首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The taphonomic features and paleoecology of this species were investigated focused on vertically embedded individuals of articulated Inoceramus amakusensis Nagao et Matsumoto. In the Hinoshima Formation, Himenoura Group of Kyushu, Japan, this Santonian (Late Cretaceous) inoceramid bivalve characteristically occurs in incised-valley fill siliciclastic marine deposits. Modes of I. amakusensis occurrence and preservation, from in situ (= occurrence in life position) to allochthonous shell fragments, are strongly affected by its paleoecology and depositional environments. Several I. amakusensis (up to 25 cm in shell height) were recovered from bioturbated sandstones associated with storm-influenced deposits. Their commissural planes are almost perpendicular to the bedding plane, with the anterior face oriented downward and the posteroventral portion extending upward. Furthermore, I. amakusensis is morphologically comparable to endobyssate mytilid bivalves today. These results suggest that this Cretaceous species was an orthothetic sand sticker at least during mid-ontogeny that preferentially inhabited a well-oxygenated, nearshore seafloor. I. amakusensis was distributed in various depositional environments and has been regarded as a recliner in offshore muddy substrate. However, the present discovery suggests that it was also well adapted, with an upright life position, to high-energy shallow clastic environments characterized by high sediment supply.  相似文献   

2.
《Cretaceous Research》2012,33(6):738-749
The taphonomic features and paleoecology of this species were investigated focused on vertically embedded individuals of articulated Inoceramus amakusensis Nagao et Matsumoto. In the Hinoshima Formation, Himenoura Group of Kyushu, Japan, this Santonian (Late Cretaceous) inoceramid bivalve characteristically occurs in incised-valley fill siliciclastic marine deposits. Modes of I. amakusensis occurrence and preservation, from in situ (= occurrence in life position) to allochthonous shell fragments, are strongly affected by its paleoecology and depositional environments. Several I. amakusensis (up to 25 cm in shell height) were recovered from bioturbated sandstones associated with storm-influenced deposits. Their commissural planes are almost perpendicular to the bedding plane, with the anterior face oriented downward and the posteroventral portion extending upward. Furthermore, I. amakusensis is morphologically comparable to endobyssate mytilid bivalves today. These results suggest that this Cretaceous species was an orthothetic sand sticker at least during mid-ontogeny that preferentially inhabited a well-oxygenated, nearshore seafloor. I. amakusensis was distributed in various depositional environments and has been regarded as a recliner in offshore muddy substrate. However, the present discovery suggests that it was also well adapted, with an upright life position, to high-energy shallow clastic environments characterized by high sediment supply.  相似文献   

3.
In eastern Heilongjiang, the Upper Jurassic is marine and restricted to the Suibin and Dong’an areas, where it is characterized faunally by Callovian–Volgian (Tithonian) bivalves and florally by dinoflagellates. The Lower Cretaceous is widely distributed in eastern Heilongjiang, and characterized faunally by Berriasian–Valanginian bivalves, Barremian–Albian ammonites and Aucellina, and florally by dinoflagellates. To the west, the marine facies grade into non-marine beds. Thus, in the east, for example in the Dong’an and Dajiashan areas, near the northwestern Palaeo-Pacific, the Lower Cretaceous is marine; westward, in the Yunshan, Longzhaogou, Peide, and Zhushan areas, marine and non-marine deposits alternate, whereas further west still, e.g. in the Jixi Basin, non-marine facies are intercalated with marine beds. This regional distribution is indicative of a large, shallow embayment opening eastwards to the Palaeo-Pacific; during the Early Cretaceous successive transgressive-regressive events influenced the climate and biota of eastern Heilongjiang and northeastern China. Many of the Lower Cretaceous sections contain abundant coals, demonstrating that in this region the Early Cretaceous was an important coal-forming period. Some non-marine bivalve species are common to the Lower Cretaceous Jixi Group of eastern Heilongjiang, the Jehol Group of western Liaoning and the Transbaikalian Group of Siberia, suggesting that these groups are of comparable Early Cretaceous age.  相似文献   

