首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A two dimensional non-linear finite element simulation model has been developed using a mathematical model for progressive rock failure for understanding the mode and sequence of rock failure under a drag pick cutter. Rock cutting simulation has also been done using linear elastic modeling using local stability factor contouring. It has been observed from the simulation results that during negative rake angle cutting the chipping occurs by shear failure of the elements. Whereas, in positive rake angle cutting, some elements were observed to fail in shear and some under tension. The predicted peak cutting force using the developed models was found to be up to 25% higher than the experimental values. The effect of input parameters such as rake angle, flank wear, depth of cut and rock properties on the predicted peak cutting force has been studied, verified from earlier experimental studies and compared with some earlier proposed theories on rock cutting. The elastic stress analysis model based on the stability factor contouring method has also been found to be an effective tool to bracket the expected peak cutting force for a given operational and rock parameters but failed to simulate the effect of pick geometry (rake angle) correctly. The non-linear simulation model using progressive rock element failure is superior to elastic linear stress analysis model by simulating the correct trends for all the rock and machining parameters.  相似文献   

2.
为了提高坚硬岩层隧道掘进机(tunnel boring machine, TBM)贯入度和降低滚刀受力,高压水射流辅助TBM滚刀破岩已在工业界初步应用。为了揭示水力切缝滚刀破岩机制,基于水力切缝岩石滚刀贯入试验进行了三维颗粒流模拟,研究了滚刀贯入力和贯入刚度随切缝深度的变化规律,揭示了不同切缝深度滚刀纵横剖面内的裂纹扩展和力链演化过程,分析了拉裂纹和剪裂纹随切缝深度的变化规律,明确了不同切缝岩石滚刀贯入的破坏模式和破坏机制。结果表明,第1次贯入的贯入刚度和贯入力随切缝深度的增加大致呈线性降低,第2次贯入的峰值力和贯入刚度小于第1次。而且,50~80 mm刀间距的变化对峰值贯入力的影响并不显著。随着切缝深度的增加,滚刀下方力链集中区边缘的倾角变大。由此导致破坏倾向于倾斜向下发展,当刀间距增加时,破坏由切缝一侧倾斜破坏向两切缝中间岩脊倾斜破坏转变,研究结果可为TBM滚刀与水射流布置和切缝深度的选取提供一定参考。  相似文献   

3.
The formation of a compacted zone under the indenter seems to be the major factor controlling the indentation process in porous rocks. In the case of very porous materials, where the pore structure fails and deformation (by structural collapse) proceeds with almost no increase in the applied load and with very limited damage to the surrounding material, no chipping is observed. The extent of the compacted zone is controlled by the porosity of the material and by the strength of its porous structure. This paper presents an interpretation model developed by the authors to obtain the uniaxial compressive strength of porous materials from the results of indentation tests. It is based on the model proposed by Wilson et al. (Int. J. Mech. Sci., 17, 1975, 457) for the interpretation of indentation tests on compressible foams and on an estimation by the authors of the extent of the compacted zone under the indenter. The results of indentation tests can also be used to obtain the Young's modulus of the material with a model proposed by Gill et al. (Proceedings of the 13th Canadian Symposium on Rock Mechanics, 1980, 1103). Uniaxial compression and indentation tests have been performed on artificial porous materials showing porosities varying between 44 and 68%. The uniaxial compressive strength values obtained from both types of test show a very good agreement. For the Young's modulus, the values obtained from the two types of test are different but the variation of the moduli with porosity is the same. Finally, a parameter called permanent penetration modulus is proposed as a means of characterizing the uniaxial compressive strength of porous materials.  相似文献   

