首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present analysis and results from both narrowband photometry and CCD imaging of Comet 19P/Borrelly from multiple apparitions. Production rates for Borrelly a few days prior to the Deep Space 1 spacecraft encounter were Q(OH) = 2.1×1028 molecule s−1, Q(CN) = 5.1×1025 molecule s−1, and A(θ)fρ = 400-500 cm. The equivalent Q(water; vectorial) = 2.5×1028 molecule s−1. We also find that the radial fall-off of the dust is significantly steeper than the canonical 1/ρ for aperture sizes larger than ρ = 2×104 km. In the near-UV, a strong trend in dust colors with aperture size is present. Imaging of Borrelly revealed a strong radial jet in the near-sunward direction that turns off late in the apparition. For the jet to appear radial, it must originate at or very close to the nucleus’ pole. Modeling the measured position angle of this jet as a function of time during the 1994 and 2001 apparitions yields a nucleus in a simple, rather than complex, rotational state with a pole orientation having an obliquity of 102.7° ± 0.5° and an orbital longitude of the pole of 146° ± 1°, corresponding to an RA of 214.1° and a Declination of −5.7° (J2000). There is also evidence for a small (∼8°) precession of the pole over the past century, based on our preferred model solution for jet measurements obtained during the 1911-1932 apparitions. Our solution for the orientation of the rotation axis implies a very strong seasonal effect as the source region for the jet moves from summer to winter. This change in solar illumination quantitatively explains both the nearly level water production measured in the seven weeks preceding perihelion and the extremely large decrease in water production (25×) as Borrelly moved from perihelion to 1.9 AU. A much smaller fall-off in apparent dust production after perihelion can be explained by a population of old, very slowly moving large grains released near peak water production, and therefore not indicative of the actual ongoing release of dust grains late in the apparition. Based on the water vaporization rate, the source region has an area of approximately 3.5 km2 or 4% of the total surface area of the nucleus, and water ice having an effective depth of 3-10 m is released each apparition from this source region.  相似文献   

2.
We estimate Asteroid 1992 SK's physical properties from delay-Doppler images and Doppler-only echo spectra obtained during March 22-27, 1999, at Goldstone and from optical lightcurves obtained during February-March 1999 at Ond?ejov Observatory. The images span only about 15° of sky motion and are not strong, but they place up to twenty 40 m by 160 m pixels on the asteroid and have complete rotational phase coverage. Our analysis establishes that the radar observations are confined to subradar latitudes between −20° and −40°. The echo spectra and optical lightcurves span ∼80° of sky motion, which provides important geometric leverage on the pole direction. The lightcurves are essential for accurate estimation of the asteroid's shape and spin state. We estimate the asteroid's period to be 7.3182±0.0003 h and its pole direction to be at ecliptic longitude, latitude=(99°±5°,−3°±5°). The asteroid is about 1.4 km in maximum extent and mildly asymmetric, with an elongation of about 1.5 and relatively subdued topography. The OC radar albedo is 0.11±0.02 and the SC/OC ratio is 0.34±0.05. The current orbital solution permits accurate identification of planetary close approaches during 826-2690. We use our model to predict salient characteristics of radar images and optical lightcurves obtainable during the asteroid's March 2006 approach.  相似文献   

3.
We report the first definitive detection of a discrete dark atmospheric feature on Uranus in 2006 using visible and near-infrared images from the Hubble Space Telescope and the Keck II 10-m telescope. Like Neptune's Great Dark Spots, this Uranus Dark Spot had bright companion features that exhibited considerable variability in brightness and location relative to the Dark Spot. We detected the feature or its bright companions on 16 June (Hubble), 30 July and 1 August (Keck), 23-24 August (Hubble), and 15 October (Keck). The dark feature—detected at latitude ∼28±1° N with an average physical extent of roughly 2° (1300 km) in latitude and 5° (2700 km) in longitude—moved with a nearly constant zonal velocity of , which is roughly 20 m s−1 greater than the average observed speed of bright features at this latitude. The dark feature's contrast and extent varied as a function of wavelength, with largest negative contrast occurring at a surprisingly long wavelength when compared with Neptune's dark features: the Uranus feature was detected out to 1.6 μm with a contrast of −0.07, but it was undetectable at 0.467 μm; the Neptune GDS seen by Voyager exhibited its most prominent contrast of −0.12 at 0.48 μm, and was undetectable longward of 0.7 μm. Computational fluid dynamic simulations of the dark feature on Uranus suggest that structure in the zonal wind profile may be a critical factor in the emergence of large sustained vortices.  相似文献   

