. An efficient truncation boundary condition (TBC) which accounts for the reservoir bottom effect is proposed for the finite element analysis of infinite reservoir. The results show the efficiency of the proposed truncation boundary condition.  相似文献   

2.
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.  相似文献   

3.
江口水库诱发地震的有限元分析   总被引:1,自引:0,他引:1  
本文利用有限元方法计算了武隆江口水库蓄水后可能引起的水库诱发地震。在水库底部有断裂通过时,对江口水库在不同的假设宽度情况下进行了分析,给出了水库底部各处的最大剪应力。结果表明,水库底部岩石发生破坏的可能性很大,极可能引起水库的诱发地震,其最大震级为5级左右。  相似文献   

4.
高毅超  徐艳杰  金峰  王翔 《地球物理学报》2013,56(12):4189-4196
高阶双渐近时域透射边界能够同时模拟行波和快衰波的传播,并且能够在全频范围内迅速逼近准确解,具有优良的收敛性能和计算效率.本文将动水压力波高阶双渐近透射边界直接嵌入到近场有限元方程中,建立了大坝-库水动力相互作用的直接耦合分析模型.该模型的整体控制方程保留了近场有限元方程系数矩阵对称稀疏的优势,可以方便地利用现有的通用有限元求解器求解.基于有限元开源软件框架体系OpenSees(Open System for Earthquake Engineering Simulation),编程实现了直接耦合分析模型,并将其应用于二维重力坝、三维拱坝与库水动力相互作用分析.数值算例表明,该直接耦合分析模型具有很高的精度和计算效率.  相似文献   

5.
The arch dam–foundation rock dynamic interaction and the nonlinear opening and closing effects of contact joints on arch dam are important to the seismic response analysis of arch dams. Up to date, there is not yet a reasonable and rigorous procedure including the two factors in seismic response analysis. The methods for the analysis of arch dam–foundation rock dynamic interaction in frequency domain are not suitable to the problem with nonlinear behaviors, in this paper, so an analysis method in time domain is proposed by combining the explicit finite element method and the transmitting boundary, and the dynamic relaxation technique is adopted to obtain the initial static response for dynamic analysis. Moreover, the influence of arch dam–foundation dynamic interaction with energy dispersion on seismic response of designed Xiaowan arch dam in China is studied by comparing the results of the proposed method and the conventional method with the massless foundation, and the local material nonlinear and nonhomogeneous behaviors of foundation rock are also considered. The reservoir water effect is assumed as Westergaard added mass model in calculation. The influence of the closing–opening effects of contact joints of arch dam on the seismic response will be studied in another paper.  相似文献   

6.
A fluid-saturated one-layer continuum underlain by a rigid half-space is considered. An exact solution is developed in frequency domain for analyzing disturbance induced by a strip footing located at the surface with vertical harmonic excitation. Since the analytical solution can be used only for very simple conditions, a finite element model has been developed also and compared with the exact solution. It is shown that finite element results are in close agreement with the results which have been obtained by a transformation technique. The proposed finite element scheme can take into account the complex geometry and inhomogeneity for practical problems. Besides this, the analytical results exhibit the overall characteristic of wave propagation in porous media and will provide a representative test problem which can be used for a quantitative evaluation of the accuracy of various numerical solution methods.  相似文献   

7.
An efficient procedure is developed for the hydrodynamic analysis of dam–reservoir systems. The governing equations of hydrodynamic pressure in the frequency as well as time domain are derived in the framework of the scaled boundary finite element method. The water compressibility and absorption of reservoir sediments can be conveniently taken into consideration. By extending the reservoir to infinity with uniform cross-section, only the dam–reservoir interface needs to be discretized to model the fluid domain, and the hydrodynamic pressure in the stream direction is solved analytically. Several numerical examples including a gravity dam with an inclined upstream face and an arch dam with a reservoir of arbitrary cross-section are provided to demonstrate the computational efficiency and accuracy of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the application of the finite element method for analysing the two-dimensional response of reservoir-dam systems subjected to horizontal ground motion. The interaction between the dam and the reservoir as well as the compressibility of water has been taken into account. The complete system has been considered to be composed of two substructures, namely the reservoir and the dam. To take into account the large extent of the reservoir, it has been idealized using specially developed infinite elements coupled with standard finite elements while the dam is represented using finite elements alone. Structural damping of the dam and radiation damping in the fluid phase have been accounted for in the analysis. It is concluded that the effect of radiation damping is considerable at high frequencies of excitation. The coupled response of the system is significantly large at and near the fundamental natural frequency of the system in comparison to the uncoupled responses. The method is computationally quite economical, capable of taking into account the arbitrary geometry of the system and is recommended for practical application. Further applications and extensions of the approach to three dimensional analyses are possible.  相似文献   

