首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prediction of landslide movement acceleration is a complex problem, among others identified for deep-seated landslides, and represents a crucial step for risk assessment. Within the scope of this problem, the objective of this paper is to explore a modelling method that enables the study of landslide function and facilitates displacement predictions based on a limited data set. An inverse modelling approach is proposed for predicting the temporal evolution of landslide movement based on rainfall and displacement velocities. Initially, the hydrogeology of the studied landslides was conceptualised based on correlative analyses. Subsequently, we applied an inverse model with a Gaussian-exponential transfer function to reproduce the displacements. This method was tested on the Grand Ilet (GI) and Mare-à-Poule-d’Eau (HB) landslides on Reunion Island in the Indian Ocean. We show that the behaviour of landslides can be modelled by inverse models with a bimodal transfer function using a Gaussian-exponential impulse response. The cumulative displacements over 7 years of modelling (2 years of calibration period for GI, and 4 years for HB) were reproduced with an RMSE above 0.9. The characteristics of the bimodal transfer function are directly related to the hydrogeological functioning demonstrated by the correlative analyses: the rapid reaction of a landslide can be associated with the effect of a preferential flow path on groundwater level variations. Thus, this study shows that the inverse model using a Gaussian-exponential transfer function is a powerful tool for predicting deep-seated landslide movements and for studying how they function. Beyond modelling displacements, our approach effectively demonstrates its ability to contribute relevant data for conceptualising the sliding mechanisms and hydrogeology of landslides.  相似文献   

2.
三峡库区蓄水后,大量库岸滑坡发生复活变形,为研究滑坡随库水位升降的变形特征和机制,以库区典型直线形滑面形态滑坡为地质原型,概化设计了大尺度离心模型试验,通过模拟两个水位升降过程,布设高速相机和传感器,获取了滑坡变形演化全过程高清影像、孔压和土压?时间变化曲线,可得以下研究结果:在水位首次下降时,孔压和土压逐渐减小,当下降15 min后滑坡发生整体蠕滑变形,首先是前部产生横向张拉裂缝,中后部则是以竖直位移为主的蠕滑压密变形过程,水位停止下降2 min后变形停止,表明变形对库水位变化具有一定滞后性;当水位再次下降时,前部沿原破裂面再次下滑并失稳,中后部则无变形,变形演化具有典型牵引式特征。在库水首次入渗滑坡时,坡体孔隙水压力对库水位升降具有明显的滞后性,而在下一次水位升降过程中,这种滞后性明显减弱。该类滑坡受水位下降的动水压力效应影响较大,在滑坡变形过程中,中后部滑体变形在竖直方向的蠕滑压密行为使得中后部稳定性有所提高,因此,在后期蓄水过程中不再发生变形,试验现象与实际库岸滑坡吻合。试验揭示了三峡库区该类滑坡在水位升降条件下的变形破坏模式及长期演化趋势,为库区地灾防治提供了参考依据。  相似文献   

3.
In contrast to the complex nature of slope failures, physically-based slope stability models rely on simplified representations of landslide geometry. Depending on the modelling approach, landslide geometry is reduced to a slope-parallel layer of infinite length and width (e.g., the infinite slope stability model), a concatenation of rigid bodies (e.g., Janbu’s model), or a 3D representation of the slope failure (e.g., Hovland’s model). In this paper, the applicability of four slope stability models is tested at four shallow landslide sites where information on soil material and landslide geometry is available. Soil samples were collected in the field for conducting respective laboratory tests. Landslide geometry was extracted from pre- and post-event digital terrain models derived from airborne laser scanning. Results for fully saturated conditions suggest that a more complex representation of landslide geometry leads to increasingly stable conditions as predicted by the respective models. Using the maximum landslide depth and the median slope angle of the sliding surfaces, the infinite slope stability model correctly predicts slope failures for all test sites. Applying a 2D model for the slope failures, only two test sites are predicted to fail while the two other remain stable. Based on 3D models, none of the slope failures are predicted correctly. The differing results may be explained by the stabilizing effects of cohesion in shallower parts of the landslides. These parts are better represented in models which include a more detailed landslide geometry. Hence, comparing the results of the applied models, the infinite slope stability model generally yields a lower factor of safety due to the overestimation of landslide depth and volume. This simple approach is considered feasible for computing a regional overview of slope stability. For the local scale, more detailed studies including comprehensive material sampling and testing as well as regolith depth measurements are necessary.  相似文献   