4.
We present analyses and results from both narrowband photometry and CCD imaging of Comet 81P/Wild 2 from multiple apparitions, obtained in support of the Stardust mission. These data include photometric measurements from 12 days before the encounter and imaging from 3 days after. Using narrowband photometry from the different apparitions, we analyzed the dust and gas production rates as a function of heliocentric distance, finding a substantial seasonal effect where the production of OH, NH, and dust peaks 11-12 weeks before perihelion. The CN, C2, and C3 production show no such asymmetry, suggesting that there may be heterogeneities among different sources on the nucleus. The water production peaked at a level of approximately in 1997. A comparison of the relative abundances of minor gas species places Wild 2 in the “depleted” category in the A'Hearn et al. (1995, Icarus 118, 223) taxonomic classifications. Continuum measurements at multiple wavelengths indicate that the comet has a low dust-to-gas ratio, with moderately reddened dust. In our images we see a dust tail, an anti-tail and two well-defined jets. The primary jet, which persists for several months and is roughly aligned with the spin axis, has a source latitude >+75°, while the secondary jet is located on the opposite hemisphere between −37° and −62°. We used the apparent position angle of the primary jet to determine the pole orientation, α=281±5°, δ=+13±7°, and surmise that the nucleus is likely in a state of simple rotation. The primary source is continuously illuminated when Wild 2 is inbound and turns away from the Sun at about the time that the comet reaches perihelion, explaining the seasonal effects in the production rates. We measured lightcurves on several observing runs but saw no significant modulation, so no constraints can be set on the rotation rate. Images at different wavelengths show that the jets have the same colors as the dust in other regions in the coma and tail, indicating that the grain properties are similar throughout the coma. Radial profiles of the coma were measured in various directions on a number of different observing runs, and we discuss the findings from these measurements. Finally, we compare our results with other published data and attempt to predict future times at which observations should be obtained to help constrain additional properties.  相似文献   

5.
We present imaging and spectroscopic data on Comet 19P/Borrelly that were obtained around the time of the Deep Space 1 encounter and in subsequent months. In the four months after perihelion, the comet showed a strong primary (sunward) jet that is aligned with the nucleus' spin axis. A weaker secondary jet on the opposite hemisphere appeared to become active around the end of 2001, when the primary jet was shutting down. We investigated the gas and dust distributions in the coma, which exhibited strong asymmetries in the sunward/antisunward direction. A comparison of the CN and C2 distributions from 2001 and 1994 (during times when the viewing geometry was almost identical) shows that each species is remarkably similar, indicating that the comet's activity is essentially repeatable from one apparition to the next. We also measured the dust reflectivities as a function of wavelength and position in the coma, and though the dust was very red overall, we again found variations with respect to the solar direction. We used the primary jet's appearance on several dates to determine the orientation of the rotation pole to be α=214°, δ=−5°. We compared this result to published images from 1994 to conclude that the nucleus is near a state of simple rotation. However, data from the 1911, 1918, and 1925 apparitions indicate that the pole might have shifted by 5-10° since the comet was discovered. Using our pole position and the published nongravitational acceleration terms, we computed a mass of the nucleus of 3.3×1016 g and a bulk density of 0.49 g cm−3 (with a range of 0.29<ρ<0.83 g cm−3). This result is the least model-dependent comet density known to date.  相似文献   

6.
The position and shape of the Gegenschein’s maximum brightness provide information on the structure of the interplanetary dust cloud. We show that the asteroidal dust bands, extended near the anti-solar point, play an important role in determining both the position of the maximum brightness and the shape of the Gegenschein. After removing the asteroidal dust bands from an observation of the Gegenschein on November 2, 1997, it was found that the maximum brightness point shifted −0.4° in ecliptic latitude, i.e., to the south of the ecliptic plane, at an ecliptic longitude of 180°, in contrast to a latitude value of +0.1° when the dust bands were included. Furthermore, the part of the Gegenschein to the south of the ecliptic plane was brighter than the northern part at the time of observation. Referring to the cloud model of T. Kelsall et al. (1998, Astrophy. J. 508, 44-73), it can be estimated that the ascending node of the symmetry plane of the dust cloud is 57°−3°+7° when its inclination is 2.03° ? 0.50°.  相似文献   

