首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
ABSTRACT

Supercritical flow with sediment transport is a common phenomenon in steep rivers. This kind of flow presents features not present in rivers flowing in subcritical conditions. The development of a mathematical model to simulate supercritical flow with sediment transport in sandy rivers is described. The model is based on a numerical scheme for the integral version of the full governing equations and takes into account bottom configurations.  相似文献   

2.
Field data are essential in evaluating the adequacy of predictive equations for sediment transport. Each dataset based on the sediment transport rates and other relevant information gives an increased understanding and improved quantification of different factors influencing the sediment transport regime in the specific environment. Data collected for 33 sites on 31 mountain streams and rivers in Central Idaho have enabled the analysis of sediment transport characteristics in streams and rivers with different geological, topographic, morphological, hydrological, hydraulic, and sedimentological characteristics. All of these streams and rivers have armored, poorly sorted bed material with the median particle size of surface layer coarser than the subsurface layer. The fact that the largest particles in the bedload samples did not exceed the median particle size of the bed surface material indicates that the armor layer is stable for the observed flow discharges (generally bankfull or less, and in some cases two times higher than bankfull discharge). The bedload transport is size‐selective. The transport rates are generally low, since sediment supply is less than the ability of flow to move the sediment for one range of flow discharges, or, the hydraulic ability of the stream is insufficient for entrainment of the coarse bed material. Detailed analyses of bedload transport rates, bedload and bed material characteristics were performed for each site. The obtained results and conclusions are used to identify different influences on bedload transport rates in analyzed gravel‐bed rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Numerous time-consuming equations, based on the relationship between the reliability and representativeness of the data utilized in defining variables and constants, require complex parameters to estimate bedload transport. In this study the easily accessible data including flow discharge, water depth, water surface slope, and surface grain diameter (ds0) from small rivers in Malaysia were used to estimate bedload transport. Genetic programming (GP) and artificial neural network (ANN) models are applied as complementary tools to estimate bed load transport based on a balance between simplicity and accuracy in small rivers. The developed models demonstrate higher performance with an overall accuracy of 97% and 93% for ANN and GP, respectively compared with other traditional methods and empirical equations.  相似文献   

4.
Flow, sediment transport and bed deformation in alluvial rivers normally exhibit multiple time scales. Enhanced knowledge of the time scales can facilitate better approaches to the understanding of the fluvial processes. Yet prior studies of the time scales are based upon the concept of sediment transport capacity at low concentrations, which however is not generally applicable. This paper presents new formulations of the time scales of fluvial flow, suspended sediment transport and bed deformation, under the framework of shallow water hydrodynamics, non-capacity sediment transport and the theory of characteristics for the hyperbolic governing equations. The time scale of bed deformation in relation to that of flow depth is demonstrated to delimit the applicability region of mathematical river models, and the time scale of suspended sediment transport relative to that of the pertinent flow information is analyzed to address if the concept of sediment transport capacity is applicable. For shallow flows with high sediment concentrations, bed deformation may considerably affect the flow and a fully coupled model is normally required. In contrast, for deep flows at low sediment concentrations, a decoupled model is mostly justified. This pilot study of the time scales delivers a new theoretical basis, on which the interaction between flow, suspended sediment transport and bed deformation can be potentially better characterized.  相似文献   

5.
Modelling dam-break flows over mobile beds using a 2D coupled approach   总被引:1,自引:0,他引:1  
Dam-break flows usually propagate along rivers and floodplains, where the processes of fluid flow, sediment transport and bed evolution are closely linked. However, the majority of existing two-dimensional (2D) models used to simulate dam-break flows are only applicable to fixed beds. Details are given in this paper of the development of a 2D morphodynamic model for predicting dam-break flows over mobile beds. In this model, the common 2D shallow water equations are modified, so that the effects of sediment concentrations and bed evolution on the flood wave propagation can be considered. These equations are used together with the non-equilibrium transport equations for graded sediments and the equation of bed evolution. The governing equations are solved using a matrix method, thus the hydrodynamic, sediment transport and morphological processes can be jointly solved. The model employs an unstructured finite volume algorithm, with an approximate Riemann solver, based on the Roe-MUSCL scheme. A predictor–corrector scheme is used in time stepping, leading to a second-order accurate solution in both time and space. In addition, the model considers the adjustment process of bed material composition during the morphological evolution process. The model was first verified against results from existing numerical models and laboratory experiments. It was then used to simulate dam-break flows over a fixed bed and a mobile bed to examine the differences in the predicted flood wave speed and depth. The effects of bed material size distributions on the flood flow and bed evolution were also investigated. The results indicate that there is a great difference between the dam-break flow predictions made over a fixed bed and a mobile bed. At the initial stage of a dam-break flow, the rate of bed evolution could be comparable to that of water depth change. Therefore, it is often necessary to employ the turbid water governing equations using a coupled approach for simulating dam-break flows.  相似文献   

