首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reliability-Based Design for Jacket Platform Under Extreme Loads   总被引:7,自引:0,他引:7  
In this paper, reliability analysis for the offshore jacket platform with the interaction of structure- pile- soil under extreme environmental loads is carried out. The inherent uncertainties of the environmental load, foundation soil, platform itself, and calculating models are evaluated. The action of extreme loads on the offshore platform is modeled as a function of extreme wave height. The system capacity of the whole platform is determined by nonlinear pushover analysis, and the relevant probability property is obtained by the simulation method. The reliability model for the whole jacket platform is described as the relationship between the load and resistance based on the offshore design codes. The reliability of whole platform is calculated by the analytical method and the importance sampling method on the basis of a case study for a tripod jacket platform.  相似文献   

2.
单点系泊海洋导管架平台结构体系可靠性分析   总被引:4,自引:1,他引:3  
采用非线性逐步倒塌分析方法,考虑桩-土-结构的非线性相互作用,研究了单点系泊海洋导管架平台在极端荷载作用下的承载能力计算模型,在此基础上结合蒙特卡洛随机抽样法,提出了单点系泊海洋导管架平台结构体系可靠度计算方法。最后对工程实例BZ28-1SPM单点系?白海洋导管架平台结构在20年设计基准期和50年重现期进行了体系可靠性分析:研究结果表明:用50年重现期的环境荷载参数来进行BZ28-1SPM单点系泊海洋导管架平台结构的设计是合理的;在环境荷载中起主导作用的是由波浪引起的系泊力;在海洋平台结构的设计及对已服役平台结构的评估中运用体系可靠度理论,可以为海洋平台结构的设计、维护和评估提供理论依据。  相似文献   

3.
1.IntroductionLoad and Resistance Factor Design(LRFD)isthe commonly adoptedreliability-based designfor-mat for structural design(CNE,1990;AAHTO,1994;OMTC,1983;CMC,1984).Code calibra-tionforthe LRFDformat is a processto determinethetarget reliability by de…  相似文献   

4.
极端荷载作用下海洋导管架平台体系可靠度分析   总被引:4,自引:1,他引:4  
张燕坤  金伟良等 《海洋工程》2001,19(4):15-20,28
采用非线性倒塌分析方法,考虑桩-土-结构的非线性相互作用,研究了导管架平台在极端荷载作用下承载能力的计算模型,分析了平台结构体系在极端荷载作用下的全倒塌全过程,在此基础上,结合蒙特卡洛法,提出了海洋导管架平台结构的体系可靠度计算方法。最后对工程实例-涠11-4C海洋平台的结构进行了体系可靠性分析,并对比分析了不同的荷载效应计算公式对计算经的影响,研究表明计算经满足工程设计要求,便于工程应用。  相似文献   

5.
考虑流固耦合时的海洋平台结构非线性动力分析   总被引:11,自引:0,他引:11  
采用非线性的Morison方程,建立了考虑流固耦合时的海洋平台非线性动力方程及其时程分析方法.以一固定式导管架平台为算例,计算了考虑流固耦合时的海洋平台浪致振动响应,比较了考虑流固耦合和不考虑流固耦合时海洋平台动力响应的差异.算例表明:在较大的波浪条件下,不考虑流固耦合时的计算结果明显小于考虑流固耦合时的计算结果,因此,偏于不安全.分析认为,在极端海况条件下,考虑流固耦合的分析方法更符合实际情况.  相似文献   

6.
针对在役老龄导管架平台进行倒塌计算分析,确定极限承载力进而评估老龄导管架的安全裕度。采用非线性有限元方法,考虑平台的波流载荷及桩-土的非线性相互作用,利用SACS软件建立导管架整体三维有限元计算分析模型,并用逐步加载的方式,对南海某导管架平台进行了全过程非线性倒塌分析。计算分析表明,该导管架平台极限强度很高,具有较大的安全裕度;导管架倒塌过程呈逐步破坏形式,先是撑杆屈服,造成局部结构破坏,然后是钢桩发生屈服,降低结构承载力,最后节点逐步失效,造成结构倒塌。揭示了导管架平台结构失效倒塌的机理,给出了倒塌分析的可行方法和步骤。  相似文献   

