首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deep-water area of the Pearl River Mouth Basin in the South China Sea has received much scientific attention since the Ocean Drilling Program (ODP) Leg 184 in 1999 due to its potential economic prospects and distinct tectono-sedimentary evolutionary processes. In this study, we present the composition of major and trace elements from two newly sampled deep-water boreholes (BY6 and LW3) in the Baiyun Sag of the southern Pearl River Mouth Basin. The geochemical evolution in the Oligocene–Middle Miocene, as well as potential controlling factors, are investigated based on a comparative study with previous data from ODP site 1148 and borehole PY33. The Chemical Index of Alteration (CIA) and A–CN–K plot reveal that the observed weathering trends are not compatible for the four discussed boreholes. Sedimentary sorting is primarily observed in borehole PY33, where data trend away from the A apex to the feldspar join in the A–CN–K plot and show a spread of Al2O3/SiO2 and Nb/Zr ratios. Compared to chemical weathering and hydrodynamic sorting, provenance has a greater impact on sediment composition of the deep-water area. From the north, the Pearl River was the primary sediment supply. However, a positive Eu anomaly and the provenance discrimination diagrams (i.e., La/Th versus Th/Yb and Zr/Co versus Th/Co) reveal the mafic nature of borehole BY6 sediments in the Zhuhai–Lower Zhujiang (32.0–18.5 Ma) and Upper Hanjiang (13.8–10.5 Ma) formations. These compositions are unusual and differ from the well-defined felsic sources in the majority of the Baiyun Sag; these discrepancies are likely related to multistage magmatism. The sediments at site 1148 are characterized by slightly enriched heavy rare earth elements and relatively high Zr/Co ratios, which could possibly be caused by zircon enrichment from local sources.  相似文献   

2.
The Sha-3-5 Submember of the Shahejie Formation in the Tanggu area of the Huanghua Depression contains analcime-bearing dolomite, indicating salinization of an ancient lake during deposition. Solar evaporation and hydrothermal salinization have both been proposed as ways to generate these saline conditions. Based on a comprehensive analysis of core data, thin sections, spore and pollen data, elemental geochemistry, pyrolysis results, and vitrinite reflectance, we assessed the mechanisms driving salinization in light of provenance evolution, geothermal evolution, paleoclimate, mineral responses to evaporation, and the relationship between fluid temperature and salinity. The vertical profiles of ΣREE, Eu/*Eu, and Tmax exhibit little variation, and the maximum paleotemperatures attained by organic matter are comparable to present-day drill hole temperature. No major changes in provenance or paleotemperature and no petrological fabrics that would indicate a hydrothermal input are observed in the studied section. However, evidence for a semi-humid to semi-arid climate, primary evaporitic textures and structures, and a positive relationship between fluid temperature and salinity all support evaporation as the primary mechanism driving rising salinity. Solar evaporation, rather than hydrothermal eruption, appears to have been the primary factor driving lake salinization during middle Eocene deposition of the dolomitic Sha-3-5 Submember.  相似文献   