7.
We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3–0.02 mbar range (∼150–350 km). We focused on the 600–1420 cm−1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm−1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm−1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm−1, 745 cm−1 and 1390 cm−1, the latter showing a wide tail extending down to ∼1000 cm−1. From 600 to 750 cm−1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag.  相似文献   

8.
Limb spectra recorded by the Composite InfraRed Spectrometer (CIRS) on Cassini provide information on abundance vertical profiles of C2H2, C2H4, C2H6, CH3C2H, C3H8, C4H2, C6H6 and HCN, along with the temperature profiles in Titan's atmosphere. We analyzed two sets of spectra, one at 15° S (Tb flyby) and the other one at 80° N (T3 flyby). The spectral range 600-1400 cm−1, recorded at a resolution of 0.5 cm−1, was used to determine molecular abundances and temperatures in the stratosphere in the altitude range 100-460 km for Tb and 170-495 km for T3. Both temperature profiles show a well defined stratopause, at around 310 km (0.07 mbar) and 183 K at 13° S, and 380 km (0.01 mbar) with 207 K at 80° N. Near the north pole, stratospheric temperatures are colder and mesospheric temperatures are warmer than near the equator. C2H2, C2H6, C3H8 and HCN display vertical mixing ratio profiles that increase with height at 15° S and 80° N, consistent with their formation in the upper atmosphere, diffusion downwards and condensation in the lower stratosphere, as expected from photochemical models. The CH3C2H and C4H2 mixing ratios also increase with height at 15° S. But near the north pole, their profiles present an unexpected minimum around 300 km, observed for the first time thanks to the high vertical resolution of the CIRS limb data. C2H4 is the only molecule having a vertical abundance profile that decreases with height at 15° S. At 80° N, it also displays a minimum of its mixing ratio around the 0.1-mbar level. For C6H6, an upper limit of 1.1 ppb (in the 0.3-10 mbar range) is derived at 15° S, whereas a constant mixing ratio profile of is inferred near the north pole. At 15° S, the vertical profile of HCN exhibits a steeper gradient than other molecules, which suggests that a sink for this molecule exists in the stratosphere, possibly due to haze formation. All molecules display a more or less pronounced enrichment towards the north pole, probably due, in part, to subsidence of air at the north (winter) pole that brings air enriched in photochemical compounds from the upper atmosphere to lower levels.  相似文献   

9.
David G. Schleicher 《Icarus》2006,181(2):442-457
We present compositional and physical results of Comet 67P/Churyumov-Gerasimenko, the new target of ESA's Rosetta mission. A total of 16 nights of narrowband photometry were obtained at Lowell Observatory during the 1982/83 and 1995/96 apparitions, along with one night of imaging near perihelion in 1996. These data encompass an interval of −61 to +118 days from perihelion, corresponding to a range of heliocentric distances before perihelion from 1.48 to 1.34 AU, and an outbound range from 1.30 to 1.86 AU. Production rates were determined for OH, NH, CN, C3, and C2, along with A(θ)fρ, a proxy of the dust production. Water production, based on OH, has a steep () power-law rH-dependence post-perihelion and the minor species are somewhat less steep ( to −4), while the dust is quite shallow (), possibly due to a lingering population of large, slow-moving grains. All species exhibit larger production rates after perihelion, with water having a ∼2×pre/post-perihelion asymmetry, while minor species and dust have larger asymmetries. These asymmetries imply a strong seasonal effect and probable high obliquity of the rotational axis, along with one or more isolated source regions coming into sunlight near perihelion. Peak water production (which occurred about 1 month after perihelion) was and, when combined with a standard water vaporization model, implies an effective active area on the surface of the nucleus of ∼1.5-2.2 km2 or an active fraction of only about 3-4%. Abundances of carbon-chain molecules yield a classification of slightly “depleted” in the A'Hearn et al. [A'Hearn, M.F., Millis, R.L., Schleicher, D.G., Osip, D.J., Birch, P.V., 1995. Icarus 118, 223-270] database. The peak dust production (as measured by A(θ)fρ, and uncorrected for phase angle) was ∼450 cm, while the color of the dust is moderately reddened, and the mean radial profile has a power-law slope of −1.3. Large night-to-night variability is also present, presumably due to the source region(s) rotating in and out of sunlight along with effects due to the use of differently sized apertures. A strong sunward radial feature was detected in images obtained near perihelion, along with a significant asymmetry between the two perpendicular directions from the Sun/tail line. These features may be the result of a mid-latitude source region sweeping out a cone with each rotation, which we are viewing from the side and where the sunward radial feature is one edge of the cone seen in projection. When combined with other constraints on the pole orientation, a possible pole solution is found having an obliquity of about 134° at an RA of about 223° and a Dec of −65°, with a source region located near +50° and in overall agreement with the photometric results. In comparison to the original Rosetta target Comet 46P/Wirtanen, Comet Churyumov-Gerasimenko has essentially the same peak water production but a peak dust production about 3 times greater than does Wirtanen based on A(θ)fρ (i.e., if one assumes that the properties of the dust grains are similar) (cf. Farnham and Schleicher [1998. Astron. Astrophys. 335, L50-L55]).  相似文献   