9.
时域高阶双渐近透射边界能够同时模拟层状介质中行波和快衰波的传播,具有很高的计算精度和计算效率.本文将高阶双渐近透射边界推广应用到多层层状地基系统弹性波传播问题的模拟,采用广义特征值分解分析该透射边界的数值稳定性,通过移谱法消除导致数值不稳定的虚假模态.将高阶双渐近透射边界以超单元的形式直接嵌入到近场有限元方程,建立了有限元-高阶双渐近透射边界时域耦合分析模型,并将其应用到重力坝-层状地基动力相互作用分析.数值算例分析结果表明,该时域耦合分析模型具有很高的精度和计算效率,适用于实际重力坝工程的地震响应分析.  相似文献   

10.
Starting from an analytical reservoir model that incorporates full interaction with an elastic overburden, a new hybrid mathematical approach is developed by combining two numerical discretization methods. A tabular reservoir (petroleum reservoir or an aquifer) in an infinite or semi-infinite domain is viewed as a macroscopic displacement discontinuity, allowing use of the efficient displacement discontinuity mathematical method to calculate stresses and displacements that arise because of pressure changes. A 3-D finite element method using a poroelastic formulation is used to discretize the reservoir itself. By coupling the displacement discontinuity and finite element methods, a 3-D large-scale poroelastic reservoir can be simulated within an infinite or semi-infinite domain. The numerical model has been verified through comparison to known solutions, and some time-dependent pressure drawdown problems are analyzed. Results indicate that including the complete overburden (reservoir surroundings) response has a significant effect on pressure drawdown in a poroelastic reservoir during pumping, and should be incorporated in appropriate applications such as well test equations and subsidence analyses.  相似文献   

11.
Damping solvent extraction is a finite element method for the analysis of unbounded (visco-)elastic media which was suggested by Wolf and Song in 1994. It was originally recommended that the method should be employed with a variable domain size depending on excitation frequency. Furthermore, other researchers who have utilized this method in the context of constant domain size, have often imposed strict conditions on the mesh size for the whole domain, which reduces the effectiveness of the approach. Considering the effect of artificial damping on mesh density selection, the present study introduces damping solvent as a method in which one can relax typical mesh density requirements to a large extent by utilizing a large value of artificial damping. Therefore, it makes the finite element mesh to benefit from a large domain size which improves the results for low frequency range. Moreover, good results are simultaneously obtained for high frequency range due to employing a large value of artificial damping. To illustrate the point, a rigid strip foundation with a cross section of rectangle embedded in half plane is considered. According to some comparison between the results obtained from several finite element meshes, the best one which takes full advantages of a large value of artificial damping for dynamic stiffness coefficients of strip foundation is introduced. These comparisons are carried out on domain size, mesh density and artificial damping.  相似文献   

12.
<正>The objective of this paper is to develop a dynamic slip model for a shear crack under constant stress drop.This crack problem is formulated by a traction boundary integral equation(BIE) in the frequency domain and then solved by the hyper-singular boundary element method as well as the regularization technique proposed in this paper.Based on the spectral integral form of the kernel function,the unbounded term can be isolated and extracted from the hyper-singular kernel function by using the method of subtracted and added back in wave number domain.Finally,based on the inverse transformation from the frequency domain to the time domain,the time histories of crack opening displacement under constant stress drop can be determined.Three rupture models(simultaneous rupture model,symmetric bilaterally-propagating model and unilaterally propagating model) with specified time histories of stress drop are considered in this paper.Even though these three models will cause the same final slip shapes because of the same constant stress drop,the associated slip time functions differ significantly from each other during the rupture process.  相似文献   