3.
The lacustrine black shales in the Chang7 Member from the Upper Triassic Yanchang Formation of the Ordos Basin in Central China are considered one of the most important hydrocarbon source rocks. However, the mechanism of organic accumulation in the black shales remains controversial. To resolve the controversy, with the former paleontological data of Yanchang Formation and sedimentation rate data of the Chang7 black shales, we investigated the typical intervals of the Chang7 black shales (TICBS) which were obtained by drilling in Yaowan at the southern margin of the Ordos Basin and performed various sedimentary, isotopic and geochemical analysis, including the sedimentary petrography, pyrite morphology, total organic carbon (TOC) and total sulfur (TS), the ratio of pyritic Fe to total Fe (DOPT), major and trace elements, together with pyritic sulfur isotopes (δ34Spy). The high sulfur content, enrichment of redox-sensitive trace metals, and the lower sedimentation rate of the TICBS in addition to the presence of marine spined acritarchs and coelacanth fossils indicate that the TICBS were deposited in a lacustrine environment possibly influenced by seawater. The petrographic observations show a thick layer of black shale with interlayers of thin layered siltstone (silty mudstone) and laminated tuff, which were related to the turbidity currents and volcanism, respectively. The U/Th, C-S, and Mo-U covariations, pyrite morphology, DOPT, combined with the δ34Spy, suggest that the deposition occurred beneath the anoxic-sulfidic bottom waters, which was intermittently influenced by the oxygen-containing turbidity. The Ni/Al and Cu/Al possibly show extremely high to high primary productivity in the water column, which might be connected with the substantial nutrients input from seawater or frequently erupted volcanic ash entering the lake. In addition, the coincidence of an increased abundance of TOC with increased P/Al, Ni/Al, Cu/Al and U/Th, as well as relatively consistent Ti/Al suggest that the accumulation of the organic matter might be irrelevant to the clastic influx, and was mainly controlled by the high primary productivity and anoxic-sulfidic conditions. Further, the covariations of TOC vs. P/Al and TOC vs. Ba/Al indicate that the high primary productivity led to the elevated accumulation and burial of organic matter, while the anoxic to sulfidic conditions were likely resulted from an intense degradation of the organic matter during the early diagenesis. In summary, the organic matter accumulation is ultimately attributed to the high primary productivity possibly resulted from seawater or volcanic ash entering the lake.  相似文献   

4.
The Es3L (lower sub-member of the third member of the Eocene Shahejie Formation) shale in the Jiyang Depression is a set of relatively thick and widely deposited lacustrine sediments with elevated organic carbon, and is considered to be one of the most important source rocks in East China. We can determine the mineralogy, organic and inorganic geochemistry of the Es3L shale and calculate paleoclimate indexes by using multiple geochemical proxies based on organic chemistry (total organic carbon [TOC] and Rock-Eval pyrolysis), major and trace elements, X-Ray diffraction, and carbon and oxygen isotope data from key wells alongside ECS (Elemental Capture Spectroscopy) well log data. These indicators can be used to analyze the evolution of the paleoenvironment and provide a mechanism of organic matter (OM) accumulation. The Es3L oil shale has high TOC abundance (most samples >3.0%) and is dominated by Type I kerogens. Additionally, the organic-rich shale is rich in CaO and enrichment in some trace metals is present, such as Sr, Ba and U. The positive δ13C and negative δ18O values, high Sr/Ba, B/Ga and Ca/Ca + Fe ratios and low C/S ratios indicate that the Es3L shales were mainly deposited in a semi-closed freshwater-brackish water lacustrine environment. The consistently low Ti/Al and Si/Al ratios reflect a restricted but rather homogeneous nature for the detrital supply. Many redox indicators, including the Th/U, V/(V + Ni), and δU ratios, pyrite morphology and TOC-TS-Fe diagrams suggest deposition under dysoxic to suboxic conditions. Subsequently, the brackish saline bottom water evolved into an anoxic water body under a relatively arid environment, during which organic-lean marls were deposited in the early stage. Later, an enhanced warm-humid climate provided an abundant mineral nutrient supply and promoted the accumulation of algal material. OM input from algal blooms reached a maximum during the deposition of the organic-rich calcareous shale with seasonal laminations. High P/Ti ratios and a strongly positive relationship between the P and TOC contents indicate that OM accumulation in the oil shale was mainly controlled by the high primary productivity of surface waters with help from a less stratified water column. Factors such as the physical protection of clay minerals and the dilution of detrital influx show less influence on OM enrichment.  相似文献   