6.
Retrogressive erosion is a high-speed erosion process that usually occurs during the rapid release of stored water in reservoirs built on sandy rivers.Retrogressive erosion has been utilized in the practice of reservoir sedimentation control,but accurate prediction of the bed deformation process by numerical models has rarely been reported.The current study presents a one-dimensional morphodynamic model for simulating the evolution process of retrogressive erosion induced by high-velocity flows on steep slopes.The governing equations apply a Cartesian coordinate system with a vertically oriented z axis.The bed surface gradient and friction terms in the flow equations include correction factors to take account of the effects of high slope on flow movement.The net vertical sediment flux term in the sediment transport and bed deformation equations is calculated using an equation of erosion velocity.Particularly,this equation is based on an empirical relation between the sediment entrainment rate and the Shields parameter in contrast to the traditional sediment transport capacity,and the critical Shields parameter is modified by taking into account the permeability of the sediment layer and the stability of particles on a slope.The feedback of scoured sediment on the flow movement is considered by additional terms in the governing equations.Flume experiments of retrogressive erosion in literature were simulated to validate the model.The temporal variations of the longitudinal profiles of the free surface and channel bed and the sediment transport rate were well predicted.The algorithm calculating sediment entrainment in the proposed model also was validated for an experiment measuring entrainment rate from the literature.More importantly,it was found that the morphodynamic model using the sediment transport capacity equation predicts the trend of cumulative erosion contrary to the measurements,while results of the proposed model can follow a similar trend with the observed data in the retrogressive erosion process.  相似文献   

7.
Withdrawal of water from a river into a canal involves the construction of a barrage or a dam across the river depending on whether the river is perennial or not. The design of the reservoir upstream of the dam and of the canal requires consideration of the sediment load carried by the river in case the river is sediment-laden. The basic equations concerning morphological changes in such rivers are discussed with particular reference to computation of reservoir sedimentation. The hydraulics of lined canals carrying wash load is examined from the point of view of limiting transport capacity and changes in frictional resistance. Lastly, the methods of design of sediment extraction devices like settling basins and vortex chambers are presented.  相似文献   

8.
Basic flow relationships have previously been seen to be insufficient to explain the self‐adjusting mechanism of alluvial channels and as a consequence extremal hypotheses have been incorporated into the analyses. In contrast, this study finds that by introducing a channel form factor (width/depth ratio), the self‐adjusting mechanism of alluvial channels can be illustrated directly with the basic flow relations of continuity, resistance and sediment transport. Natural channel flow is able to reach an optimum state (Maximum Flow Efficiency (MFE), defined as the maximum sediment transporting capacity per unit available stream power) with regard to the adjustment of channel form such that rivers exhibit regular hydraulic geometry relations at dominant or bankfull stage. Within the context of MFE, this study offers support for the use of the concepts of maximum sediment transporting capacity (MSTC) and minimum stream power (MSP). Furthermore, this study indicates that the principle of least action is able to provide a physical explanation for the existence of MFE, MSTC and MSP. Potential energy is minimized and consequently sediment transport is maximized in alluvial channels. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

10.
A quasi-2D unsteady flow and sediment transport model suitable for the simulation of large lowland river systems,including their floodplains,is presented.The water flow and sediment equations are discretised using an interconnected irregular cells scheme,in which different simplifications of the 1D de Saint Venant equations are used to define the discharge laws between cells.Spatially-distributed transport and deposition of fine sediments throughout the river-floodplain system are simulated.The model is applied over a 208-km reach of the Parana River between the cities of Diamante and Ramallo(Argentina) comprising a river-floodplain area of 8100 km~2.After calibration and validation,the model is applied to predict water and sediment dynamics during synthetically generated extraordinary floods of100,1000,and 10,000 years return period.The potential impact of a 56-km long road embankment constructed across the entire floodplain is simulated and compared to model results without the embankment.The embankment results in increases in upstream water levels,inundation extent,flow duration,and sediment deposition.  相似文献   

11.
1 INTRODUCTION In recent years, due to the increase in population and industrial developments, mankind has faced manyproblems associated with rivers, coastal waters and reservoirs. Some of these problems are flood control,water supply, power generation, and irrigation. In addition, making new hydraulic structures changesnatural conditions. Prediction of these changes is necessary for designing such constructions. For solutionof these problems usually an assessment of flow pattern, sedim…  相似文献   