4.
Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction.  相似文献   

5.
徐楚  胡新丽  何春灿  徐迎  周昌 《岩土力学》2018,39(11):4287-4293
相似材料的研制是滑坡模型试验的关键。在相似材料的研究基础上,通过大量的配比试验,结合模糊综合评价法对不同配比材料的相似性进行比较,研制出同时模拟物理力学性能相似和渗流作用相似的水库型滑坡相似材料,这种材料由标准砂、滑体土、膨润土和水溶液混合而成。同时通过库水作用下滑坡模型试验评价该材料的相似效果,记录水位升降过程中坡内的孔隙水压力变化、渗流变化、滑面形态及裂缝形成发展过程。试验结果表明,库水对岩土体物理力学性质的弱化和坡内指向临空面的渗透压力是滑坡产生的主要诱发因素;水库型滑坡的破坏模式为有多级滑面的牵引式破坏;试验观测的浸润线与理论计算结果基本吻合。该相似材料的物理力学性能和渗流效果均能达到试验相似要求,模拟库水作用下滑坡变形破坏过程的效果良好,是一种比较理想的水库型滑坡模型相似材料。研究结果为进一步开展大型水库型滑坡模型试验提供了科学依据。  相似文献   

6.
Bivariate and multivariate statistical analyses were used to predict the spatial distribution of landslides in the Cuyahoga River watershed, northeastern Ohio, U.S.A. The relationship between landslides and various instability factors contributing to their occurrence was evaluated using a Geographic Information System (GIS) based investigation. A landslide inventory map was prepared using landslide locations identified from aerial photographs, field checks, and existing literature. Instability factors such as slope angle, soil type, soil erodibility, soil liquidity index, landcover pattern, precipitation, and proximity to stream, responsible for the occurrence of landslides, were imported as raster data layers in ArcGIS, and ranked using a numerical scale corresponding to the physical conditions of the region. In order to investigate the role of each instability factor in controlling the spatial distribution of landslides, both bivariate and multivariate models were used to analyze the digital dataset. The logistic regression approach was used in the multivariate model analysis. Both models helped produce landslide susceptibility maps and the suitability of each model was evaluated by the area under the curve method, and by comparing the maps with the known landslide locations. The multivariate logistic regression model was found to be the better model in predicting landslide susceptibility of this area. The logistic regression model produced a landslide susceptibility map at a scale of 1:24,000 that classified susceptibility into four categories: low, moderate, high, and very high. The results also indicated that slope angle, proximity to stream, soil erodibility, and soil type were statistically significant in controlling the slope movement.  相似文献   

7.
Physical and numerical modelling of shallow landslides   总被引:2,自引:1,他引:1  
Physical modelling is an extremely useful tool for the study of the triggering process of shallow landslides. For this reason, in this work, numerous laboratory tests have been performed using a specific flume test apparatus. A wide range of initial soil conditions (i.e. porosity and water content) has been investigated to analyze the induced effect on failure time and mode, even simulating the presence of preferential flow directions within the soil. Different tests have been performed also reproducing, on a laboratory scale, the landslide event occurred on October 1, 2009, in the area where the testing material was sampled (i.e. Giampilieri, north-eastern Sicily, Italy). Furthermore, the experimental results have been employed to verify the capability of shallow landslide instability prediction (SLIP), a simplified stability model for the prediction of shallow landslide occurrence, to reproduce the triggering process.  相似文献   