10.
Extensive observations of comet 260P/McNaught were carried out between August 2012 and January 2013. The images obtained were used to analyze the comet’s inner coma morphology at resolutions ranging from 250 to about 1000 km/pixel. A deep investigation of the dust features in the inner coma allowed us to identify only a single main active source on the comet’s nucleus, at an estimated latitude of ?50°±15°. A thorough analysis of the appearance and of the motion of the morphological structures, supported by graphic simulations of the geometrical conditions of the observations, allowed us to determine a pole orientation located within a circular spot of a 15°-radius centered at RA=60°, Dec=0°. The rotation of the nucleus seems to occur on a single axis and is not chaotic, furthermore no precession effects could be estimated from our measurements. The comet’s spin axis never reached the plane of the sky from October 2012 to January 2013; during this period it did not change its direction significantly (less than 30°), thus giving us the opportunity to observe mainly structures such as bow-shaped jets departing from the single active source located on the comet’s nucleus. Only during the months of August 2012 and January 2013 the polar axis was directed towards the Earth at an angle of about 45° from the plane of the sky; this made it possible to observe the development of faint structures like fragments of shells or spirals. A possible rotation period of 0.340±0.01 days was estimated by means of differential photometric analysis.  相似文献   

11.
The infrared AOTF spectrometer is a part of the SPICAM experiment onboard the Mars-Express ESA mission. The instrument has a capability of solar occultations and operates in the spectral range of 1-1.7 μm with a spectral resolution of ∼3.5 cm−1. We report results from 24 orbits obtained during MY28 at Ls 130°-160°, and the latitude range of 40°-55° N. For these orbits the atmospheric density from 1.43 μm CO2 band, water vapor mixing ratio based on 1.38 μm absorption, and aerosol opacities were retrieved simultaneously. The vertical resolution of measurements is better than 3.5 km. Aerosol vertical extinction profiles were obtained at 10 wavelengths in the altitude range from 10 to 60 km. The interpretation using Mie scattering theory with adopted refraction indices of dust and H2O ice allows to retrieve particle size (reff∼0.5-1 μm) and number density (∼1 cm−3 at 15-30 km) profiles. The haze top is generally below 40 km, except the longitude range of 320°-50° E, where high-altitude clouds at 50-60 km were detected. Optical properties of these clouds are compatible with ice particles (effective radius reff=0.1-0.3 μm, number density N∼10 cm−3) distributed with variance νeff=0.1-0.2 μm. The vertical optical depth of the clouds is below 0.001 at 1 μm. The atmospheric density profiles are retrieved from CO2 band in the altitude range of 10-90 km, and H2O mixing ratio is determined at 15-50 km. Unless a supersaturation of the water vapor occurs in the martian atmosphere, the H2O mixing ratio indicates ∼5 K warmer atmosphere at 25-45 km than predicted by models.  相似文献   