4.
An approximate two‐dimensional model for indentation of blunt objects into various types of rigid‐perfectly plastic cohesive‐frictional material is derived. Particular emphasis is placed on considering indentation as a process involving evolution of the boundary of material displaced by the indenter. Force–penetration relationships are obtained by an incremental approach utilizing key kinematic and static information from indentation of a flat punch. Albeit approximate, the proposed model applies to arbitrary indenter geometry and weightless or ponderable cohesive‐frictional materials exhibiting associated or non‐associated plastic flow. Two specific indenter geometries, the cylinder and blunt wedge, are explored in detail. Favorable agreement is found between the analytic results and those obtained using the finite element method (FEM). For both the wedge and cylinder, it is further shown that accurate analytic expressions relating indentation force explicitly to penetration can be derived. In the case of the wedge and weightless material, predictions of indentation force obtained from the derived expressions are very close to those computed from implicit equations available in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A two-dimensional fracture model based on micro-fracture mechanics is applied to the Hertzian indentation stress field to simulate subsurface fractures in an axi-symmetrical plane. The simulation of fracture development reveals quantitatively the effects of loading force, mechanical properties of the rocks, and original micro cracks on the formation of subsurface fractures. The distribution patterns of the subsurface fractures are determined by the magnitudes and trajectories of the indentation stresses. Lateral confinement prohibits the fracture development. Simulations of the subsurface fractures in granite and marble are in good agreement with the indentation experiments. © 1997 by John Wiley & Sons, Ltd.  相似文献   

6.
An Analytical Model for the Indentation of Rocks by Blunt Tools   总被引:3,自引:2,他引:1  
Summary A methodology based on the cavity expansion model is developed to analyze the indentation of rocks by a class of blunt indenters. The analysis covers the particular self-similar case of indentation by blunt wedges or cones. As an example, the main results for the indentation of rocks by a spherical tool are presented and the analytical solution is compared with experimental results obtained by indenting a sphere in Harcourt granite.  相似文献   

7.
Summary Single and multiple impact tests were conducted with a commerically available 3.58 kg pickax with a 60° conical tip and a 30° wedge tip in the input energy range from 1.01 to 59.4 J. Five target materials were employed: (1) 2024-0 aluminum, (2) diorite, (3) sandstone, (4) cement-sand, and (5) green shale. Force and penetration data were collected using strain gages and a non-contact displacement probe. It was found that when the impact process involves cracking and chipping, the maximum penetration was linearly proportional to the input energy and the forcepenetration relation exhibited non-linear characteristics. When the impact process does not involve cracking or chipping, the penetration was related to the square root of the input energy and the force-penetration relation exhibited a nearly linear relation. Thus, empirical models involving a linear spring resistive force or a constant resistive force were found to reasonably describe the penetration and input energy data. In addition, an analytical model involving a pickax mass inertia term and a piecewise linearized force-penetration function was constructed that portrayed the force and penetration histories. Good results were obtained for both conicaland wedge-tip cases. From the multiple impact tests it was found that the efficiency of the pickax operation decreases by about 50 to 60 percent after ten impacts, suggesting that the impact point be moved in order to obtain an improved performance.  相似文献   

8.
截齿截割煤体变形破坏过程的散斑测试研究   总被引:1,自引:0,他引:1  
采用白光数字散斑相关测定方法,在压力机上,在截割模拟实验台上分别对煤试件进行刀齿、镐齿的截割实验,研究被截割煤体的变形破坏过程。研究表明:截齿截割煤体过程中,煤体出现稳定的变形局部化带,且最终发展为宏观裂纹;煤体变形局部化带为一个倾斜带;刀齿截割时,变形局部化发展较慢,但产生变形局部化后,局部化带宽且带内应变值较高;而镐齿截割时,变形局部化发展较快,但产生局部化后,局部化带窄且带内应变值不如刀齿高。截齿截割作用下的煤体变形破坏主要是剪破坏。  相似文献   