4.
This is a critical assessment of the paper by Oszczypko et al. (2004: Cretaceous Research 25, 89–113), in which they tried to prove a mid-Cretaceous age for the Szlachtowa (“black flysch”) and Opaleniec Formations, in the Pieniny Klippen Belt, West Carpathians, both of which had previously been shown to be of Jurassic age. We argue that the mid-Cretaceous age assignment is a misinterpretation, primarily resulting from their field samples having been collected from some Cretaceous lithostratigraphic units, tectonically associated with the Jurassic formations, and/or from tectonic contact-breccias involving Jurassic and Cretaceous strata. In addition, we suggest that they have overlooked a number of significant palaeontological papers, published since 1962, which record the presence of in situ ammonites, aptychi, belemnites, thin-shelled bivalves (Bositra), gryphaeids, foraminifera, and ostracod assemblages, all indicating a Jurassic (mainly Aalenian), and not a Cretaceous, age for the Szlachtowa Formation, and also the in situ Jurassic (Bajocian) ammonites and thin-shelled bivalves (Bositra), Bositra-microfacies, and age-diagnostic foraminiferal assemblages of the Opaleniec Formation.Our presentation here of recently published dinocyst data from well-preserved assemblages further supports the Jurassic ages for the Szlachtowa (“black flysch”) and Opaleniec Formations.  相似文献   

5.
The Early Cretaceous Yixian Formation at Sihetun, Beipiao, western Liaoning, northeastern China, is well-known for yielding diverse and excellently preserved fossils of the Jehol Biota. The lower unit of Yixian Formation, dominated by lacustrine deposits, is rich in concentrations of two freshwater bivalves: Sphaerium anderssoni and Arguniella ventricosa. These bivalve concentrations can be divided into three types that comprise either paucispecific A. ventricosa or S. anderssoni, or both bivalves in similar amounts. The lithological, biotic, and taphonomic features of 12 bivalve concentrations are recorded, and the taphonomic signatures (such as shell articulation, size-frequency distribution, and orientation) are analyzed. Autochthonous as opposed to allochthonous bivalve concentrations are discriminated. A very short time-averaging effect is recognized in some concentrations, which was probably caused by seasonal or episodic water-level fluctuations and hypoxia. Three factors operated on the bivalve concentrations before final burial: in-situ reworking, transport, and time-averaging. Although time-averaging of the death assemblages was limited to several years, it is in this way that several generations of the two bivalve species could become preserved together. Reworking of the bivalve concentrations was most likely caused by storm action.  相似文献   

6.
The Sinuiju Formation in Paekto-dong, Sinuiju City in the Democratic People's Republic of Korea has yielded Mesozoic nonmarine bivalve fossils, which is the first occurrence of such in the DPRK. Based on these fossil specimens, a new Cretaceous bivalve assemblage, the Arguniella yanshanensis-Sphaerium anderssoni Assemblage is erected. This assemblage includes Arguniella yanshanensis, A. lingyuanensis and Sphaerium anderssoni and can be compared with the Jehol Biota. The age of the Sinuiju Formation is also clarified and on the basis of the bivalves and the presence of a Eosestheria–Ephemeropsis–Lycoptera(E–E–L) assemblage, the formation is not Upper Jurassic, but Lower Cretaceous in age.  相似文献   