12.
It has been thought for some time that bedload sediment transport rates may differ markedly in ephemeral and perennial rivers and, supporting this thought, there has been observation of very high rates of bedload transport by flash floods in the ephemeral river Nahal Yatir. However, until now, there has been no quantitative model resolving the observation, nor a theory capable of explaining why bedload transport rates by unsteady flash floods can be reasonably well described by bedload transport capacity formulae initially derived for steady flows. Here a time scale analysis of bedload transport is presented as pertaining to Nahal Yatir, which demonstrates that bedload transport can adapt sufficiently rapidly to capacity determined exclusively by local flow regime, and accordingly the transport capacity formulations developed for steady flows can be applied even under unsteady flows such as flash floods. Complementing the time scale analysis, a series of computational exercises using a coupled shallow water hydrodynamic model are shown to adequately resolve the observation of the very high rates of bedload transport by flash floods in Nahal Yatir. While bedload transport rates in ephemeral and perennial rivers differ remarkably when evaluated against a pure flow parameter such as specific stream power, they are essentially reconciled if assessed with a physically sensible parameter incorporating not only the flow regime but also the sediment particle size. The present finding underpins the practice of fluvial geomorphologists relating measured bedload transport to local flow and sediment characteristics only, irrespective of whether the flow is unsteady or steady. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
It is difficult to estimate sediment transport in braided rivers because of the complex hydraulics of rapidly changing multi-channel systems. This paper describes an algorithm for generating sets of braided-river hydraulic parameters for use with sediment transport equations. The algorithm uses random number-based simulation techniques and empirically determined probability distributions of individual hydraulic variables from the White River (U.S.A.) and the Kawerong River. A test of the suitability of the algorithm for the estimation of sediment transport was carried out over a period of two years using the Meyer-Peter and Muller equation on eight reaches of the Kawerong River in which sediment transport is known. The test produced a mean absolute error of 16.3% suggesting that the algorithm may have some potential in braided-river modelling.  相似文献   

14.
Abstract

Intermittent rivers have a specific hydrological behaviour which also influences water quality dynamics. The objective of this work was to model the flow and water quality dynamics of a coastal Mediterranean intermittent river using the Soil and Water Assessment Tool (SWAT 2005). Flow, sediment, nitrogen and phosphorus transport were simulated on the Vène experimental catchment, France. The model was sequentially calibrated at sub-catchment scale and validated both at sub-catchment and catchment scales. A procedure for building the data records for the point sources is presented. The results indicate that, while the model produces good results for flow simulation, its performance for sediment transport is less satisfactory. This in turn impacts on the nutrient transport module. The reasons behind these shortcomings are analysed, taking into account the length of the data records, their distribution and the equations used in the SWAT model. The need for a thorough multi-objective model validation is illustrated.

Citation Chahinian, N., Tournoud, M.-G., Perrin, J.-L. & Picot, B. (2011) Flow and nutrient transport in intermittent rivers: a modelling case-study on the Vène River using SWAT 2005. Hydrol. Sci. J. 56(2), 268–287.  相似文献   

15.
The behaviour of suspended sediment in rivers is often a function of energy conditions, i.e. sediment is stored at low flow and transported under high discharge conditions. The timing of maximum sediment transport can, however, also be related to mixing and routing of water and sediment from different sources. In this study suspended sediment transport was studied in the River Rhine between Kaub and the German–Dutch border. As concentrations decrease over a runoff season and as the relationship between water discharge and suspended sediment concentrations during most floods is characterized by clockwise hysteresis, it is concluded that sediment depletion occurs during a hydrological year and during individual floods. However, analyses of the sediment contribution from the River Mosel indicate that clockwise hysteresis may result from sediment depletion as well as from early sediment supply from a tributary. Thus, although the suspended sediment behaviour in the downstream part of the River Rhine is partly a transport phenomenon related to energy conditions, mixing and routing of water from different sources also plays an important role. Suspended sediment transport during floods was modelled using a ‘supply‐based’ model. Addition of a sediment supply term to the sediment rating curve leads to a model that produces better estimates of instantaneous suspended sediment concentrations during high discharge events. A major constriction of the model is that it cannot be used to predict suspended sediment concentrations as long as the amount of sediment in storage and the timing of sediment supply are unknown. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
《国际泥沙研究》2023,38(5):769-779
It is important to understand the effects of ice cover on sediment transport in cold climates, where sub-freezing temperatures affect water bodies for a significant part of the year. The literature contains many studies on sediment transport in open channel flow, and several studies on sediment transport in completely ice-covered flow. There has been little or no research on sediment transport in partially ice-covered channels. In the current study, laboratory experiments were done in a rectangular flume to quantify the impact of border ice presence on the sediment transport rate. The effects of ice cover extent and changing flow strengths on sediment transport distribution also were investigated, and the results were compared to those for fully ice-covered and open channel flow. The ice coverage ratios considered were 0 (representing the open water condition), 0.25, 0.50, 0.67, and 1 (representing fully ice-covered flow). The partial ice cover was found to impact the sediment transport distribution within the channel. The effect of ice coverage extent on sediment transport distribution was more significant at lower flow strengths and became negligible at higher flow strengths. The conventional equations for sediment transport in open channel flow and fully ice-covered flow that relate the dimensionless bedload transport rate to the flow strength were found to be applicable to estimate the total cross-section-averaged bedload transport for partially ice-covered flow when modified appropriately. Empirical coefficients for these equations were determined using the experimental data.  相似文献   