8.
The Paonia-McClure Pass area of Colorado has been recognized as a region highly susceptible to mass movement. Because of the dynamic nature of this landscape, accurate methods are needed to predict susceptibility to movement of these slopes. The area was evaluated by coupling a geographic information system (GIS) with logistic regression methods to assess susceptibility to landslides. We mapped 735 shallow landslides in the area. Seventeen factors, as predictor variables of landslides, were mapped from aerial photographs, available public data archives, ETM + satellite data, published literature, and frequent field surveys. A logistic regression model was run using landslides as the dependent factor and landslide-causing factors as independent factors (covariates). Landslide data were sampled from the landslide masses, landslide scarps, center of mass of the landslides, and center of scarp of the landslides, and an equal amount of data were collected from areas void of discernible mass movement. Models of susceptibility to landslides for each sampling technique were developed first. Second, landslides were classified as debris flows, debris slides, rock slides, and soil slides and then models of susceptibility to landslides were created for each type of landslide. The prediction accuracies of each model were compared using the Receiver Operating Characteristic (ROC) curve technique. The model, using samples from landslide scarps, has the highest prediction accuracy (85 %), and the model, using samples from landslide mass centers, has the lowest prediction accuracy (83 %) among the models developed from the four techniques of data sampling. Likewise, the model developed for debris slides has the highest prediction accuracy (92 %), and the model developed for soil slides has the lowest prediction accuracy (83 %) among the four types of landslides. Furthermore, prediction from a model developed by combining the four models of the four types of landslides (86 %) is better than the prediction from a model developed by using all landslides together (85 %).  相似文献   

9.
Surprisingly, hypermobility (high velocity and long run-out) is a remarkable feature of large landslides and is still poorly understood. In this paper, a velocity-weakening friction law is incorporated into a depth-averaged landslide model for explaining the higher mobility mechanism of landslides. In order to improve the precision of the calculation, a coupled numerical method based on the finite volume method is proposed to solve the model equations. Finally, several numerical tests are performed to verify the stability of the algorithm and reliability of the model. The comparison between numerical results and experimental data indicates that the presented model can predict the movement of landslide accurately. Considering the effect of velocity-weakening friction law, the presented model can better reflect the hypermobility of landslide than the conventional Mohr–Coulomb friction model. This work shows that the application of a universal velocity-weakening friction law is effective in describing the hypermobility of landslide and predicting the extent of landslides.  相似文献   

10.
Landslide susceptibility modelling—a crucial step towards the assessment of landslide hazard and risk—has hitherto not included the local, transient effects of previous landslides on susceptibility. In this contribution, we implement such transient effects, which we term “landslide path dependency”, for the first time. Two landslide path dependency variables are used to characterise transient effects: a variable reflecting how likely it is that an earlier landslide will have a follow-up landslide and a variable reflecting the decay of transient effects over time. These two landslide path dependency variables are considered in addition to a large set of conditioning attributes conventionally used in landslide susceptibility. Three logistic regression models were trained and tested fitted to landslide occurrence data from a multi-temporal landslide inventory: (1) a model with only conventional variables, (2) a model with conventional plus landslide path dependency variables, and (3) a model with only landslide path dependency variables. We compare the model performances, differences in the number, coefficient and significance of the selected variables, and the differences in the resulting susceptibility maps. Although the landslide path dependency variables are highly significant and have impacts on the importance of other variables, the performance of the models and the susceptibility maps do not substantially differ between conventional and conventional plus path dependent models. The path dependent landslide susceptibility model, with only two explanatory variables, has lower model performance, and differently patterned susceptibility map than the two other models. A simple landslide susceptibility model using only DEM-derived variables and landslide path dependency variables performs better than the path dependent landslide susceptibility model, and almost as well as the model with conventional plus landslide path dependency variables—while avoiding the need for hard-to-measure variables such as land use or lithology. Although the predictive power of landslide path dependency variables is lower than those of the most important conventional variables, our findings provide a clear incentive to further explore landslide path dependency effects and their potential role in landslide susceptibility modelling.  相似文献   