12.
Imaging Borrelly     
The nucleus, coma, and dust jets of short-period Comet 19P/Borrelly were imaged from the Deep Space 1 spacecraft during its close flyby in September 2001. A prominent jet dominated the near-nucleus coma and emanated roughly normal to the long axis of nucleus from a broad central cavity. We show it to have remained fixed in position for more than 34 hr, much longer than the 26-hr rotation period. This confirms earlier suggestions that it is co-aligned with the rotation axis. From a combination of fitting the nucleus light curve from approach images and the nucleus' orientation from stereo images at encounter, we conclude that the sense of rotation is right-handed around the main jet vector. The inferred rotation pole is approximately perpendicular to the long axis of the nucleus, consistent with a simple rotational state. Lacking an existing IAU comet-specific convention but applying a convention provisionally adopted for asteroids, we label this the north pole. This places the sub-solar latitude at ∼60° N at the time of the perihelion with the north pole in constant sunlight and thus receiving maximum average insolation.  相似文献   

13.
Dust continuum imaging of comet C/1995 O1 (Hale-Bopp) was carried out with the Swedish Vacuum Solar Telescope (SVST)on La Palma in April, 1997. Images were reduced according to standard procedure, aligned, averaged, navigated and enhanced with azimuthal renormalization, rotational derivative, temporal derivative and unsharp masking processing. The rotational period of the nucleus was determined to 11.5 h and the mean projected dust outflow velocity to 0.41 km s−1. Shell envelopes in the sunward side of the coma were separated by a projected distance of ∼15 000–20 000 km and spiralling inwards towards smaller radii in the direction of local evening. Small scale inhomogeneities of size 1 000–2 000 km, interpreted as correlated with variations in dust emission activity, were seen at radii ≤20 000 km. Two overlapping shell systems with a relative lag angle of ∼55° were evident at the time. The north pole of the nucleus was directed towards the Earth. The dust emission pattern is very complex and may be due to several active areas. The shape of the incomplete spiral shell pattern indicates that the angle between the line-of-sight and the rotational axis of the nucleus was not large. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Takeshi Imamura  Yuko Ito 《Icarus》2011,211(1):498-503
A Hovmöller diagram analysis of the dust optical depth measured by the Mars Global Surveyor Thermal Emission Spectrometer shows the occurrence of quasi-periodic westwardly-propagating disturbances with timescales of 10-20 sols during summer in the south polar region of Mars. Dust clouds emerge repeatedly around the region with a latitude of around 70-80°S and a longitude of 240-300°E, move westward at speeds of 3-6 m s−1, reach the region with a longitude of 60-120°E, and finally disappear. This longitude range coincides with elevated terrains in the south polar region, and in this region an increase of dust optical depth encircling the south pole is also observed. This implies that the quasi-periodic dust events will contribute to the enhancement of the atmospheric dust loading in this region. These dust events might be related to baroclinic instability caused by the thermal contrast across the CO2 cap edge, or the horizontal advection or vertical convection with radiative-dynamical feedback. The westward movement of the dust clouds suggests steady westward winds blowing in the near-surface layer, where the quasi-periodic dust lifting is expected to occur. Such a westward cap-edge flow will be created by the Coriolis force acting on the flow from the ice side to the regolith side.  相似文献   

15.
A strong, broad spectral emission feature at 85° N latitude centered at 221 cm−1 remains unidentified after candidate ices of H2O and pure crystalline CH3CH2CN are unambiguously ruled out. A much shallower weak emission feature starts at 160 cm−1 and blends into the strong feature at ∼190 cm−1. This feature is consistent with one formed by an HCN ice cloud composed of ?5 μm radius particles that resides in the lower stratosphere somewhere below an altitude of 160 km. Titan's stratospheric aerosol appears to have a spectral emission feature at about 148 cm−1. The aerosol abundance at 85° N is about a factor 2.2 greater than at 55° S.  相似文献   