17.
《国际泥沙研究》2020,35(5):455-466
Assessments of a stable channel were done to evaluate the conditions of three rivers in Malaysia, using an analytical method that modifies the stable channel flowchart developed by Chang (1988) and Ariffin (2004). The analytical approach was selected to calculate the suitable dimensions for a stable channel, using equations that describe the physical relation of sediment transport, flow resistance, and dynamic equilibrium. Measured field data were used as the input data for the stable channel program, which then processed the data until the input discharge was equal to the output discharge. However, this method depends on the accuracy of the sediment transport equation that is used in the stable channel design. Existing equations recommended by the Department of Irrigation and Drainage (DID), Malaysia, were found to be unsuitable because of their low discrepancy ratio (DR) values, which were below 42%. These are the equations of Engelund and Hansen (1967) and Yang (1979), as well as existing local equations from Ariffin (2004) and Sinnakaudan et al. (2006). Therefore, revised equations were developed in the current study to increase the accuracy of the total bed material load equations for use in Malaysian rivers. The newly revised Ariffin (2004) and Sinnakaudan et al. (2006) equations yielded better DRs of 66.34 and 64.49%, respectively. River assessments done on the Kurau River (a small river), the Muda River (a medium-size river), and the Langat River (a large river) show that these rivers have experienced different levels of erosion. Only the Kurau River was found to have minimal erosion and sedimentation levels. Conversely, stable channel assessments for the Muda River and the Langat River revealed that both rivers had experienced severe erosion, due to excessive sand mining. Almost all the cross section sampling points on the Muda River and Langat River were deeper than the suggested stable channel heights.  相似文献   

18.
Linear regression models relating annual average sediment yield with a number of climatic and topographic variables, are developed for rivers (basin area >5,000 km2) in bach of the world's major climatic zones. The models are seen to be of value as a predictive cool to assess the scale of the sediment problem in rivers where no sediment data exist. Despite the limitations imposed by the use of numerical optimisation in their development, the relative significance of different climatic and topographic factors is demonstrated, and an estimate of the annual global denudation, based on the equations, compares satisfactorily with existing figures.  相似文献   

19.
A new mathematical model for 2-D flow is formulated with accurate satisfac tion of boundary conditions in conjunction with square or any grids,so that it may also yield accurate results when the domain of computation is in the shape of a strip as occurring in rivers. The basic equations are split into three sets of compo- nent equations of which two sets may be transformed to the same form. This model is a part or a model devised for 2-D flows with sediment.  相似文献   

20.
Anastomosing rivers have multiple interconnected channels that enclose flood basins. Various theories potentially explain this pattern, including an increased discharge conveyance and sediment transport capacity of multiple channels, deltaic branching, avulsion forced by base‐level rise, or a tendency to avulse due to upstream sediment overloading. The former two imply a stable anabranching channel pattern, whereas the latter two imply disequilibrium and evolution towards a single‐channel pattern in the absence of avulsion. Our objective is to test these hypotheses on morphodynamic scenario modelling and data of a well‐documented case study: the upper Columbia River. Proportions of channel and floodplain sediments along the river valley were derived from surface mapping. Initial and boundary conditions for the modelling were derived from field data. A 1D network model was built based on gradually varied flow equations, sediment transport prediction, mass conservation, transverse slope and spiral meander flow effects at the bifurcations. The number of channels and crevasse splays decreases in a downstream direction. Also, measured sediment transport is higher at the upstream boundary than downstream. These observations concur with bed sediment overloading from upstream, which can have caused channel aggradation above the surrounding floodplain and subsequent avulsion. The modelling also indicates that avulsion was likely caused by upstream overloading. In the model, multi‐channel systems inevitably evolve towards single‐channel systems within centuries. The reasons are that symmetric channel bifurcations are inherently unstable, while confluenced channels have relatively less friction than two parallel channels, so that more discharge is conveyed through the path with more confluences and less friction. Furthermore, the present longitudinal profile curvature of the valley could only be reproduced in the model by temporary overfeeding. We conclude that this anastomosing pattern is the result of time‐varying sediment overloading and is not an equilibrium pattern feature, and suggest this is valid for many anastomosing rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号