7.
1 .IntroductionThe structural design method has evolvedfromthe workingstress method,damage stage methodtolimit state method.The more recent probabilisticlimit state design method,whichis based onreliabili-tytheory,has beengenerallyacceptedinthe designcode…  相似文献   

8.
Monitoring offshore platforms, long span bridges, high rise buildings, TV towers and other similar structures is essential for ensuring their safety in service. Continuous monitoring assumes even greater significance in the case of offshore platforms, which are highly susceptible to damage due to the corrosive environment and the continuous action of waves. Also, since a major part of the structure is under water and covered by marine growth, even a trained diver cannot easily detect damage in the structure. In the present work, vibration criterion is adopted for structural monitoring of jacket platforms. Artificial excitation of these structures is not always practicable and ambient excitation due to wind and waves may not be sufficient for collecting the required vibration data. Alternate methods can be adopted for the same purpose, for example, the application of an impact or a sudden relaxation of an applied force for exciting the structure. For jacket platforms, impact can be applied by gently pushing the structure at the fender while relaxation can be accomplished by pulling the structure and then suddenly releasing it using a tug or a supply vessel in both cases. The present study is an experimental investigation on a laboratory model of a jacket platform, for exploring the feasibility of adapting vibration responses due to impulse and relaxation, for structural monitoring. Effects of damage in six members of the platform as well as changes in deck masses were studied. A finite element model of the structure was used to analyze all the cases for comparison of the results as well as system identification. A data acquisition and analysis procedure for obtaining the response signatures of the platform due to the impulse and relaxation procedure was also developed for possible adoption in on-line monitoring of offshore platforms. From the study, it has been concluded that both impulse and relaxation responses are useful tools for monitoring offshore jacket platforms. The present work forms the basis for the development of an automated, on-line monitoring system for offshore platforms, using neural networks.  相似文献   

9.
Offshore jacket platform is widely used as production or oil recovering platform in the shallow sea, and is also applied to the offshore wind turbine supporting structure in the recent years. The jacket structures are normally designed to be conservative and bulky according to various design codes. In this work, a structural optimization design method for jacket platform structure has been developed based on topology optimization theory. The topology optimization method is applicable at an early design stage, which can determine the initial structure and force transmission path. The whole design space is chosen as design variables, and the goal is to maximize the structural stiffness. A set of constraints based on multi-criteria design assessment is applied according to standard requirements, which includes stress, deformation, vibration and design variable constraints. The optimization results are compared with the original platform for static performance, dynamic performance and Ultimate Carrying Capacity (UCC). Results show that the optimized structure show a 13.7% reduction in the global mass, 46.31% reduction in the maximum equivalent stress, and large ultimate carrying capacity ability under the same environmental loads. It is demonstrated that the proposed topology optimization method is capable of effectively determining the optimal design of jacket platform structures.  相似文献   

10.
This paper proposes a method to structurally identify inherent dynamic characteristics based on long-term monitored acceleration data of nonlinear offshore platforms under sea-ice excitation. Not all the inherent characteristics can be excited due to the randomness of ice loading and its limited bandwidth. However, the long-term monitored data can reflect most of the conditions of sea-ice excitation. The change of natural characteristics of the platform under ice loads can be identified by analyzing of long-term monitored data. A nonlinear system of two-degree-of-freedom (2DOF) is simulated to identify dynamic characteristics and verify the effectiveness of the proposed method. The method is applied to analyze the acceleration data caused by ice-induction at a jacket platform in Liaodong Bay. The inherent characteristics of the structure can be identified and its variation under different ice-load intensities is summarized.  相似文献   