16.
Comet 1996 B2 (Hyakutake) displayed strong evidence for break-up, with a prominent antisunward dust spike and fragments traveling antisunward for many days after an eruptive event in late March 1996. Because of its high orbital inclination and rapid southward motion after perihelion, its post-perihelion activity was not well monitored from the ground. The SWAN all-sky Lyman-alpha camera on the SOHO spacecraft was ideally placed for long-term monitoring of the hydrogen coma of Comet Hyakutake both before and after perihelion. The SWAN images were analyzed with a new time-resolved model (TRM) that provides daily averages of the water production rate and an estimate of the hydrogen atom lifetime (dominated by charge exchange with solar wind protons) during extended periods throughout the apparition. A long-term variation of water production rate of , where r is the heliocentric distance in AU was found. The daily average values of the production rate covered the March 19 outburst and two more outbursts seen in the April before perihelion, which had progressively shorter durations at respectively smaller heliocentric distances. The long-term variation of the production rate was found to be consistent with the seasonal effect predicted by the jet rotation model of Schleicher and Woodney [2003. Analyses of dust coma morphology of Comet Hyakutake (1996 B2) near perigee: Outburst behavior, jet motion, source region locations, and the nucleus pole orientation. Icarus 162, 190-213] when added to a more steady source that is about two-thirds of the maximum of the jet source. The seasonal effect in their model found the dust jet source largely not illuminated after perihelion, coinciding with somewhat reduced overall activity and the absence of outbursts and fragmentation. The locations of the dust jets appear to be responsible for the outbursts and fragmentation before perihelion. The erratic behavior of the pre-perihelion jet sources as contrasted with the smoother variation from the rest of the surface after perihelion indicates there is a strong heterogeneity in the physical make-up of active areas on the nucleus.  相似文献   

17.
18.
Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC3N, C2H2, and temperature were derived from 2.5 cm−1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm−1 spectral resolution far-IR observations were used to retrieve C2N2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC3N, and C2N2 show a marked increase in abundance towards the north, whereas C2H2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10−7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10−7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10−4 m s−1. HC3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10−8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC3N latitude variations can be explained by HC3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C2N2, giving a value of around 9 × 10−10 at 50° N at the 3-mbar level.  相似文献   

19.
We report the first detection of propane, C3H8, in Saturn's stratosphere. Observations taken on September 8, 2002 UT at NASA's IRTF using TEXES, show multiple emission lines due to the 748 cm−1ν21 band of C3H8. Using a line-by-line radiative transfer code, we are able to fit the data by scaling the propane vertical mixing ratio profile from the photochemical model of Moses et al. [2000. Icarus 143, 244-298]. Multiplicative factors of 0.7 and 0.65 are required to fit the −20° and −80° planetocentric latitude spectra. The resultant profiles are characterized by a 5 mbar mixing ratio of 2.7±0.8×10−8 at −20° and at −80° latitude. These results suggest that the time scale for meridional circulation lies between the net photochemical lifetimes of C2H2 and C3H8, ≈30-600 years.  相似文献   

20.
R. Vasundhara 《Icarus》2009,204(1):194-208
The pre-Deep Impact images of Comet Tempel-1 obtained at the Indian Astronomical Observatory are used to investigate the morphology of the dust coma of the comet. We show that the trajectory of a cometary grain under the influence of solar radiation pressure is a reliable diagnostic to estimate its initial velocity. Four main active regions at mean latitudes +45° ± 5°(D), 0° ± 5° (E),−30° ± 5°(A) and−60° ± 5°(F) are found to explain the morphology of the dust coma in the ground-based and published images obtained by the High Resolution Instrument(HRI) cameras aboard the Deep Impact flyby spacecraft. From a χ2 fit of the intensity distribution in the observed and the simulated images, we derive the fraction of the productivity of the active vents to the total dust emission of the comet to be 27%. Of this the southern source alone accounts for 19.8%. The grains are found to be ejected with a velocity distribution with an upper limit of 70 ± 7 m s−1. However, the broad region ‘A’ appears to eject slower grains with an upper limit of 24 ± 2.5 m s−1. This source, that is active throughout the cycle is likely to be driven by CO2 sublimation. We compute the dependence of the percentage contribution of the southern source on the heliocentric distance and show that this ratio varies over the apparition and reaches a maximum at around 260 days before perihelion. The published images of the nucleus of Comet Tempel-1 show significant departure from sphericity. Therefore, the torque exerted by the enhanced activity of the southern region may be significant enough to produce changes in the rotational state of the nucleus before each perihelion passage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号