首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
移出与未移出高原的两类低涡环流特征的对比分析   总被引:1,自引:1,他引:0  
顾清源  师锐  徐会明 《气象》2010,36(4):7-15
利用NECP再分析资料,采用对比分析方法,对2000-2004年汛期(6-9月)的高原低涡活动过程进行普查,并对移出高原低涡与未移出高原低涡在其生成时刻的环流特征场,以及移出高原低涡的移出高原时刻与未移出高原低涡的强盛时刻的环流特征场进行对比分析。分析表明:500 hPa上,移出高原低涡背景环流中巴尔喀什湖低槽、东亚大槽比未移出高原低涡深,蒙古高压脊更强,背景环流经向度大,而且副热带高压比未移出高原低涡西伸明显;暖平流对高原低涡的生成很重要,而涡后新疆冷平流有利于高原低涡移出高原主体;青藏高原上的正涡度平流有利于高原低涡的生成和加深,河套地区正涡度平流带的存在有利于高原低涡的移出。在200 hPa上,南亚高压的存在有利于高原低涡的生成,移出高原低涡上空的南亚高压强度要强于未移出高原低涡;青藏高原东北部、四川盆地到陕西一带位于高空急流入口区南侧时有利于高原低涡东移。找出高原低涡移出与未移出高原主体的环流场、温度平流场、涡度平流场的异同特征,为高原低涡能否东移出高原主体提供科学依据。  相似文献   

2.
东移西南低涡空间结构的气候学特征   总被引:4,自引:1,他引:3  
对1991~2004年夏季(6~8月)西南四川盆地的低涡活动进行统计分类,比较分析了移出型和停滞型两类西南低涡生成初期的合成环流场,总结出影响低涡东移的三维环流结构的气候学特征:东亚中纬度地区对流层中高层的冷空气入侵造成中高层气温偏低,位势高度降低,伴随冷偏差中心南侧20°N~30°N由对流层顶至850 hPa都出现偏强西风,最大的西风偏差位于长江下游地区上空200 hPa。一方面,高层风速差异的纬向梯度加强了长江中游地区的高空辐散,在西南低涡东部形成有利于降水和气旋性环流发展的动力抬升机制。另一方面,对流层低层的西风偏差在青藏高原南麓至我国东部长江以南形成一条异常的水汽输送带,加强了低涡南侧的偏西风水汽输送作用,为低涡东部的降水潜热反馈作用提供了充足的水汽。西南低涡在这样有利的环流形势和水汽条件下更容易移出盆地。  相似文献   

3.
着重分析1996年6月28-29日苏北和鲁东南地区出现的大范围暴雨环流和能量场特征。暴雨是西风槽与副热带高压共同作用的结果,低层的西南涡移出及涡前低空西南急流为暴雨产生提供了充分的水汽条件,而500hPa湿静力总能量Tt场高能舌和850hPaTt场能量锋区及700hPa低涡的移动路径与暴雨的落区关系密切  相似文献   

4.
西南低涡的移出与开封降水   总被引:1,自引:0,他引:1  
利用了1986~1998年7、8月份开封市历史气象资料,统计了西南低涡移出的路径及移速、移出前的环流特征,确定了移出判据。  相似文献   

5.
利用NCEP/NCAR再分析资料、历史天气图与青藏高原低涡切变线年鉴,在普查和分析1998-2012年持续强影响青藏高原低涡移出高原与持续强盛时的500 hPa环流形势及影响系统的基础上进行了分类,并对不同类型的持续强影响高原低涡在移出高原与持续强盛时的物理场进行了合成与对比分析。结果表明:持续强影响高原低涡以两高切变东阻型对中国降水影响最大,主要影响河套地区,切变线类、热带低压影响型、低槽前部类主要影响地区分别是黄淮流域、西南地区、长江流域;持续强影响高原低涡移出高原后,对40°N以北环流形势依赖性不强,主要是受高原低涡周边对流层中层西风带天气系统、副热带天气系统与热带天气系统相互作用造成的。研究分析还揭示了各类高原低涡移出高原后持续的对流层中层共同的大尺度条件及其主要差异。  相似文献   