11.
岩溶山区特殊的地质结构导致崩塌、滑坡等地质灾害时常发生,带来了严重的人员伤亡和经济社会损失。研究岩溶山区崩滑灾害特征,建立相应的变形破坏地质模式,对于岩溶山区崩滑灾害风险防控与治理工程具有重要理论意义与指导价值。文章以典型地质灾害形成演化过程为例,在系统地分析研究区典型崩滑灾害地质背景、影响因素、动力学与运动学特征的基础上,提出了岩溶山区崩滑灾害变形破坏地质模式,得出以下主要结论:(1)影响崩滑成灾基本因素(崩滑灾害体势能、岩溶结构面、岩组结构、斜坡地貌和斜坡结构)、影响因素(水文地质条件、工程活动、地震、降雨)和变形运动特征(运动形式和变形机制)三个方面,据此建立了岩溶山区崩滑灾害地质分类指标体系。(2)结合研究区特征对模型体系里面的每个要素进行系统分析,崩滑灾害的发生是各个要素相互组合、相互作用的结果。(3)总结了研究区内5种典型崩滑地质模式:高势能反倾降雨型高速远程滑坡—碎屑流模型、高势能斜倾视向采矿型高速远程崩滑灾害模型、超高势能横向陡倾地震型高速远程滑坡、高势能采矿型高速崩塌—碎屑流模型、低势能差异风化崩塌模型。为后续开展物理模拟、数值模拟、稳定性计算和变形破坏预测等工作奠定基础。下一步将更加深入全面地建立研究区的崩滑灾害模式,并进行崩滑灾害的危险性分级工作。   相似文献   

12.
Shallow landslides are a common type of rainfall-induced landslide, and various methods are currently used to predict their occurrence on a regional scale. Physically based models, such as the shallow landslide instability prediction (SLIP) model, have many advantages because these models can assess the hazards of shallow landslides dynamically, based on physical stability equations that consider rainfall as a triggering factor. The main objective of this research is to test the SLIP model’s potential to predict shallow landslide hazards in Thailand. To achieve this goal, the SLIP model was applied to two massive landslide events in Thailand. The results predicted by the SLIP model for the two study areas are outlined, and the model prediction capabilities were evaluated using the receiver operating characteristic plot. The Phetchabun results showed that the western part of the catchment had the lowest factor of safety (F S) value, whereas the Krabi results showed that the slopes surrounding the peak of Khao Panom Mountain had the lowest F S value, explaining the highest potentials for shallow landslides in each area. The SLIP model showed good performance: The global accuracies were 0.828 for the Phetchabun area and 0.824 for the Krabi area. The SLIP model predicted the daily time-varying percentage of unstable areas over the analyzed periods. The SLIP model simulated a negligible percentage of unstable areas over all considered periods, except for expected dates, suggesting that the prediction capability is reasonably accurate.  相似文献   

13.
边坡失稳产生的灾害不仅会给工农业生产带来巨大损失,也会对人民的生命财产安全造成巨大威胁。目前,滑坡灾害已与地震、火山并列成为全球3大地质灾害之一,其中由水库水位变化诱发的滑坡近来得到重视。因此,建立合理的边坡稳定性分析方法对预测以及防控滑坡灾害十分重要。实际中的边坡失稳过程往往在多种荷载因素的耦合作用下发生,但现有边坡极限分析等稳定性解析方法偏重于考虑单一荷载因素,难以合理考虑多类荷载耦合作用条件,缺乏对边坡稳定性依赖加载过程这一现象的合理解释。本文在极限分析原理的基础上,将水库区边坡所受荷载凝练为水位上升与坡顶加载的耦合作用。将水位荷载简化为水位线以下土体受到浮力以及黏聚力的减小,建立了一个土坡稳定性分析方法,编写了相应的数值计算程序,通过与离心模型试验结果进行对比验证了方法的有效性。该方法计算结果表明,边坡稳定性随坡顶荷载增加单调下降,而随水位上升表现出先降低后增加的非单调变化。因此,坡顶荷载与水位上升耦合加载过程中,边坡稳定性对于加载过程具有显著的依赖性。  相似文献   