5.
华南陆缘出露的上三叠统-白垩系,累计厚度超过10 000m,露头调查未见油苗,烃源岩主要为泥岩、碳质泥岩和煤线,有机质类型以Ⅱ-Ⅲ型为主。上三叠统小水组,发育较深水的海相、Ⅱ型良好烃源岩,TOC为1.17%~5.43%;下侏罗统桥源组发育海陆过渡环境的Ⅲ型良好烃源岩,TOC为1.36%~10.37%;下侏罗统其他层系(金鸡组、银瓶山组、上龙水组、长埔组、吉水门组)发育浅海-半深海相的中等-好的烃源岩,TOC为0.5%~1.76%。烃源岩均已处于成熟-过成熟阶段。小水组、蓝塘群烃源岩品质良好,厚度巨大,在南海北部海域开展中生界烃源岩研究时,值得重点关注是否有与之相当的烃源岩层系发育。  相似文献   

6.
Rare earth elements (REEs: La-Lu) in surface sediments collected from the mouth and middle tidal flats of Gomso Bay, South Korea, in August 2011 and May 2012 were analyzed to investigate the fine-grained sediment provenance. The upper continental crust (UCC)-normalized light REEs (LREEs: La to Nd) were more enriched than the middle REEs (MREEs: Sm to Dy) and heavy REEs (HREEs: Ho to Lu), resulting in large (La/Yb)UCC (1.9 ± 0.4) to (Gd/Yb)UCC (1.4 ± 0.2) ratios. The monthly (La/Yb)UCC values differed between the mouth and middle tidal flats due to deposition of fine-grained sediments that originated from distant rivers (the Geum and Yeongsan) and the Jujin Stream, located on the southern shore of the inner bay. We observed relative reductions in the (La/Yb)UCC value and REE content in the sediments from the mouth of the bay compared with those from Jujin Stream sediments. Confined to the middle tidal flat around the KH Line of Jujin Stream, the sediments, most enriched in LREEs but depleted in Eu, were distributed in August as strong Jujin Stream runs. Here, we suggest that an increase in LREE/HREE and decrease in MREE/LREE ratios can be used as a proxy to identify the Jujin Stream provenance in mixed riverine sediments and to trace Jujin Stream sediments within the Gomso Bay tidal flat, especially in the summer rainy season.  相似文献   

7.
山东半岛东部海域表层沉积物元素组成及物源指示意义   总被引:1,自引:1,他引:0  
窦衍光  李军  杨守业 《海洋学报》2012,34(1):109-119
通过对山东半岛东部海域表层沉积物常量、微量元素、有机碳(TOC)以及碳酸盐(CaCO3)等指标的分析,研究了该海域表层沉积物元素组成特征及其控制因素,并对物质来源进行了探讨。结果表明,山东半岛东部海域表层沉积物元素的平均组成与上陆壳(UCC)相比Al,K,Na,Mg,Fe,Ca,Cu和Zn等元素,相对较低,而Mn,Co,Ni,Cr以及REE元素含量较高,Si和Ti与UCC的含量相当。研究区砂粒级沉积物轻重稀土分异明显,(La/Yb)N值与韩国河流的非常相近;其余粒级沉积物LREE分异较弱,标准化曲线与黄河沉积物的具有相似性。研究区沉积物的元素含量主要受控于源岩组成,存在明显的"粒级效应"。除此之外,Fe-Mn氧化物、生物碳酸盐等因素对元素组成产生一定影响。沉积物物源判别结果显示,山东半岛近岸及其东南部沉积物主要来源于黄河,该区域沉积物分布受山东半岛沿岸流及近岸潮流影响。研究区东北部为残留砂,其沉积物元素组成特征与朝鲜半岛和鸭绿江沉积物组成相近,表明研究区东北部砂质区沉积物代末次冰期低海平面时可能由朝鲜半岛或鸭绿江供应。  相似文献   