6.
利用10 a(2001-2010年)6-8月逐日00 h(世界时,下同)与12 h 700 h Pa高空图及NCEP 1°×1°分析资料,对西南低涡进行了统计与合成分析,总结了影响低涡东移影响湖南的三维环流结构特征。结果表明:1)10 a共有486例西南低涡生成。其中,84例(约17.3%)移出源地影响湖南,7月最多(32例),6月次之(30例),8月最少(22例)。2)影响湖南的西南低涡,其源地主要集中在青藏高原东侧和四川盆地,最易在夜间生成。其大气环流形势表现为:西太平洋副热带高压较弱,位于洋面上;中高纬地区100°E附近为一宽广暖槽控制,槽前的正涡度输送有利于低层减压和气旋性涡度加大;低层整个四川盆地为闭合低压环流控制,东西两边各有一个低压中心存在,西部为暖中心控制,东部为冷舌控制,说明中纬度对流层中高层有冷空气入侵,冷平流使等压面下降促使西南低涡发展东移,这可能是导致西南低涡移出的一个重要环流因子。3)存在三支水汽输送:一支来自孟加拉湾的西南气流的水汽输送,另一支来自南海的偏南和偏东气流的水汽输送,第三支是较弱的西风带气流的水汽输送。  相似文献   

7.
利用2012~2016年Micaps天气图资料和《西南低涡年鉴》,对西南低涡及不同涡源西南涡的变化特征、活动期和移动特征以及对降水的影响等进行了统计分析。结果表明:(1)西南低涡平均每年生成95次,但各年差异大。其中,九龙涡最多,盆地涡次之,小金涡最少。西南低涡多发时段在春季与夏初,其中,九龙涡多发时段在春季与夏季,盆地涡多发时段在冬季与春初,小金涡多发时段在冬末与春季。(2)西南低涡活动主要在4~7月,小金涡最长生命史可达168h,在7月;九龙涡最长生命史156h,在5月;盆地涡最长生命史144h,在4月。西南低涡大多数在生成后24h内消失。在12月的西南低涡生命史最短,绝大部分在24h内。(3)西南低涡有三分之一能移出涡源区。其中,九龙涡移出的个数最多,盆地涡其次,小金涡移出的个数最少,但移出几率最高。3~6月是西南低涡移出的主要时段。其中,九龙涡主要移出时段在4~7月;盆地涡主要移出时段在1~5月;小金涡主要移出时段在2~5月。(4)西南低涡主要移动路径是东北、东、东南。其中,九龙涡以东北移为主;盆地涡以东北移、东移为主;小金涡以东移、东南移为主。(5)除冬季、春初外,不同涡源西南涡不论活动时间长短,都会造成降水,九龙涡造成的降水一般比盆地涡大。西南涡造成的很强降水多出现在6~7月。   相似文献   

8.
影响华南地区西南低涡的频数及移动特征分析   总被引:1,自引:0,他引:1  
利用中国气象局提供的MICAPS观测资料以及空间分辨率为1 °×1 °的ERA-Interim再分析资料,对1991—2010年3—8月影响华南地区的西南低涡的生成和移动进行统计分析。结果表明,影响华南地区的西南低涡在6、7月出现频率较高;随着月份推移其维持时间逐渐增加,3月的维持时间最短(48小时),8月最长(105小时);将影响华南地区的西南低涡按不同移动路径分为四类:东移型、东南移型、南移型和停滞型。在频数方面,东移型西南低涡出现次数最多(33个),东南移型次数最少(12个);在维持时间方面,停滞型西南低涡的维持时间最短(54小时),南移型维持时间最长(86小时)。四类移动路径西南低涡所对应的大尺度环流场表明,停滞型西南低涡其对流层中高层槽脊不明显且辐散运动较弱,下游地区对流层低层有冷平流及辐散运动,不利于西南低涡的发展和移出,而其他三类移出型的西南低涡在对流层中高层有明显的槽脊系统及较强的辐散运动,同时在对流层低层,不同移动路径的西南低涡在各自移动方向上均有风场辐合带和暖平流区与之对应,有利于西南低涡的移动和发展。   相似文献   

9.
低纬高原西南涡暴雨分析   总被引:17,自引:10,他引:7  
张秀年  段旭 《高原气象》2005,24(6):941-947
选取了由西南涡造成的低纬高原暴雨的8个个例,利用中尺度滤波和物理量诊断方法,对低纬高原西南涡暴雨进行了分析研究。研究表明,向东南方向移出的西南涡是造成低纬高原暴雨的重要天气系统,暴雨主要出现在西南涡的西南象限的中尺度辐合线、变形场和气旋之中。造成低纬高原暴雨的西南涡是比较深厚的,其正涡度区在垂直方向通常可达300-400hPa。这种西南涡不仅具有动力性的作用,而且其后部常伴有较强的冷空气活动。正是由于西南涡的动力扰动、冷空气活动和偏南暖湿气流的爬坡抬升共同导致了暴雨的发生。  相似文献   