7.
《Sedimentology》2018,65(6):1918-1946
In southern Patagonia, outcrops of the Upper Cretaceous Cerro Toro Formation preserve a >150 km long deep‐water axial channel belt in the Magallanes–Austral Basin, providing a unique opportunity to investigate longitudinal variations in the depositional characteristics of a deep‐water channel system. This study documents sedimentological, stratigraphical and geochronological data from the Cerro Toro Formation in the Argentine sector of the basin. New results are integrated with previous work from the Chilean basin sector to conduct a basin‐scale comparison of the timing of deposition, provenance and lithofacies proportions. The Cerro Toro channel belt includes a nearly 1000 m thick section characterized by high‐density turbidites and mass‐wasting deposits. Two ash beds from the base of the section yield U–Pb zircon ages of 90·4 ± 2 Ma and 88·0 ± 3 Ma, indicating similar initiation ages as documented in the Chilean sector. The U–Pb detrital zircon age spectra from samples in the study area reveal similar provenance trends to samples from the Chilean basin sector, with peak age populations at 310 to 260 Ma, 160 to 135 Ma and 110 to 82 Ma. The maximum depositional age of the channel belt in the Argentine sector is 87·8 ± 1·5 Ma and all new geochronology data corroborate an 86 to 80 Ma depositional age for the main Cerro Toro channel belt. Statistical analyses of 7370 beds from nearly 8000 m of new and previously published stratigraphic sections along the entire outcrop belt suggest progressive variations in the down‐system proportion of lithofacies. In the up‐slope region, lithofacies representing mass wasting processes (for example, debris‐flow and mass‐transport deposits) account for ca 29% of the stratigraphic thickness, as opposed to 5% in the down‐slope region of the channel belt, where turbidity current deposits are more prevalent. The proportion of beds >1 m thick also decreases systematically down slope, particularly for conglomeratic turbidite deposits. This work highlights that: (i) the proportion of thick beds and distribution of lithofacies are key down‐system changes in the stratigraphic fill of this deep‐water channel belt; (ii) detrital zircon trends suggest a relatively well‐mixed longitudinal depositional system; and (iii) geochronology of the main Cerro Toro outcrop belt supports but does not necessitate the model of a single, roughly age‐equivalent, channel system. This study has implications for understanding the downslope variability in depositional processes, stratigraphic architecture and reservoir quality of submarine channel systems.  相似文献   

8.
Detailed stratigraphic and sedimentological studies of the Tertiary Tongue River Member of the Fort Union Formation in the Powder River Basin, Wyoming, and the Cretaceous Blackhawk Formation and Star Point Sandstone in the Wasatch Plateau, Utah, indicate that the depositional environments of coal played a major role in controlling coal thickness, lateral continuity, potential minability, and type of floor and roof rocks.The potentially minable, thick coal beds of the Tongue River Member were primarily formed in long-lived floodbasin backswamps of upper alluvial plain environment. Avulsion of meandering fluvial channels contributed to the erratic lateral extent of coals in this environment. Laterally extensive coals formed in floodbasin backswamps of a lower alluvial plain environment; however, interruption by overbank and crevasse-splay sedimentation produced highly split and merging coal beds. Lacustrine sedimentation common to the lower alluvial plain, similar to the lake-covered lower alluvial valley of the Atchafalaya River Basin, is related to a high-constructive delta. In contrast to these alluvial coals are the deltaic coal deposits of the Blackhawk Formation. The formation consists of three coal populations: upper delta plain, lower delta plain, and ‘back-barrier’. Coals of the lower delta plain are thick and laterally extensive, in contrast to those of the upper delta plain and ‘back-barrier’, which contain abundant, very thin and laterally discontinuous carbonaceous shale partings. The reworking of the delta-front sediments of the Star Point Sandstone suggests that the Blackhawk-Star Point delta was a high-destructive system.  相似文献   