14.
The major scope of the study is the assessment of landslide susceptibility of Flysch areas including the Penninic Klippen in the Vienna Forest (Lower Austria) by means of Geographical Information System (GIS)-based modelling. A statistical/probabilistic method, referred to as Weights-of-Evidence (WofE), is applied in a GIS environment in order to derive quantitative spatial information on the predisposition to landslides. While previous research in this area concentrated on local geomorphological, pedological and slope stability analyses, the present study is carried out at a regional level. The results of the modelling emphasise the relevance of clay shale zones within the Flysch formations for the occurrence of landslides. Moreover, the distribution of mass movements is closely connected to the fault system and nappe boundaries. An increased frequency of landslides is observed in the proximity to drainage lines, which can change to torrential conditions after heavy rainfall. Furthermore, landslide susceptibility is enhanced on N-W facing slopes, which are exposed to the prevailing direction of wind and rainfall. Both of the latter geofactors indirectly show the major importance of the hydrological conditions, in particular, of precipitation and surface runoff, for the occurrence of mass movements in the study area. Model performance was checked with an independent validation set of landslides, which are not used in the model. An area of 15% of the susceptibility map, classified as highly susceptible, “predicted” 40% of the landslides.  相似文献   

15.
论滑坡分类   总被引:27,自引:5,他引:27  
在广泛查阅和总结国内外滑坡分类基础上 ,以滑坡监测预报与防治为目的 ,遵从滑坡活动各要素的地位与作用 ,根据分类体系的完备性需要 ,理清了已有各种滑坡分类的性质及其彼此间的关系 ,并对之进行了科学归纳、取舍和补充 ,建立了具有层次系统性的综合性滑坡分类体系。为建立滑坡监测预报地质模型体系奠定了基础 ,并有助于对滑坡活动的全面研究。  相似文献   

16.
我国海洋能源开发已步入深远海域,面临的深海地质灾害问题也日益凸显,尤以海底滑坡最为典型,一旦发生将会形成链式灾害,严重危害水下基础设施的安全。本文聚焦“滑坡形成→运动演化→冲击设施”这一链式灾害过程,首先梳理了不同触发因素作用下海底滑坡的形成机制,进而论述了海底滑坡的运动过程及不同演化阶段的判识标准,分析了滑坡运动演化过程中环境水与土体的耦合作用机理,提出了适用于中小尺度运动演化过程的流固耦合分析方法,并探讨了当前海底滑坡运动演化过程试验模拟技术和原位监测手段的适用范畴与技术瓶颈;进一步地,针对滑坡冲击海底管缆等水下基础设施问题,评析了海底滑坡冲击效应的量化评估方法和研究手段。最后,指出当前海底滑坡链式灾害研究存在的不足和未来的发展方向,以期为海底滑坡地质灾害链的模拟、预测和预警等提供重要参考。  相似文献   

17.
强降雨可诱发新近纪软岩质滑坡滑移变形。1955年至今,降雨在陕西宝鸡诱发超过十起大型滑坡灾害。2011年9月19日,宝鸡市区72 h内的降雨量达到332 mm,北坡金鼎寺、簸箕山与高家崖滑坡出现裂缝,威胁市区居民安全。为分析滑坡的变形机制与降雨触发的滑体内地下水位的波动关系,2012—2015年,开展了降雨量、地下水位、孔隙水压力、滑坡应力与位移等物理量的实时监测,统计分析了它们的频率、活动强度及累积变化规律,提出了滑坡的位移扩展模型。研究显示:(1)地下水的活动会影响新近纪软岩质滑坡的变形,但降雨量、地下水位、孔隙水压力、滑坡体应力与位移等物理量变化机制有差异,地下水位、孔隙水压力呈周期性变化,滑坡体的应力、位移的变化具有累积效应;(2)宝鸡市北坡滑坡运动变形具有蠕变、快速滑移两个阶段。降雨会触发的滑坡体各物理量出现加速变化,地下水位波动幅度为0.27~1m,孔隙水压力的变化幅度为10kPa,滑体浅层的水平应力变化幅度为5.6kPa;(3)在判断降雨能否诱发滑坡快速滑移过程中,既需分析滑体应力、位移变化的累积效应,又需分析新近纪软岩质滑带的摩擦破坏机制。  相似文献   