10.
利用NCEP/NCAR再分析资料、历史天气图与青藏高原低涡切变线年鉴,继高原涡移出高原后持续的对流层中层环流特征分析基础上,依据持续强影响高原涡的分类,对1998-2012年持续强影响高原涡不同类型在生成、移出高原、持续强盛与将减弱消失时的对流层上部多种物理场进行了合成与对比分析。结果表明:持续强影响高原涡持续的对流层高层共同的环流特征是,南亚高压脊线在25°N-28°N,东伸到100°E以东;低涡附近或以北的200 h Pa上空有≥32 m·s-1急流核区的西风急流,和300 h Pa上空有≥20 m·s-1中心区的较强偏西风气流,影响低涡活动的500 h Pa天气系统与低涡的上空200 h Pa有辐散区。反映了高空辐散、高空锋区分别对低涡起了利于低涡辐合加强、高位涡下传引起低涡涡度增加的作用。研究分析还揭示了各类高原涡移出高原后持续的对流层高层的环流特征的主要差异和物理图象。  相似文献   

11.
1998年夏季两例青藏高原低涡结构特征的比较   总被引:5,自引:2,他引:3       下载免费PDF全文
郁淑华  高文良 《高原气象》2010,29(6):1357-1368
利用1998年Micaps历史天气图、1998年第二次青藏高原科学试验资料和NCEP/NCAR 1°×1°分辨率的再分析资料,对该年夏季两例移出与未移出高原的低涡活动过程及特征进行了对比分析,结果表明,移出与未移出高原低涡的低涡结构特征差异显著:(1)移出高原低涡,低涡环流呈圆形,厚度有3000 m左右,降水区呈环状分布;未移出高原低涡,低涡环流呈椭圆形,厚度为1500 m左右,降水区在低涡的南、西南方。(2)移出高原低涡,低涡区内绝大部分为上升运动区,并且强度在加强、区域扩大;未移出低涡,涡区内上升运动在减弱,上升运动区在缩小。(3)移出高原低涡,涡区内斜压性强,比未移出的大近一倍。(4)移出高原低涡,涡区内500 hPa有高位涡沿东北方向向上输送位涡平流,未移出高原低涡的有次高位涡沿东南方向向下输送位涡平流。(5)移出高原低涡是下层‘正涡度、暖区’、上层‘负涡度、冷区’;未移出高原低涡是下层‘正涡度、冷区’、中层‘负涡度、弱暖区’、上层‘正涡度、冷区’。  相似文献   

12.
夏季500hPa移出高原低涡的背景场分析   总被引:4,自引:0,他引:4  
本文用合成方法计算了夏季两类500hPa移出低涡的基本物理量场和涡度平衡。计算表明:西风带下高原低涡在高原西部有爆发性冷槽时才能移出,其移向移速受300—200hPa气流引导;东风带下低涡受印度西南季风向我国东部爆发所引起的强降水中心操纵。  相似文献   

13.
利用近30年(1981—2010年)历史天气图、MICAPS资料以及台站降雨资料,对6—8月移出型高原低涡的时空分布特征及其对我国降雨的影响进行了研究,并初步分析了不同路径移出型高原低涡的环流形势及降雨分布。结果表明:近30年来平均每年有9个高原低涡能够移出高原而发展,移出型高原低涡涡源主要在西藏改则、安多和青海沱沱河以北以及曲麻莱附近,并以东移为主,占移出型高原低涡的58.2%,而东北移和东南移的分别占25.5%和13.8%,其它路径占2.5%。东移路径移出型高原低涡频次与长江流域中上游、黄河流域上游及江淮地区的降雨有较好的正相关;东北移路径移出型低涡频次与长江流域上游、黄河流域以及东北降雨相关较好;东南移路径移出型低涡频次与高原东南侧及长江流域的降雨有较好正相关。各路径移出型低涡的降雨合成分析距平异常大值区分布与各路径正相关分布一致,且降雨异常大值中心与正相关大值中心相对应。利于高原低涡移出并发生降雨的500 hPa异常环流形势为:东移路径,中高纬异常环流型为“西高东低”分布,西太平洋副热带高压(简称西太副高)强度偏弱且位置偏东、偏南,低涡降雨带维持在长江流域与黄河流域之间;东北移路径,中高纬异常环流型仍为“西高东低”型,西太副高强度偏强且位置偏北、偏东,雨带维持在黄河流域及东北地区;东南移路径,为“两高夹一低”异常型环流,西太副高强度较强且位置偏西、偏南,降雨带位于长江流域及其以南地区。   相似文献   