11.
In this paper a new approach is introduced for structural health monitoring of offshore jacket platforms. The procedure uses the measured ambient vibration responses and the corresponding readable natural frequencies and mode shapes of the structural system. Since offshore platforms are composed of heavy topsides supported by jacket structures, participation of the first mode is dominant in each direction in the response of the structure under field excitations. Moreover, ambient vibrations such as wave loads and boat impacts only excite the first modes of the structure. Therefore, it is difficult to find higher modes and the pertinent frequencies by use of accelerometers data. The introduced innovative method in this research uses the first few fundamental frequencies and mode shapes of the structure. The algorithm employs the inverse vibration technique to develop a simple two and three dimensional reference model for monitoring health of the structure. To show the efficiency of the proposed procedure, a case study is carried out on the models of a jacket-type platform in the Persian Gulf, namely SPD2. Finally, an uncertainty analysis is performed, due to the existence of noises and uncertainties in input data collected by accelerometers. Results indicate that the proposed method has the ability to detect the induced damages by a high level of accuracy considering probable sources of error.  相似文献   

12.
Since permanent wave-induced vibrations of offshore jacket platforms reduce the service life of the jacket structure and deck equipment and increase the fatigue failure of the welded connections, this research has used SMA (shape memory alloy) dampers to control the jacket platform oscillations. Superelasticity, high durability, and energy dissipation capability make SMA elements good nominees for the design of vibration control devices. In this research, to model the force-displacement hysteretic behavior of SMA elements their idealized multi-linear constitutive model has been implemented and the time history responses of vibration equations have been evaluated by direct integration method. To analyze the SMA damper effects on the vibration suppression of the jacket platforms, a 90 (m) high jacket located 80 (m) deep in water has been selected as a case study. Numerical results have shown that optimized SMA dampers with constant-geometry SMA bars will improve the dynamic behavior of the jacket platform under the action of an extreme regular wave. However, under the action of two irregular waves, SMA dampers with varying-geometry SMA bars will cause significant reduction in the dynamic responses of the jacket platform. The power spectral density function of the deck displacements have shown that the previously mentioned SMA dampers avoid resonance by shifting the natural frequencies of the jacket structure away from the excitation frequencies.  相似文献   

13.
Vibration Characteristics of An Offshore Platform and Its Vibration Control   总被引:1,自引:0,他引:1  
LI  Hua-jun 《中国海洋工程》2002,16(4):469-482
A template offshore platform, located in the Bohai Bay of China, has exhibited excessive, unexpected vibration un-der mildly hostile sea conditions, which has affected the normal operation of the platform. Since the structure was de-signed to sustain more severe wave climate, the cause of the excessive vibration has been suspected to originate from other sources. The main objectives of this study are to investigate the causes of the excessive vibration, and to explore possible remedies to solve the problem, In this paper, the vibration behavior of the offshore platform is analyzed by means of finite element (FE) modeling, field measurements and laboratory test. Results of analysis suggest that relative movement and impact between the piles and the jacket legs exist, i. e. the piles and the jacket are not perfectly connected. The discon-nection of the piles and jacket weakens the overall stiffness of the platform, and therefore produces unexpected excessive vibration. In this study, measures for reducing  相似文献   

14.
Optimal Active Control of Wave-Induced Vibration for Offshore Platforms   总被引:2,自引:0,他引:2  
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H2 control algorithm, which is an optimal frequency domain control method based on minimization of H2 norm of the system transfer function. In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model. This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding "generalized" wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H2 active control and the corresponding passive control using a T  相似文献   

15.
在海洋平台摇摆墙体系基础上,提出在海洋平台和摇摆墙之间刚性连接杆的铰接点处安装粘弹性转角阻尼器的减振措施,对海洋平台进行进一步减振控制。对粘弹性转角位移阻尼器的刚度和阻尼参数进行了优化分析,可知阻尼器的阻尼与刚度在结构减振中起到了十分重要的作用,且存在特定范围内的优化值。以JZ20-2北高点井口平台为例,利用ANSYS进行地震荷载作用和实测挤压冰荷载下的仿真分析,研究了粘弹性转角阻尼器在海洋平台和摇摆墙之间刚性连接杆铰接点处的不同安装方式,对比分析减振效果。结果表明,在该体系刚性连接杆的铰接点处安装粘弹性转角阻尼器能显著降低结构的振动反应,连接杆右侧安装粘弹性转角阻尼器的方式为减振效果最佳方式。  相似文献   