8.
Organic-rich black shale of the Upper Yangtze Basin from the Late Ordovician and Early Silurian is considered an excellent source rock in South China. The formation and preservation conditions of this resource are revealed by its geochemical characteristics in this study. Geochemical indices, including redox indices (V/(V + Ni), V/Cr, V/Sc, and Ni/Co) and primary productivity indices (P/Ti and Ba/Al), and paleoclimate, clastic flux and sedimentary rate analyses are presented to investigate the accumulation mechanism of organic matter. Redox indices suggest that a stagnant, anoxic environment predominated in the Upper Yangtze Basin during accumulation of Wufeng and Longmaxi formations. In contrast, ventilated and oxygenated marine conditions pervaded the Upper Yangtze Basin during deposition of Linxiang and Guanyinqiao formations. The concentrations of V and U demonstrate that accumulation of organic matter was mainly controlled by redox conditions. Besides, such factors as clastic fluxes, fresh water inflows or a mixed deposition with a rapid sedimentary rate cannot be ignored due to their influences on organic matter enrichment and preservation. However, weak co-variance relationship of TOC content and productivity proxies, including P/Ti and Ba/Al, demonstrates that the accumulation of organic matter was not controlled by primary productivity. Results of the present study suggest a depositional model that stresses the importance of tectonic movements and glacial events on the accumulation and preservation of organic matter. The model shows that the Upper Yangtze Basin was a semi-restricted basin system influenced by the isolation of Xuefeng, but also it implies that oxygen-depleted bottom water of the basin favored the accumulation and preservation of sedimentary organic matter, resulting in the formation of organic-rich black shale.  相似文献   

9.
Six manganese crusts, 13 manganese nodules, and 16 sediments were analyzed by instrumental neutron activation analysis. Data were generated on selected major and minor elements but geochemical evaluations are based only on Fe, Sc, U, Th, and the rare earth elements (REE). Manganese crusts and manganese nodules have comparable trivalent REE contents and show a shale‐like distribution pattern. Both crusts and nodules are characterized by a positive Ce anomaly but the anomaly is higher in nodules. REE contents in manganese nodules show a linear dependence on the Fe content, and it is concluded that these elements are incorporated in the Fe‐rich (δ‐MnO2) phase. In the crusts, the REE correlate with Sc and are therefore assumed to be associated with the clay minerals. Uranium contents are significantly higher in the crusts than in nodules whereas Th is slightly higher in the nodules. There is a clear positive correlation between U and Th in nodules but there are too few data to make a similar conclusion for crusts. Compositional data suggest a division of the sediments into two groups. The carbonate sediments have much lower REE contents and a more pronounced negative Ce anomaly than the clays, while both show a lithogenous component as indicated by a slight negative Eu anomaly.  相似文献   

10.
Rare earth elements (REEs) of 91 fine-grained bottom sediment samples from five major rivers in Korea (the Han, Keum, and Yeongsan) and China (the Changjiang and Huanghe) were studied to investigate their potential as source indicator for Yellow Sea shelf sediments, this being the first synthetic report on REE trends for bottom sediments of these rivers. The results show distinct differences in REE contents and their upper continental crust (UCC)-normalized patterns: compared to heavy rare earth elements (HREEs), light rare earth elements (LREEs) are highly enriched in Korean river sediments, in contrast to Chinese river sediments that have a characteristic positive Eu anomaly. This phenomenon is observed also in primary source rocks within the river catchments. This suggests that source rock composition is the primary control on the REE signatures of these river sediments, due largely to variations in the levels of chlorite and monazite, which are more abundant in Korean bottom river sediments. Systematic variations in ΣLREE/ΣHREE ratios, and in (La/Yb)–(Gd/Yb)UCC but also (La/Lu)–(La/Y)UCC and (La/Y)–(Gd/Lu)UCC relations have the greatest discriminatory power. These findings are consistent with, but considerably expand on the limited datasets available to date for suspended sediments. Evidently, the REE fingerprints of these river sediments can serve as a useful diagnostic tool for tracing the provenance of sediments in the Yellow Sea, and for reconstructing their dispersal patterns and the circulation system of the modern shelf, as well as the paleoenvironmental record of this and adjoining marginal seas.  相似文献   