14.
利用NCEP/NCAR 1°×1°再分析资料、历史天气图、青藏高原低涡切变线年鉴,分析了1998-2013年持续高原涡诱发西南涡结伴而行的观测事实,并对一例持续高原涡诱发西南涡的长时间伴行过程进行天气、诊断分析。结果表明,在持续高原涡与西南涡共同活动过程中,两涡移向较一致的多数是由持续高原涡诱发的西南涡过程造成的,它们的移向多为向东或东北移;持续高原涡诱发的西南涡是在500h Pa上东亚环流经向度减弱,在处在切变流场中的高原涡的环流东南部-西南气流下空生成的;伴行的西南涡受高原涡活动影响大,高原涡加强会影响西南涡加强;高原涡对西南涡的诱发作用是由高原涡移出高原,其伴随的正涡度向下伸,与对流层低层盆地内气流的气旋性弯曲所伴的正涡度叠合,使盆地内气旋性涡度加强而诱发西南涡生成的,西南涡区上空正涡度平流随高度增加的强迫上升作用是高原涡诱发西南涡的又一重要因素;高原涡与西南涡伴行是与高原涡区、西南涡区的正涡度平流及高原涡区、盆地涡区上空正涡度平流随高度增加的强迫上升作用密切相关的。  相似文献   

15.
基于NCEP资料的近30年夏季青藏高原低涡的气候特征   总被引:6,自引:3,他引:3  
基于NCEP/NCAR再分析资料并通过人工识别与天气图对比,本文对1981~2010年夏季高原低涡的气候特征进行了统计分析,对比研究了高原低涡高发年和低发年的大气环流场和低频分量场的特征,主要结果有:(1)近30年来夏季高原低涡平均每年生成32个,低涡发生频数呈现较明显的增多趋势,并具有较强的年际变化特征,低涡频数在2000年和2005年出现显著突变,在2000年由增多趋势转为减少趋势,在2005年又转为增多趋势,同时低涡频数具有显著的准5年、准9年和准15年周期振荡,6月生成的高原低涡呈减少趋势,而7月和8月生成的高原低涡均呈现增多趋势;(2)夏季高原低涡生成源地主要集中在西藏双湖、那曲和青海扎仁克吾一带,其中高原中部涡占50.8%,西部涡占27.0%,东部涡占22.2%,6月、7月和8月生成的高原低涡分别占夏季低涡总数的44.7%、29.9%和25.4%,高原低涡生成时绝大多数为暖性涡,占总数的90.7%。近30年来平均每年夏季有1.3个高影响高原低涡移出高原并在下游大范围地区产生强降水天气;移出的高原低涡以东移为主,占移出高原低涡的56.4%,而东北移和东南移的分别占移出高原低涡的20.1%和20.5%;(3)高原低涡高发年,低层的大气环流场和低频大气环流分量场均表现出较强的水平辐合及偏南气流,高层的青藏高压在高原主体范围内较气候态偏强;高原低涡低发年的情况则与之相反,伊朗高原上空的气旋、青藏高原低槽和高原南侧反气旋的配置对高原低涡的发生具有重要作用。  相似文献   

16.
影响云南的西南低涡统计特征   总被引:1,自引:0,他引:1  
梁红丽  段旭  符睿  郭荣芬 《高原气象》2012,31(4):1066-1073
利用1980—2008年逐日08:00(北京时,下同)和20:00 700hPa高空图和云南125个测站的逐日降水量资料,对影响云南的西南低涡移动路径、时间变化、维持时间和对应的降水特征进行了统计分析。结果表明,约1/8~1/7的西南低涡能够移出四川并影响到云南,但过去30年来其总趋势是减少的。影响云南的西南低涡初生涡源区主要集中在九龙和四川盆地,东南路径最多,西南和偏南路径次之,受地形影响西南低涡一般影响不到滇西边缘和滇西南地区。春末和夏季西南低涡移出影响云南的频数最多,秋末和冬季最少。西南低涡开始影响云南的时间表现出日变化特征,在白天的影响几率为61.54%,其生命史呈指数衰减,大多不超过1天。西南低涡移出源地后,约有13.5%的低涡会影响云南并出现全省性强降水过程。其中,偏南路径西南低涡造成的强降水主要分布在哀牢山以西地区,东南路径的主要暴雨中心位于滇中和滇东南,西南路径的强降水主要分布在滇东地区。西南路径大到暴雨的出现频率最高、强度最强,应引起足够的重视;东南路径虽然最多,但大到暴雨的出现频率和强度均低于平均值。  相似文献   