9.
The Francisco I. Madero deposit, central Mexico, occurs in the Mesozoic Guerrero Terrane, which hosts many ore deposits, both Cretaceous (volcanogenic massive sulfides) and Tertiary (epithermal and skarn deposits). It is hosted by a 600 m-thick calcareous-pelitic unit, of Lower Cretaceous age, crosscut by porphyritic dikes that strike NW–SE. A thick felsic volcanic Tertiary sequence, consisting of andesites and rhyolitic ignimbrites, unconformably overlies the Cretaceous series. At the base, the mineralization consists of several mantos developed within calcareous beds. They are dominantly composed of sphalerite, pyrrhotite and pyrite with minor chalcopyrite, arsenopyrite and galena. At the top of the orebody, there are calcic skarns formed through prograde and retrograde stages. The resulting mineral assemblages are rich in manganoan hedenbergite (Hd75–28Di40–4Jh40–20), andraditic garnets (Adr100–62Grs38–0), epidote (Ep95–36Czo60–5Pie8–0), chamosite, calcite and quartz. The temperature of ore deposition, estimated by chlorite and arsenopyrite geothermometry, ranges from 243° to 277 °C and from 300° to 340 °C, respectively. The pressure estimated from sphalerite geobarometry averages 2.1 kbar. This value corresponds to a moderately deep skarn and agrees with the high Cu content of the deposit. Paragenesis, PT conditions and geological characteristics are compatible with a distal, dike-related, Zn skarn deposit. Its style of mineralization is similar to that of many high-temperature carbonate replacement skarn deposits in the Southern Cordillera.  相似文献   

10.
The Magallanes‐Austral Basin of Patagonian Chile and Argentina is a retroforeland basin associated with Late Cretaceous–Neogene uplift of the southern Andes. The Upper Cretaceous Dorotea Formation records the final phase of deposition in the Late Cretaceous foredeep, marked by southward progradation of a shelf‐edge delta and slope. In the Ultima Esperanza district of Chile, laterally extensive, depositional dip‐oriented exposures of the Dorotea Formation contain upper slope, delta‐front and delta plain facies. Marginal and shallow marine deposits include abundant indicators of tidal activity including inclined heterolithic stratification, heterolithic to sandy tidal bundles, bidirectional palaeocurrent indicators, flaser/wavy/lenticular bedding, heterolithic tidal flat deposits and a relatively low‐diversity Skolithos ichnofacies assemblage in delta plain facies. This work documents the stratigraphic architecture and evolution of the shelf‐edge delta that was significantly influenced by strong tidal activity. Sediment was delivered to a large slump scar on the shelf‐edge by a basin‐axial fluvial system, where it was significantly reworked and redistributed by tides. A network of tidally modified mouth bars and tidal channels comprised the outermost reaches of the delta complex, which constituted the staging area and initiation point for gravity flows that dominated the slope and deeper basin. The extent of tidal influence on the Dorotea delta also has important implications for Magallanes‐Austral Basin palaeogeography. Prior studies establish axial foreland palaeodrainage, long‐term southward palaeotransport directions and large‐scale topographic confinement within the foredeep throughout Late Cretaceous time. Abundant tidal features in Dorotea Formation strata further suggest that the Magallanes‐Austral Basin was significantly embayed. This ‘Magallanes embayment’ was formed by an impinging fold–thrust belt to the west and a broad forebulge region to the east.  相似文献   

11.
Sediments of the Upper Carboniferous to Lower Jurassic Karoo Supergroup (∼ 4.5 km thick) were deposited in the mid-Zambezi Valley Basin, southern Zambia. The Upper Palæozoic Lower Karoo Group in this area ends with a Late Permian sedimentary unit called the Madumabisa Mudstone Formation. The formation is 700 m thick and comprises four lithofacies grouped into two facies assemblages, collectively interpreted as lacustrine deposits. Sediments of a massive mudrock facies assemblage were deposited from suspension, probably from sediment-laden rivers entering a lake. Concretionary calcilutite beds probably mark the positions of palæosediment-water interfaces where calcite was precipitated. A laminated mudrock facies assemblage is attributed to lacustrine deposition from inflowing rivers at the lake margins and shallow parts of the lake. Repeated thickening-upward cycles are evidence of upward shallowing, interrupted by events of more abrupt deepening. Sandstone interbeds are interpreted as fluvial deposits laid down during low lake stands, with cross-lamination and asymmetrical ripples indicating current rather than wave deposition. A fossil assemblage of ostracods, bivalves, gastropods, fish scales, the alga Botryococcus sp. and fossil burrows is consistent with a lacustrine origin for the formation.  相似文献   