11.
High-resolution geochemical, isotope and elemental data from core PC23A in the northern margin of the Aleutian Basin (Bering Sea) were used to reconstruct distinct paleoceanographic features of the last deglaciation (pre-Boreal[PB], Bølling-Allerød[BA], Younger Dryas[YD]). The PB and BA intervals are characterized by increased siliceous (diatom) and calcareous (coccolithophores and foraminifers) productivity represented by high biogenic opal and CaCO3 contents, respectively. The enhanced productivity can plausibly be attributed to an elevated sea-surface nutrient supply from increased melt-water input and enhanced Alaskan Stream injection under warm, restricted sea-ice conditions. High Corg/N ratios and low δ13C values of sediment organic matter during the PB and BA intervals reflect the contribution of terrestrial organic matters. The PB and BA intervals were also identified by laminated sediment layers of core PC23A, characterized by high Mo/Al and Cd/Al ratios, indicating that the bottom water condition remained anoxic. High δ15N values during the same period were attributed mainly to the increased nutrient utilization and subsequent denitrification of seawater nitrate. Part of high δ15N values may also be due to incorporation of inorganic nitrogen in the clay minerals. It is worthy of note that high total organic carbon (TOC) deposition occurred approximately 3,000 years before onset of the last deglaciation. Simultaneous high Corg/N ratios and low δ13C values clearly suggest that the high TOC content should be related to terrestrial organic carbon input. Low δ15N values during the high TOC interval also confirm the contribution of terrigenous organic matter. Although abundant calcareous phytoplankton production under cold, nutrient-poor conditions represented by Baex data was reported for high TOC deposition preceding the last deglaciation in an earlier study of the Okhotsk Sea, the main reason for the enhanced TOC deposition in the Bering Sea is an increased terrigenous input from the submerged continental shelves (Beringia) with a sea-level rise; this is further supported by Al enrichment of bulk sediments during the high TOC deposition.  相似文献   

12.
This study aims at investigating hydrocarbon generation potential and biological organic source for the Tertiary coal-bearing source rocks of Pinghu Formation (middle-upper Eocene) in Xihu depression, East China Sea shelf basin. Another goal is to differentiate coal and mudstone with respect to their geochemical properties. The coal-bearing sequence has a variable organofacies and is mainly gas-prone. The coals and carbonaceous mudstones, in comparison with mudstones, have a higher liquid hydrocarbon generation potential, as reflected by evidently higher HI values (averaging 286 mg HC/g C) and H/C atomic ratios (round 0.9). The molecular composition in the coal-bearing sequence is commonly characterized by unusually abundant diterpenoid alkanes, dominant C29 sterane over C27 and C28 homologues and high amount of terrigenous-related aromatic biomarkers such as retene, cadalene and 1, 7-dimethylphenanthrene, indicating a predominantly terrigenous organic source. The source rocks show high Pr/Ph ratios ranging mostly from 3.5 to 8.5 and low MDBTs/MDBFs ratios (<1.0), indicating deposition in an oxic swamp-lacustrine environment. The coals and carbonaceous mudstones could be differentiated from the grey mudstones by facies-dependent biomarker parameters such as relative sterane concentration and gammacerane index and carbon isotope composition. Isotope and biomarker analysis indicate the genetic correlation between the Pinghu source rocks and the oils found in Xihu depression. Moreover, most oils seem to be derived from the coal as well as carbonaceous mudstone.  相似文献   