13.
The investigation of complex soil-structure interaction problems is usually carried out with numerical solution procedures such as the finite element or the boundary element method. It must be noted, however, that the choice of one or the other of these approaches is not just a matter of preferences; depending on the type of the problem under consideration, either boundary or finite elements may be more advantageous. A considerable expansion in the computational power can be obtained, on the other hand, if one resorts to hybrid schemes which retain the main advantages of the two methods and eliminate their respective disadvantages. This paper presents results obtained with a boundary element-finite element coupling procedure, and discusses its applicability to some representative soil-structure interaction problems. The structures considered are elastic systems, such as foundations, tunnels and filled trenches (modelled by finite elements), which are coupled with homogeneous elastic halfspaces (modelled by boundary elements). The examples demonstrate the importance of using a model that includes wave radiation effects. The coupling approach is formulated entirely in the time domain so that an extension of the algorithm to non-linear analyses seems to present no further difficulties.  相似文献   

14.
The scaled boundary finite‐element method has been developed for the dynamic analysis of unbounded domains. In this method only the boundary is discretized resulting in a reduction of the spatial dimension by one. Like the finite‐element method no fundamental solution is required. This paper extends the scaled boundary finite‐element method to simulate the transient response of non‐homogeneous unbounded domains with the elasticity modulus and mass density varying as power functions of spatial coordinates. To reduce the number of degrees of freedom and the computational cost, the technique of reduced set of base functions is applied. The scaled boundary finite‐element equation for an unbounded domain is reformulated in generalized coordinates. The resulting acceleration unit‐impulse response matrix is obtained and assembled with the equation of motion of standard finite elements. Numerical examples of non‐homogeneous isotropic and transversely isotropic unbounded domains demonstrate the accuracy of the scaled boundary finite‐element method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
就大型近场波动的高效数值模拟而言,稳定实现高阶人工边界是一个尚未圆满解决的问题.本文针对使用多次透射公式的SH波动集中质量有限元模拟,依据GKS定理的群速度解释,进一步阐明了人工边界与内域离散格式耦合所导致高频失稳的机理,即两者支持群速度指向内域的外行高频平面谐波,波动能量自发地从人工边界进入內域,从而导致失稳,而这类谐波是由集中质量有限元离散引入的.本文提出了消除此种耦合失稳的一种方法:通过修改有限元刚度阵来改变内域离散格式,并保证修改格式的精度不低于原有格式的精度.理论分析和数值实验表明此法能稳定实现透射边界.本文研究结果具有推广应用前景.  相似文献   

16.
Based on a non-linear dam-reservoir interaction model, a study investigating the earthquake response of concrete gravity dams is presented. For the propagation of cracks in unreinforced mass concrete, a discrete crack approach formulation based on the finite element method is applied. A special crack element is used to follow a fictitious crack in order to account for a zone of microcracks developing at the crack tip. The reservoir is modelled using the boundary element method. At a fictitious boundary dividing the irregular finite part of the reservoir from the regular infinite part, the loss of energy due to pressure waves moving away towards infinity is taken into account rigorously. Analyses are performed on the tallest non-overflow monolith of the Pine Flat Dam located in Kern County, California. The interaction of a dam, which may exhibit cracks in mass concrete, with a reservoir domain of arbitrary geometry extending to infinity is studied. Some main parameters are investigated. The importance of tools capable of handling the non-linear dam-reservoir interaction is emphasized.  相似文献   