12.
The Upper Cretaceous (Campanian) Kenilworth Member of the Blackhawk Formation (Mesaverde Group) is part of a series of strand plain sandstones that intertongue with and overstep the shelfal shales of the western interior basin of North America. Analysis of this section at a combination of small (sedimentological) and large (stratigraphical) scales reveals the dynamics of progradation of a shelf-slope sequence into a subsiding foreland basin. Four major lithofacies are present in the upper Mancos and Kenilworth beds of the Book Cliffs. A lag sandstone and channel-fill shale lithofacies constitutes the thin, basal, transgressive sequence, which rests on a marine erosion surface. It was deposited in an outer shelf environment. Shale, interbedded sandstone and shale, and amalgamated sandstone lithofacies were deposited over the transgressive lag sandstone lithofacies as a wave-dominated delta and its flanking strand plains prograded seaward. Analysis of grain size and primary structures in Kenilworth beds indicates that there are four basic strata types which combine to build the observed lithofacies. The fine- to very fine-grained graded strata of the interbedded facies are tempestites, deposited out of suspension by alongshelf storm flows (geostrophic flows). There is no need to call on cross-shelf turbidity currents (density underflows) to explain their presence. Very fine- to fine-grained hummocky strata are likewise suspension deposits created by waning storm flows, but were deposited under conditions of more intense wave agitation on the middle shoreface. Cross-strata sets in this region are bed-load deposits that accumulated on the upper shore-face, in the surf zone. Lag strata are multi-event, bed-load deposits that are the product of prolonged storm winnowing. They occur on transgressive surfaces. While the graded beds are tempestites in the strict sense, all four classes of strata are storm deposits. The distribution of strata types and their palaeocurrent orientations suggests a model of the Kenilworth transport system driven by downwelling coastal storm flows, and probably by a northeasterly alongshore pressure gradient. The stratification patterns shift systematically from upper shoreface to lower shoreface and inner shelf lithofacies partly because of a reduction in fluid power expenditure with increasing water depth, but also because of progressive sorting, which resulted in a decrease in grain size in the sediment load delivered to successive downstream environments. The Kenilworth Member and an isolated outlier, the Hatch Mesa lentil, constitute a delta-prodelta shelf depositional system. Their rhythmically bedded, lenticular, sandstone and shale successions are a prodelta shelf facies, and may be prodelta plume deposits. Major Upper Cretaceous sandstone tongues in the Book Cliffs are underlain by erosional surfaces like that beneath the Blackhawk Formation, which extend for many tens of kilometres into the Mancos shale. These surfaces are the boundaries of Upper Cretaceous depositional sequences. The sequences are large-scale genetic stratigraphic units. They result from the arranging of facies into depositional systems; the depositional systems are in turn stacked in repeating arrays, which constitute the depositional sequences. The anatomy of these foreland basin sequences differs  相似文献   

13.
The Triassic?Jurassic (Tr?J) boundary marks a major extinction event, which (~200 Ma) resulted in global extinctions of fauna and flora both in the marine and terrestrial realms. There prevail great challenges in determining the exact location of the terrestrial Tr?J boundary, because of endemism of taxa and the scarcity of fossils in terrestrial settings leading to difficulties in linking marine and terrestrial sedimentary successions. Investigation based on palynology and bivalves has been carried out over a 1113 m thick section, which is subdivided into 132 beds, along the Haojiagou valley on the southern margin of the Junggar Basin of the northern Xinjiang, northwestern China. The terrestrial Lower Jurassic is conformably resting on the Upper Triassic strata. The Upper Triassic covers the Huangshanjie Formation overlaid by the Haojiagou Formation, while the Lower Jurassic comprises the Badaowan Formation followed by the Sangonghe Formation. Fifty six pollen and spore taxa and one algal taxon were identified from the sediments. Based on the key-species and abundance of spores and pollen, three zones were erected: the Late Triassic (Rhaetian) Aratrisporites?Alisporites Assemblage, the Early Jurassic (Hettangian) Perinopollenites?Pinuspollenites Assemblage, and the Sinemurian Perinopollenites?Cycadopites Assemblage. The Tr?J boundary is placed between bed 44 and 45 coincident with the boundary between the Haojiagou and Badaowan formations. Beds with Ferganoconcha (?), Unio?Ferganoconcha and Waagenoperna?Yananoconcha bivalve assemblages are recognized. The Ferganoconcha (?) bed is limited to the upper Haojiagou Formation, Unio?Ferganoconcha and Waagenoperna?Yananoconcha assemblages are present in the middle and upper members of the Badaowan Formation. The sedimentary succession is interpreted as terrestrial with two mainly lake deposit intervals within Haojiagou and Badaowan formations, yielding fresh water algae and bivalves. However, the presence of brackish water algae Tasmanites and the marine?littoral facies bivalve Waagenoperna from the Badaowan Formation indicate that the Junggar Basin was influenced by sea water caused by transgressions from the northern Tethys, during the Sinemurian.  相似文献   