9.
Zheng  Wenbo  Tannant  Dwayne D.  Cui  Xiaojun  Xu  Cong  Hu  Xinli 《Acta Geotechnica》2020,15(2):347-364

Brinell indentation tests were performed on Montney siltstone, and the results were compared with discrete element indentation simulations that use the micro-parameters calibrated using compression test data from the same siltstone samples. The simulated proppant indentation into the rock surface can be 15% less than the laboratory measurements. A lower effective particle–particle modulus and thus a lower Young’s modulus are needed in discrete element models for proper simulation of indentation. An equation to find the appropriate value of Young’s modulus for indentation simulation is proposed using Brinell indentation tests including 198 laboratory tests and 32 discrete element simulations. This equation can improve the prediction of Young’s modulus and thus the particle–particle effective modulus for indentation simulations to match the measured force–indentation depth curve in the laboratory. Using the improved micro-parameters, a parametric analysis of the influence of rock Young’s modulus and proppant particle size on proppant embedment was performed. An equation to estimate Brinell hardness as a function of Young’s modulus and closure stress was derived. A practical procedure was developed to predict proppant embedment from the estimated hardness. The predictions agree with the laboratory measurements in a case study on the Montney Formation.

  相似文献   

10.
This paper focuses on the indentation depth in rocks caused by a hemispherical indenter. The problem is approached by a combination of similarity methods with an artificial neural network. The similarity methods offer a profound understanding of the physical problem and help to identify the most important governing parameters or factors that reflect the essence of the rock indentation events, thus simplifying the target problem. The artificial neural network provides an advanced computing model, which allows more factors to be involved. The predictions obtained using this combined approach are in better agreement with the experimental results than predictions using other methods.  相似文献   

11.
The Wenchuan earthquake triggered 15,000 rock avalanches, rockfalls and debris flows, causing a large number of causalities and widespread damage. Similar to many rock avalanches, field investigations showed that tensile failure often occurred at the back edge. Some soil and rock masses were moved so violently that material became airborne. The investigation indicates that this phenomenon was due to the effect of a large vertical seismic motion that occurred in the meizoseismal area during the earthquake. This paper analyses the effect of vertical earthquake force on the failure mechanism of a large rock avalanche using the Donghekou rock avalanche as an example. This deadly avalanche, which killed 780 people, initiated at an altitude of 1,300 m and had a total run-out distance of 2,400 m. The slide mass is mainly composed of Sinian limestone and dolomite limestone, together with Cambrian slate and phyllite. Static and dynamic stability analysis on the Donghekou rock avalanche has been performed using FLAC finite difference method software, under the actual seismic wave conditions as recorded on May 12, 2008. The results show that the combined horizontal and vertical peak acceleration caused a higher reduction in slope stability factor than horizontal peak acceleration alone. In addition, a larger area of tensile failure at the back edge of the avalanche was generated when horizontal and vertical peak acceleration were combined than when only horizontal acceleration was considered. The force of the large vertical component of acceleration was the main reason rock and soil masses became airborne during the earthquake.  相似文献   

12.
陈国周  贾金青 《岩土力学》2007,28(Z1):321-326
利用点荷载,作用于半无限空间的Mindlin位移解,考虑锚杆与土体界面的渐进破坏过程,推导出界面摩阻力的微分方程解析解。编制了相应的计算程序,把计算结果和现场试验值进行比较,结果较为吻合,二者的数据都表明,随着锚头拉力的增加,土-锚杆摩阻力峰值逐渐向锚杆末端转移,而锚杆前端则发生部分范围的滑移。然后,利用所求得的解析解,研究了土体弹性模量、锚杆孔径对锚杆摩阻力分布的影响,可见土体弹性模量越大,则界面上的摩阻力越容易达到峰值,从而产生破坏,而锚杆孔径越大,则界面上的摩阻力上升越慢,可延缓破坏过程。  相似文献   