17.
卢萍  李跃清 《大气科学》2021,45(4):851-862
本文通过对伴随副热带高压(简称“副高”)东退而东移的一次典型西南涡天气过程(简称“20150721”过程)进行数值模拟,采用数值敏感性对比试验探讨了增大副高强度对这次东移西南涡的影响,得到以下结论:(1)副高强度增大以后,可长时间稳定维持,能对西南涡中尺度天气系统整个发展演变过程造成持续影响。西南涡路径和强度的变化直接改变了降水的落区和强度。(2)副高强度增大率先改变了环流场,使入侵的北风偏弱,西南引导气流偏强,最终导致西南涡发展偏弱、移速偏快。(3)环流场的改变直接影响到水汽输送、辐合辐散,从而进一步影响西南涡的发展演变过程。(4)副高强度增大以后,西南涡移速过快,导致了低涡中心与低层热力中心偏离,使得动力和热力中心不完全匹配,由此削弱西南涡发展强度。  相似文献   

18.
利用1979-2016年ERA-Interim一日四次高度场、风场再分析资料,根据源地的不同将西南涡细分为九龙涡、盆地涡和小金涡,对1979-2016年夏季(6-8月)不同涡源的西南涡的活动规律及其降水特征进行统计分析。结果表明,夏季西南涡平均年发生频数为11.6 a-1,其中生成的盆地涡最多(9.3 a-1),九龙涡次之(1.9 a-1),小金涡最少(0.4 a-1)。就移动频率而言,盆地涡移出率最高(44.2%),其次为小金涡(30.8%),九龙涡最低(29.73%)。38 a中夏季高影响型西南涡共有140例,只有105例能移出源地。生命史超过36 h的高影响型西南涡都会带来降水,并且超过88%的概率会造成大雨及以上的降水。高影响型九龙涡和盆地涡产生大雨及以上天气的概率分别是83%、91%,远远高于小金涡。  相似文献   

19.
近61年夏半年西南低涡的统计特征与异常发生的流型分析   总被引:1,自引:0,他引:1  
叶瑶  李国平 《高原气象》2016,(4):946-954
利用NCEP/NCAR再分析资料,统计了1954 2014年间夏半年(5 10月)西南低涡发生次数的年际变化,并着重分析了西南低涡异常发生年份的气候特征。结果表明,西南低涡多发年,低层流场在西南低涡关键区表现为西南风旺盛且辐合异常强,气旋性切变加大,低纬季风环流增强,导致大量正角动量输送至关键区,有利于西南低涡生成;同时印度洋输送至关键区的水汽通量增加,也有利于降水发生。而西南低涡少发年,低纬季风减弱,关键区为异常北风控制,南支绕流偏弱,水平散度场表现为辐散异常强,造成角动量输送减弱,不利于西南低涡生成;且来自于印度洋的季风水汽输送减弱,亦不利于降水发生。因此,除地形和加热作用外,西风带以及季风环流带来的水汽和角动量输送也是影响西南低涡发生的重要因子。  相似文献   

20.
高原低涡移出高原的观测事实分析   总被引:27,自引:0,他引:27  
郁淑华  高文良 《气象学报》2006,64(3):392-399
应用天气学、统计学原理,结合TRMM资料,分析了1998—2004年5—9月移出高原的低涡的活动特征。结果指出:6—8月是高原低涡移出高原影响中国东部天气的主要时段,它与高原低涡在高原上的活动特征及西南低涡移出高原特征均不同;移出高原的高原低涡的涡源主要在曲麻莱附近、德格附近,这与高原上产生低涡的涡源不同;移出高原的高原低涡的移动路径多数是随低槽的活动而向东、向东南移动,这与高原低涡在高原上多数是沿切变线移向东北不同,高原低涡移出高原后,不仅影响中国的范围广,还可能影响到朝鲜半岛、日本;高原低涡移出高原后涡的强度、性质会有变化,在高原以东活动时间长(≥36 h)的高原低涡,移出高原前多数为暖性低涡,移出高原后多数为斜压性低涡,低涡加强、多数可产生暴雨、大暴雨;高原低涡移出高原后移到海洋上,往往因下垫面不同而变化,出海后都有降水加强、多数位势高度下降的现象;移出高原后的高原低涡因东面海上热带气旋活动而少动,与其南面热带气旋活动相向而行,因季风低压少动而少动的现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号