14.
ROGER HIGGS 《Sedimentology》1990,37(1):83-103
The Honna Formation, of Coniacian age, consists of several hundred metres of polymictic clast-supported conglomerate associated with sandstone and mudstone. Five conglomerate facies are recognized: ungraded beds; inverse graded beds; normal graded beds; inverse-to-normal graded beds; and parallel-stratified beds. These facies are interpreted as the deposits of subaqueous cohesionless debris flows and/or high-density turbidity currents. The depositional environment was a deep-water, gravelly fan that draped a fault-controlled, basin-margin slope. The fan is inferred to have passed upslope directly into an alluvial fan (unpreserved); hence, the name fan delta can be applied to the overall depositional system. This type of fan delta, of which the Brae oilfield in the North Sea is an example, is defined here as a deep-water fan delta. The lack of a shelf is in marked contrast to other types of fan delta. Three facies associations are recognized in the Honna Formation: subaqueous proximal-fan conglomerates, distal-fan turbiditic sandstones, and pro-fan/interfan mudstones with thin sandy turbidites. The proximal fan is envisaged as an unchannelled gravel belt with a downslope length of at least 20 km; such a long subaqueous gravel belt lacks a known modern analogue. The distal fan was an unchannelled sandy extension of the proximal gravel belt. It is postulated that the Honna Formation accumulated in a foreland basin which migrated westwards from the Coast Mountains where the Wrangellia-Alexander terrane was colliding with North America. In this model, the Honna fan delta was sourced by a (west-verging) thrust sheet whose sole-thrust was the Sandspit Fault immediately to the east. Deep-water fan deltas appear to develop preferentially when eustatic sea-level is relatively high, so that the‘feeder’ alluvial fan is small, and gravelly throughout. In petroleum exploration and field development, care should be taken to distinguish deep-water fan deltas from base-of-slope (canyon-fed) submarine fans, because the two systems differ significantly in terms of coarse-sediment distribution.  相似文献   

15.
Planktonic foraminiferal fossil assemblages identified from the Bolinxiala Formation in Bolin, Zanda, southwestern Tibet of China, determine its age from latest Albian to Maastrichtian. The fossil contents of the Bolinxiala Formation allow its correlation with successions across a platform-to-basin transect of the Late Cretaceous Tethyan Himalaya passive margin. The ocean anoxic event at the Cenomanian–Turonian transition (OAE2) is located at the Whiteinella archaeocretacaea biozone in Zanda, but lithologically it is characterized by grey and bioturbated limestone, implying that during the OAE2 the shallow-water environments of the Tethyan Himalayan carbonate platform remained oxic. Paleogeographic reconstruction indicates that the Upper Cretaceous Oceanic Red Beds (CORBs) in southern Tibet are restricted to the slope and basinal environments but they are entirely missing in the shelf environments. This phenomenon suggests the formation of CORBs by oxidation of Fe(II)-enriched anoxic deep ocean seawater at the chemocline that separated the oxic surface ocean from anoxic deep ocean. For depositional environments above the chemocline, no CORBs would be expected. Because of the chemocline instability across different sedimentary basins, CORBs may be significantly diachronous, consistent with the occurrence of CORBs documented from global sedimentary basins.  相似文献   