13.
The process of cutting homogeneous soft material has been investigated extensively. However, there are not so many studies on cutting heterogeneous brittle material. In this paper, R‐T2D (Rock and Tool interaction), based on the rock failure process analysis model, is developed to simulate the fracture process in cutting heterogeneous brittle material. The simulated results reproduce the process involved in the fragmentation of rock or rock‐like material under mechanical tools: the build‐up of the stress field, the formation of the crushed zone, surface chipping, and the formation of the crater and subsurface cracks. Due to the inclusion of heterogeneity in the model, some new features in cutting brittle material are revealed. Firstly, macroscopic cracks sprout at the two edges of the cutter in a tensile mode. Then with the tensile cracks releasing the confining pressure, the rock in the initially high confining pressure zone is compressed into failure and the crushed zone gradually comes into being. The cracked zone near the crushed zone is always available, which makes the boundary of the crushed zone vague. Some cracks propagate to form chipping cracks and some dip into the rock to form subsurface cracks. The chipping cracks are mainly driven to propagate in a tensile mode or a mixed tensile and shear mode, following curvilinear paths, and finally intersect with the free surface to form chips. According to the simulated results, some qualitative and quantitative analyses are performed. It is found that the back rake angle of the cutter has an important effect on the cutting efficiency. Although the quantitative analysis needs more research work, it is not difficult to see the promise that the numerical method holds. It can be utilized to improve our understanding of tool–rock interaction and rock failure mechanisms under the action of mechanical tools, which, in turn, will be useful in assisting the design of fragmentation equipment and fragmentation operations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
15.
周刚  黑鹏飞  雷坤  富国  乔飞 《水科学进展》2013,24(6):883-893
为了研究赣江下游入河污染物对河流水质的影响,建立了基于WASP(Water quality Analysis Simulation Program)模型富营养化原理和ELADI(Eulerian-Lagrangian Alternating Direction Implicit Method)有限差分方法的正交曲线平面二维水环境模型WESC2D(Two-Dimensional Water Environment Simulation Code)。模型采用基于双线性插值及亚网格技术的欧拉-拉格朗日方法求解对流项,在简单的浓度峰输运和赣江下游溶解氧变化过程算例检验的基础上,计算与分析了赣江下游入河排污口氨氮污染负荷与水质之间的动态响应关系。模拟与分析结果表明,WESC2D模型的计算结果与解析解吻合良好,有效地减少了欧拉-拉格朗日方法的数值耗散,并为赣江下游污染负荷与水质响应关系计算提供了重要工具。  相似文献   

16.
A very important parameter in aeolian equations is the deflation threshold shear velocity, which quantifies the instant of particle motion. In this paper, a simple model is presented for the prediction of the threshold shear velocity of dry loose particles. It has the same functional form as the widely used models of Bagnold (1941) and Greeley & Iversen (1985), but differs in its treatment of the so‐called threshold parameter. As the new expression was based on the moment balance equation used by Greeley & Iversen, it includes a function for the aerodynamic forces, including the drag force, the lift force and the aerodynamic moment force, and a function for the interparticle forces. The effect of gravitation is incorporated in both functions. However, rather than using an implicit function for the effect of the aerodynamic forces as in the Greeley & Iversen model, a constant aerodynamic coefficient was introduced. From consideration of the van der Waals' force between two particles, it was also shown that the function for the interparticle cohesion force is inversely proportional to the particle diameter squared. The model was calibrated on data reported by Iversen & White (1982). The new expression compared, at least for terrestrial conditions, very well with the Greeley & Iversen model, although it is much simpler. It was finally validated with data from wind‐tunnel experiments on different fractions of dune sand and sandy loam soil aggregates. The soil aggregates were treated as individual particles with a density equal to their bulk density. The good agreement between observations and predictions means that, when predicting mass transport of particles above a given soil, minimally dispersed particle‐size distributions should be considered rather than the granulometric composition of the soil.  相似文献   