17.
In this study, a finite element limit analysis method is developed to assess the seismic stability of earth-rock dams. A pseudo-static approach is employed within the limit analysis framework to determine the lower and upper bounds on the critical seismic coefficients of dams. The interlocking force in the soil is considered, and the rockfill material is assumed to follow the Mohr–Coulomb failure criterion and an associated flow rule. Based on the native form of the failure criterion, the lower and upper bound theorems are formulated as second-order cone programming problems. The nonlinear shear strength properties of rockfill materials are also considered. The developed finite element limit analysis is applied to two different types of earth-rock dams. The results indicate that the rigorous lower and upper bounds are very close even for rockfill materials with large internal friction angles. The failure surfaces are easily predicted using the contour of the yield function and the displacement field obtained by the limit analysis method. In addition, the pore water pressures are modelled as external forces in the limit analysis to assess the seismic stability of earth-rock dams in the reservoir filling stage.  相似文献   

18.
In this study, failure probability of the concrete slab on concrete-faced rockfill (CFR) dams with welded and friction contact is investigated under earthquake effects by reliability analysis. For this purpose, Torul CFR dam is selected as an example and numerical solutions are performed by considering combination of reliability analysis–finite element method. 1992 Erzincan earthquake acceleration record is used in the finite element analysis considering deconvolved-base rock input model. In this model, the ground motion to be applied to the foundation base rock is obtained by deconvolution of the free-field surface record. In the materially nonlinear analysis, Drucker–Prager model is used for concrete slab and multi-linear kinematic hardening model is utilized for rockfill. Geometrically nonlinearity is also taken into account. Viscous boundary conditions are defined in the finite element model for both foundation soil and reservoir water. The hydrodynamic pressure of the reservoir water is considered using 2D fluid finite elements based on the Lagrangian approach. Both welded contact and friction contact based on the Coulomb’s friction law are defined in the structural connections. Improved Rackwitz–Fiessler method is used with response surface method in the reliability analysis. The tensile and compression strengths of the concrete slab are utilized in the implicit limit state functions considering various thicknesses. The probability of failure of the most critical points in the concrete slab is obtained. According to this study, the probabilities of failure obtained from the CFR dam including friction contact are lower. When the welded contact is considered in joints, the probability of failure of the concrete slab is 1 due to tensile stress limit state and compression stress limit state only if concrete slab is linear. The most critical probability of failure of the concrete slab appears in the case that the concrete slab is linear and rockfill is materially nonlinear. The probability of failure of the concrete slab decreases if the nonlinearity of the concrete is considered. Also, hydrodynamic pressure decreases the reliability of the concrete slab.  相似文献   

19.
研究利用测震台网数字化宽频带速度型记录仿真加速度时程,并通过提取其相位信息和拟合场地设计反应谱(目标谱)的方法来获得场地设计地震波的有关技术途径与应用实例,所提供的具体算式采用便于编程和利用快速傅氏变换(FFT)技术进行计算的离散化傅氏正逆变换的复数表达式。有关研究结果可拓宽现有地震观测资料的使用价值,减少地面运动模拟中人造地震波与原始地震记录存在的差异,并可使所合成的设计地震波满足给定的目标谱,且能较好地反映其非平稳性特征,因此在地震工程中具有实际的应用价值。  相似文献   

20.
Simple Finite Element models for soil dynamics and earthquake engineering problems in the frequency domain are a fast and valuable tool providing a first approximation before a full non-linear analysis in the time domain is performed.Quite often the problem concerns saturated soils with very small permeability and pore fluid of neglectable compressibility. In the limit, the permeability is assumed to be zero and the pore fluid incompressible. Here, engineers use standard finite element codes formulated in terms of displacements but incompressibility may result in volumetric locking of the mesh with a severe loss of accuracy.The purpose of this paper is to present a simple mixed finite element formulation in the frequency domain based on displacements and pore pressures as main variables. A suitable stabilization technique allowing for equal order interpolation of displacements and pressures has been introduced for incompressible and zero permeability limits.Of course, the range of application is limited to those problems in which the behaviour of the material can be approximated by linear models, and therefore modelling of phenomena such as liquefaction, cyclic mobility or cavitation occur is excluded.The paper shows as well an extremely simple way of coupling solid and water domains as it occurs for instance in quay walls under dynamic loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号