16.
17.
In the Rajmahal Basin Lower Cretaceous rocks are classified under the Rajmahal Formation. It includes a series of volcanic basalt flows and associated sedimentary intertrappean beds. Up to 15 basalt flows have been recorded in this basin. The intertrappean beds comprise sandstone, shale, siltstone, and clay deposits which are rich in spores and pollen. The palynoflora recovered from intertrappean beds shows definite pattern of evolution and diversification. On the basis of its overall composition, distribution pattern of age marker taxa and the First Appearance Datum of key taxa, four palynological assemblages have been identified. The chronology of these assemblages in ascending order is (1) Ruffordiaspora australiensis, (2) Foraminisporis wonthaggiensis, (3) Foraminisporis asymmetricus, and (4) Coptospora verrucosa. These assemblages ascertain the age of the volcano-sedimentary sequence of the Rajmahal Formation in the Rajmahal Basin as Berriasian to Aptian. The palynochronology of the intertrappean beds enables their correlation in the Rajmahal Basin. In different areas of the basin, the palynological dating of the lowermost intertrappean bed within the Rajmahal Formation which overlies the Dubrajpur Formation, has provided a Berriasian to Aptian age. The palynological assemblage indicating the Berriasian age is inferred as the time of the initiation of volcanic activity which continued up to the Aptian in the Rajmahal Basin.  相似文献   

18.
Multivariate analyses applied to Pleistocene bivalve assemblages from the Oga Peninsula (northern Japan) discriminate three distinct assemblages. The assemblages and their taphonomy were used to recognize environmental settings and changes. The AstarteCyclocardiaGlycymeris assemblage indicates shelf environment (below the storm wave base) where gravels and shells are transported from shallower settings. Supply of the exotic coarse sediment probably enabled epifaunal bivalves to inhabit the sea floor. The Glycymeris assemblage is characterized by dominance of G. yessoensis and represents current-swept shoreface environment (above the storm wave base). The Moerella assemblage is characterized by bivalves inhabiting bay to open-marine conditions and diverse deposit-feeders, indicating a moderately land-locked environment, such as an open bay or a bay mouth. Fine-grained substrata rich in organic matters in the bay were probably suitable for the deposit-feeders. Ordination also shows the assemblages along two environmental gradients, a bathymetrical one and the other related to open-marine and bay conditions. The environmental changes are explained mainly by glacio-eustatic sea-level changes and alternation of coastal geomorphology caused by local crustal movements. This study also suggests that fossil assemblages can be a powerful tool to reconstruct environments and depositional dynamics even in intensely bioturbated sedimentary facies.  相似文献   

19.
Trigonioides goshourensis n. sp. and Trigonioides amakusensis Kikuchi and Tashiro occur in the late Albian Eboshi Formation of the Goshoura Group in Kyushu, Japan. These Albian species are characterized by three radial pseudocardinal teeth on the thick and wide hinge plate, and are probably ancestors of Cenomanian species of Trigonioides (Kumamotoa) with four radial pseudocardinal teeth. This chronological relation may be important for the correlation of non-marine Cretaceous strata in East Asia. In addition, the habitat of T. amakusensis is interpreted as estuarine tidal flats under brackish water conditions, although Trigonioides is generally a freshwater bivalve genus.  相似文献   

20.
李儒峰  门凤岐 《现代地质》1995,9(1):11-17,T001
本文记述了采自山东淄博地区晚石炭世太原组双壳类化石15属28种,讨论了化石组合特征.在研究双壳类动物群的基础上,划分了3个动物群落,即:Acanthopecten群落、Palacolima群落和Aitartella群落,并对各群落的生态特征进行了系统研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号