13.
Palynological and biomarker characteristics of organic facies recovered from Cretaceous–Miocene well samples in the Ras El Bahar Oilfield, southwest Gulf of Suez, and their correlation with lithologies, environments of deposition and thermal maturity have provided a sound basis for determining their source potential for hydrocarbons. In addition to palynofacies analysis, TOC/Rock-Eval pyrolysis, kerogen concentrates, bitumen extraction, carbon isotopes and saturated and aromatic biomarkers enable qualitative and quantitative assessments of sedimentary organic matter to be made. The results obtained from Rock-Eval pyrolysis and molecular biomarker data indicate that most of the samples come from horizons that have fair to good hydrocarbon generation potential in the study area. The Upper Cretaceous–Paleocene-Lower Eocene samples contain mostly Type-II to Type-III organic matter with the capability of generating oil and gas. The sediments concerned accumulated in dysoxic–anoxic marine environments. By contrast, the Miocene rocks yielded mainly Type-III and Type-II/III organic matter with mainly gas-generating potential. These rocks reflect deposition in a marine environment into which there was significant terrigenous input. Three palynofacies types have been recognized. The first (A) consists of Type-III gas-prone kerogen and is typical of the Early–Middle Miocene Belayim, Kareem and upper Rudeis formations. The second (B) has mixed oil and gas features and characterizes the remainder of the Rudeis Formation. The third association (C) is dominated by amorphous organic matter, classified as borderline Type-II oil-prone kerogen, and is typical of the Matulla (Turonian–Santonian) and Wata (Turonian) formations. Rock-Eval Tmax, PI, hopane and sterane biomarkers consistently indicate an immature to early mature stage of thermal maturity for the whole of the studied succession.  相似文献   

14.
In order to understand the paleoenvironment of the Early Cambrian black shale deposition in the western part of the Yangtze Block, geochemical and organic carbon isotopic studies have been performed on two wells that have drilled through the Qiongzhusi Formation in the central and southeastern parts of Sichuan Basin. It shows that the lowest part of the Qiongzhusi Formation has high TOC abundance, while the middle and upper parts display relative low TOC content. Redox-sensitive element (Mo) and trace elemental redox indices (e.g., Ni/Co, V/Cr, U/Th and V/(V + Ni)) suggest that the high-TOC layers were deposited under anoxic conditions, whereas the low-TOC layers under relatively dysoxic/oxic conditions. The relationship of the enrichment factors of Mo and U further shows a transition from suboxic low-TOC layers to euxinic high-TOC layers. On the basis of the Mo-TOC relationship, the Qiongzhusi Formation black shales were deposited in a basin under moderately restricted conditions. Organic carbon isotopes display temporal variations in the Qiongzhusi Formation, with a positive excursion of δ13Corg values in the lower part and a continuous positive shift in the middle and upper parts. All these geochemical and isotopic criteria indicate a paleoenvironmental change from bottom anoxic to middle and upper dysoxic/oxic conditions for the Qiongzhusi Formation black shales. The correlation of organic carbon isotopic data for the Lower Cambrian black shales in different regions of the Yangtze Block shows consistent positive excursion of δ13Corg values in the lower part for each section. This excursion can be ascribed to the widespread Early Cambrian transgression in the Yangtze Block, under which black shales were deposited.  相似文献   

15.
The Triassic formation is a possible new giant hydrocarbon generated formation in Northwest China and Mid-Asia. Taking the Upper Triassic formation in the Sikeshu Sag in Junggar Basin as an example, based on the comprehensive analysis on the geochemical characteristics of the cores and the dark mudstone of the outcrops and reservoir formation conditions, we have evaluated the Upper Triassic source rocks by comparing with those in the Ulungu Depression, and reached the following findings. Firstly, the Upper Triassic formation is mainly composed of dark mudstone and sandy mudstone deposits, and the hydrocarbon source rock is mainly distributed in the middle and upper parts with a thickness range of 100–150 m and area of 3500 km2. Secondly, the source rock, moderate in organic matter abundance (with TOC range of 1%–3%), has the material basis for hydrocarbon generation. Thirdly, the organic matter has high percentage of sapropelinite, and is dominated by type II2. Fourthly, the degree of the thermal evolution is moderate, and the source rock with Ro higher than 0.7% has a distribution area of about 1800 km2, providing the conditions of massive hydrocarbon generation. Fifthly, the source rock has great burial depth and wide distribution; the source rock with a Ro of higher than 0.7% and thickness of more than 100 m has an area of around 1400 km2, implying huge resource potential. Sixthly, the next step exploration should focus on highly mature hydrocarbon generation central area in the Upper Triassic - Lower Jurassic in the east of the sag to search for and confirm favorable traps. The research findings have important reference value for promoting the resource status of, deepening the understanding of reservoir formation, and clarifying the exploration direction in the Sikeshu Sag and other periphery Mid-Asia areas.  相似文献   