18.
The development of Early Warning Systems in recent years has assumed an increasingly important role in landslide risk mitigation. In this context, the main topic is the relationship between rainfall and the incidence of landslides. In this paper, we focus our attention on the analysis of mathematical models capable of simulating triggering conditions. These fall into two broad categories: hydrological models and complete models. Generally, hydrological models comprise simple empirical relationships linking antecedent precipitation to the time that the landslide occurs; the latter consist of more complex expressions that take several components into account, including specific site conditions, mechanical, hydraulic and physical soil properties, local seepage conditions, and the contribution of these to soil strength. In a review of the most important models proposed in the technical and international literature, we have outlined their most meaningful and salient aspects. In particular, the Forecasting of Landslides Induced by Rainfall (FLaIR) and the Saturated Unsaturated Simulation for Hillslope Instability (SUSHI) models, developed by the authors, are discussed. FLaIR is a hydrological model based on the identification of a mobility function dependent on landslide characteristics and antecedent rainfall, correlated to the probability of a slide occurring. SUSHI is a complete model for describing hydraulic phenomena at slope scale, incorporating Darcian saturated flow, with particular emphasis on spatial–temporal changes in subsoil pore pressure. It comprises a hydraulic module for analysing the circulation of water from rainfall infiltration in saturated and nonsaturated layers in non-stationary conditions and a geotechnical slope stability module based on Limit Equilibrium Methods. The paper also includes some examples of these models’ applications in the framework of early warning systems in Italy.  相似文献   

19.
拟深入探讨滑坡与其环境因子间的非线性联接计算以及不同数据驱动模型等因素,对滑坡易发性预测建模不确定性的影响规律.以江西省瑞金市为例共获取370处滑坡和10种环境因子,通过概率统计(probability statistics,PS)、频率比(frequency ratio,FR)、信息量(information value,Ⅳ)、熵指数(index of entropy,IOE)和证据权(weight of evidence,WOE)等5种联接方法分别耦合逻辑回归(logistic regression,LR)、BP神经网络(BP neural networks,BPNN)、支持向量机(support vector machines,SVM)和随机森林(random forest,RF)模型共构建出20种耦合模型,同时构建无联接方法直接将原始数据作为输入变量的4种单独LR、BPNN、SVM和RF模型,预测出总计24种工况下的滑坡易发性;最后分别使用ROC曲线、均值、标准差和差异显著性等指标分析上述24种工况下易发性结果的不确定性.结果表明:(1)基于WOE的耦合模型预测滑坡易发性的平均精度最高且不确定性较低,基于PS的耦合模型预测精度最低且不确定性最高,基于FR、Ⅳ和IOE的耦合模型介于两者之间;(2)单独数据驱动模型易发性预测精度略低于耦合模型,且未能计算出环境因子各子区间对滑坡发育的影响规律,但其建模效率高于耦合模型;(3)RF模型预测精度最高且不确定性较低,其次分别为SVM、BPNN和LR模型.总之WOE是更优秀的联接法且RF模型预测性能最优,WOE-RF模型预测的滑坡易发性不确定性较低且更符合实际滑坡概率分布特征.   相似文献   

20.
数字滑坡技术及其应用   总被引:26,自引:5,他引:21  
王治华 《现代地质》2005,19(2):157-164
“数字滑坡”技术,就是以遥感(RS)和空间定位方法为主,结合其他勘探、试验、调查手段获取数字形式的、与地理坐标配准的滑坡基本信息;并利用GIS技术存贮和管理这些数字信息;在此基础上,根据滑坡地学原理进行空间分析,研制各类模型,并服务于滑坡调查、监测、研究、滑坡灾害评价、危险预测、灾情评估、滑坡防治等。通过金龙山三维数字模型,卫星监测易贡滑坡、三峡库区重点城镇滑坡及千将坪滑坡等地的遥感调查说明数字滑坡技术的实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号