17.
Yu  Zhixiang  Luo  Liru  Liu  Chun  Guo  Liping  Qi  Xin  Zhao  Lei 《Landslides》2021,18(7):2621-2637

Flexible rockfall barriers are commonly constructed on steep hillsides to mitigate rockfall. The evaluation of the dynamic response of proprietary flexible rockfall barriers is conventionally performed using full-scale field tests by dropping a block onto the barriers in accordance with the European test standard ETAG 027. The block typically has a spherical or polyhedral shape and cannot reproduce more complex rockfall scenarios encountered in the field. Little attention has been paid to the effects of the block shape on the impact force and structural response. This paper aims to quantitatively reveal the influence of the block shape on the dynamic response of flexible rockfall barriers. First, an ellipsoidal model is established to approximately simulate the block, and the sphericity is employed as the representative index of the block’s shape. A full-scale test on a typical flexible barrier system is carried out and then used to calibrate an advanced three-dimensional finite element model. Finally, the dynamic responses of flexible rockfall barriers are analyzed and discussed, focusing on the effects of the block’s shape. The numerical results show that the sphericity will obviously influence the maximum elongation of flexible barriers, the peak impact force, the peak force of the upslope anchor cable, the peak force of the lower main support cable, the axial peak force of the post, and the peak shear force at the post foundation. The assumption of spherical or polyhedral blocks in the test standard could lead to the defensive failure of flexible rockfall barriers in some impact scenarios.

  相似文献   

18.
刚性块体压入颗粒体系时的受力及力链演变   总被引:1,自引:0,他引:1  
颗粒体系由大量离散颗粒组成,普遍存在于自然界中,比如砂土地基、泥石流及滑坡体等。外荷载通常沿着准直形的路径在体系内传递,形成区别于单个颗粒和整个体系的细观结构--力链,亦即颗粒物质具有典型的多尺度特征。采用颗粒离散元方法模拟刚性块体压入颗粒体系的过程,计算得到了刚性块体底部所受阻力与压入深度的幂率关系;给出力链的判断准则和搜索强力链程序,构建颗粒体系强力链网络,并分析了压入试验过程中力链的演变及其长度的分布规律。  相似文献   

19.
Summary The present investigation was undertaken to study the response of both dry and liquid-filled porous rocks to static and dynamic loading of penetrators with various tip shapes. Eighteen static and forty-eight dynamic tests were conducted involving 6.35 mm diameter indenters featuring flat, hemispherical and 60° conical tip shapes on three different rocks in the energy range from 1.57 to 5.63 J. Force-penetration data were collected by means of strain gages attached to the penetrators. For all three materials, the magnitude of the resistive forces for a given input energy decreased in the following order: (i) dynamic penetration into a dry sample, (ii) dynamic penetration into a fluid-filled specimen, (iii) static loading of the fluid-filled rock, and (iv) static, loading of the dry rock.An unusual observation for the dynamic force-penetration curves was the temporal disparity between the peak force and maximum deformation, which must be attributed to inertial factors. Based on the experimental data, an analytical rigid-body model was constructed that contained both a static and a dynamic component of the resistive force with the objective of quantifying the effect of dynamic loading and the presence of fluid on the response of the rocks. The dynamic component was portrayed as a viscous resistance proportional to the velocity of the penetrator and the contact surface area which is a function of the indentation. It was found that the model provides a good predictive capability for the dynamic force-indentation relations for prescribed materials and tip geometries upon use of but a single constant for the viscosity.This paper is dedicated to the memory of Corwin O. Rogers.  相似文献   

20.
大断面宽幅盾构管片三维内力分布分析   总被引:2,自引:1,他引:1  
张建刚  何川  杨征 《岩土力学》2009,30(7):2058-2062
以武汉长江隧道工程为例,采用三维壳-弹簧计算模型,对不同幅宽和不同环间接头剪切刚度的管片衬砌结构力学分布进行了分析,并与梁-弹簧模型结果在量值上做了全面比较。研究表明,全环最大弯矩发生在幅宽边缘部位;环间接头剪力对幅宽边缘影响较大,而对幅宽中央影响偏小;当环间接头剪切刚度为非无穷大时,壳模型的幅宽边缘最大弯矩值略微大于梁弹簧模型相应结果,而当无穷大时两者数值则基本相等;壳模型的幅宽中央的最大弯矩值介于梁模型错缝与通缝拼装的数值之间,并随幅宽加大而趋于接近通缝拼装的结果;大幅宽条件下,不宜将梁-弹簧模型的环间最大剪力结果作为环间接头抗剪设计的计算依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号