16.
This study investigates the source rock characteristics of Permian shales from the Jharia sub-basin of Damodar Valley in Eastern India. Borehole shales from the Raniganj, Barren Measure and Barakar Formations were subjected to bulk and quantitative pyrolysis, carbon isotope measurements, mineral identification and organic petrography. The results obtained were used to predict the abundance, source and maturity of kerogen, along with kinetic parameters for its thermal breakdown into simpler hydrocarbons.The shales are characterized by a high TOC (>3.4%), mature to post-mature, heterogeneous Type II–III kerogen. Raniganj and Barren Measure shales are in mature, late oil generation stage (Rr%Raniganj = 0.99–1.22; Rr%Barren Measure = 1.1–1.41). Vitrinite is the dominant maceral in these shales. Barakar shows a post-mature kerogen in gas generation stage (Rr%Barakar = 1.11–2.0) and consist mainly of inertinite and vitrinite. The δ13Corg value of kerogen concentrate from Barren Measure shale indicates a lacustrine/marine origin (−24.6–−30.84‰ vs. VPDB) and that of Raniganj and Barakar (−22.72–−25.03‰ vs. VPDB) show the organic provenance to be continental. The δ13C ratio of thermo-labile hydrocarbons (C1–C3) in Barren Measure suggests a thermogenic source.Discrete bulk kinetic parameters indicate that Raniganj has lower activation energies (ΔE = 42–62 kcal/mol) compared to Barren Measure and Barakar (ΔE = 44–68 kcal/mol). Temperature for onset (10%), middle (50%) and end (90%) of kerogen transformation is least for Raniganj, followed by Barren Measure and Barakar. Mineral content is dominated by quartz (42–63%), siderite (9–15%) and clay (14–29%). Permian shales, in particular the Barren Measure, as inferred from the results of our study, demonstrate excellent properties of a potential shale gas system.  相似文献   

17.
台湾海峡西部沉积物中碳的来源及埋藏   总被引:4,自引:1,他引:3  
根据2005年夏季航次观测的沉积物中总有机碳(TOC)、无机碳(CaCO3)、总氮(TN)、悬浮体颗粒有机碳(POC)、沉积物粒度数据得出,台湾海峡西部表层沉积物TOC质量分数的范围为0.01~1.79,平均值为0.37±0.24,略高于20多年前台湾海峡南部海区,而低于台湾海峡中、北部海区;TOC的质量分数湾内比湾外...  相似文献   

18.
There are two sets of carbonate source rocks in the Lower Carboniferous layers in Marsel: the Visean (C1v) and Serpukhovian (C1sr). However, their geochemical and geological characteristics have not been studied systematically. To assess the source rocks and reveal the hydrocarbon generation potential, the depositional paleoenvironment and distribution of C1v and C1sr source rocks were studied using total organic carbon (TOC) content, Rock-Eval pyrolysis and vitrinite reflectance (Ro) data, stable carbon isotope data, gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analysis data. The data were then compared with well logging data to understand the distribution of high-quality source rocks. The data were also incorporated into basin models to reveal the burial and thermal histories and timing of hydrocarbon generation. The results illustrated that the average residual TOC contents of C1v and C1sr were 0.79% and 0.5%, respectively, which were higher than the threshold of effective carbonate source rocks. Dominated by type-III kerogen, the C1v and C1sr source rocks tended to be gas-bearing. The two source rocks were generally mature to highly mature; the average Ro was 1.51% and 1.23% in C1v and C1sr, respectively. The source rocks were deposited in strongly reducing to weakly oxidizing marine–terrigenous environments, with most organic material originating from higher terrigenous plants and a few aquatic organisms. During the Permian, the deep burial depth and high heat flow caused a quick and high maturation of the source rocks, which were subsequently uplifted and eroded, stopping the generation and expulsion of hydrocarbons in the C1v and C1sr source rocks. The initial TOC fitted by the △logR method was recovered, and it suggests that high-quality source rocks (TOC ≥ 1%) are mainly distributed in the northern and central local structural belt.  相似文献   