16.
目前海洋石油导管架平台桩基础的轴向极限承载力常用的设计方法为API RP2A(美国石油协会)和静力触探(CPT)的方法.在这两种方法的基础上,提出了用BP神经网络模型对桩的轴向极限承载力进行计算的思路,能够有效地预测桩的轴向极限承载力.根据BP神经网络算法具有较强的非线性映射能力和学习功能的特点,通过对影响单桩极限承载力因素的分析,依据静力触探资料建立了基于BP神经网络的单桩轴向极限承载力预测模型.通过利用API RP2A方法分析成果对该模型进行学习训练和预测检验,证明了预测模型性能良好、具有较高的精度和收敛速度快等特点,验证了神经网络方法的可行性,预测结果能够指导桩基础设计,缩短周期.因而具有较大的工程实用价值.  相似文献   

17.
王帅霖  季顺迎 《海洋学报》2017,39(12):98-108
在寒区海域,冰荷载是影响海洋平台安全运行的主要环境荷载之一,由其引起的冰激振动给平台结构及其上部设备带来了严重危害。为分析不同冰况下平台的振动响应,本文建立了导管架海洋平台冰激振动的离散元(DEM)-有限元(FEM)耦合模型。采用具有黏接-破碎性能的等粒径球体离散单元对海冰的破碎特性进行模拟,通过由梁单元构建的海洋平台有限元模型获得结构的振动响应。在离散元与有限元的接触区域中实现了两个模型间计算参数的传递。为提高该耦合模型的计算效率和规模,发展了基于动力子结构方法的DEM-FEM耦合模型。为验证该耦合模型的有效性和可行性,将不同冰况下得到的冰荷载与ISO19906和JTS 144-1-2010标准进行了对比。结果表明,计算得到的冰荷载与标准相近,且冰厚与冰荷载呈二次非线性关系。同时,从冰速和冰厚两方面对比了渤海四桩腿JZ20-2 MUQ锥体导管架平台冰激振动加速度的数值结果和现场实测数据,发现冰速与振动加速度呈线性关系,冰厚与振动加速度呈二次非线性关系,并且振动加速度与冰速和冰厚平方的乘积呈线性关系。  相似文献   

18.
为研究渤海海域海冰撞击导管架海洋平台的冰振响应,基于锥体冰力函数,本文建立了渤海海域的冰力作用模型。采用ANSYS有限元软件对导管架平台与海冰的相互作用进行数值模拟,开展了海冰作用下抗冰平台的静力分析及平台动力响应分析。通过与静力分析结果对比,验证了动冰力对结构响应的动力放大效应。在此基础上通过改变冰厚、冰速等海冰参数,研究了不同冰力作用周期下导管架平台的冰振响应。研究表明,海冰厚度及海冰流动速度是影响平台动力响应的主要因素,为导管架平台结构的动力优化设计提供了研究基础。  相似文献   

19.
For the fulfillment of the probability-based structural design for the offshore jacket platforms in the Bohai Bay, the design factors of loads, resistance and load combinations are much necessary to be calibrated according to the proposed target reliability index. Firstly, the limit states function for the offshore jacket platforms is introduced. Then, four approaches to calibrate the factors of load and resistance are presented and compared. Afterwards, the methods to calibrate the load combination factors are developed. Finally, the factors of load, resistance and load combination for the offshore jacket platforms in the Bohai Bay are calibrated and the corresponding design formulae are recommended. The results are proved to be rational in practice, and also illustrate that the proposed target reliability index for offshore jacket platforms in the Bohai Bay is also appropriate.  相似文献   

20.
For the fulfillment of the probability-based structural design for the offshore jacket platforms in the Bohai Bay, the design factors of loads, resistance and load combinations are much necessary to be calibrated according to the proposed target reliability index. Firstly, the limit states function for the offshore jacket platforms is introduced. Then, four approaches to calibrate the factors of load and resistance are presented and compared. Afterwards, the methods to calibrate the load combination factors...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号