19.
《Marine Chemistry》2001,73(1):1-19
The extent and the time constant of dissolution of a set of inorganic tracers during the decomposition of large marine particles are estimated through in vitro experiments. Large marine particles were collected with in situ pumps at 30 m and 200 m in the Ligurian Sea at the end of summer. They were subsequently incubated under laboratory conditions with their own bacterial assemblage for 20 days in batches under oxic conditions in the dark. Some samples were initially sterilized in order to observe possible differences between biotic and abiotic samples. Particulate (>0.2 μm) and dissolved (<0.2 μm) concentrations of Al, Sr, Ba, Mn, Rare Earth Elements (REE) and Th isotopes were determined over time. We obtain percentages of dissolution in agreement with the general knowledge about the solubility of these tracers: Th≈Al<Heavy REE<Light REE<Mn<Ba<Sr. For Mn and Ce, precipitation/adsorption occurs at the end of the experiment probably due to their oxidation as insoluble oxides. Particulate residence time of the tracers ranged from less than 1 day to 10–14 days. During the experiment, biological activity has a control on the dissolution process through the remineralization of particulate organic carbon. In the 30 m experiment, the observed dissolution of aragonite indicates that the pH of the incubation solution significantly decreases in response to the CO2 respiration. Speciation calculations suggest that this pH shift leads to a decrease of the complexation of dissolved REE by carbonate ions. Th isotope data are consistent with an irreversible dissolution of Th and they do not support a rapid particle–solution chemical equilibrium.  相似文献   

20.
In conventional studies of tracing dolomitization and diagenetic fluids, REEs of dolomites were widely used as been normalized by PAAS, NASC or chondrite. However, most dolomites are formed in seawater or seawater-derived fluids. Thus, we conduct a new attempt to normalize the REEs of dolomite using seawater standard, based on case studies on 36 Triassic limestone–dolomite samples from the Geshan section of southeast China and 26 Permian–Triassic dolomite samples from the Panlongdong section of northeastern Sichuan Basin, southwest China.The Geshan seawater-normalized (SN) REE patterns are characterized by notable positive CeSN (average CeSN/Ce* = 6.823, SD = 0.192) and negative PrSN anomalies (average PrSN/Pr* = 0.310, SD = 0.010), and slightly negative GdSN anomalis (average GdSN/Gd* = 0.864, SD = 0.053), with no obvious EuSN anomaly (average EuSN/Eu* = 1.036, SD = 0.094). The signatures of REE patterns barely changed during the dolomitization process. For the REE compositions of the Panlongdong dolomite, it can be found that (1) the recrystallization process can result in varied total REE concentrations (between 7.16 ppm and 37.87 ppm), but do not alter the REE patterns, including consistent positive CeSN anomalies (average = 4.074, SD = 0.27) and LREE enrichment (average NdSN/YbSN = 3.164, SD = 0.787); (2) meteoric incursion can reverse Ce anomaly, from the strong positive Ce anomalies (CeSN/Ce* = 5.059) to slightly positive (CeSN/Ce* = 2.459) or even negative Ce anomalies; and (3) hydrothermal fluid altered REE pattern is complicated by fluctuated distribution curve, negative Ce anomaly and positive Eu anomaly (EuSN/Eu* = 1.862). These results suggest that the seawater normalized REE patterns of dolomite can serve as an index to study the source of the dolomitization fluids and distinguish complex diagenetic processes, providing a complement to previous works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号