首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
1Introduction TheBeringSea,locatedinthesub-arcticNorth Pacific,playsanimportantroleininfluencingtheevo- lutionaryprocessoftheglobalclimaticsystembecause itsseasonalseaiceisformedinrelativelowerlatitudes (Takahashi,1999).ItisalsoasinkofatmosphericCO2, whichisoriginatedfromtheeffectivebiologicalpump inthissea.Particulatefluxdatameasuredinthesea overthelast10aindicatethattheorganic/inorganic carbonratiowasalwaysgreaterthan1,whichexplains thattheBeingSeaoccupiesasignificantpositionin theproces…  相似文献   

2.
Relationships between organic carbon, total nitrogen and organic nitrogen concentrations and variations in δ13Corg and δ15Norg are examined in surface sediments from the eastern central Arctic Ocean and the Yermak Plateau. Removing the organic matter from samples with KOBr/KOH and determining residual as well as total N shows that there is a significant amount of bound inorganic N in the samples, which causes TOC/Ntotal ratios to be low (4–10 depending on the organic content). TOC/Norg ratios are significantly higher (8–16). This correction of organic TOC/N ratios for the presence of soil-derived bound ammonium is especially important in samples with high illite concentrations, the clay mineral mainly responsible for ammonium adsorption. The isotopic composition of the organic N fraction was estimated by determining the isotopic composition of the total and inorganic nitrogen fractions and assuming mass-balance. A strong correlation between δ15Norg values of the sediments and the nitrate concentration of surface waters indicates different relative nitrate utilization rates of the phytoplankton in various regions of the Arctic Ocean. On the Yermak Plateau, low δ15Norg values correspond to high nitrate concentrations, whereas in the central Arctic Ocean high δ15Norg values are found beneath low nitrate waters. Sediment δ13Corg values are close to −23.0‰ in the Yermak Plateau region and approximately −21.4‰ in the central Arctic Ocean. Particulate organic matter collected from meltwater ponds and ice-cores are relatively enriched in 13C (δ13Corg=−15.3 to −20.6‰) most likely due to low CO2(aq) concentrations in these environments. A maximum terrestrial contribution of 30% of the organic matter to sediments in the central Arctic Ocean is derived, based on the carbon isotope data and various assumptions about the isotopic composition of the potential endmembers.  相似文献   

3.
In order to understand the paleoenvironment of the Early Cambrian black shale deposition in the western part of the Yangtze Block, geochemical and organic carbon isotopic studies have been performed on two wells that have drilled through the Qiongzhusi Formation in the central and southeastern parts of Sichuan Basin. It shows that the lowest part of the Qiongzhusi Formation has high TOC abundance, while the middle and upper parts display relative low TOC content. Redox-sensitive element (Mo) and trace elemental redox indices (e.g., Ni/Co, V/Cr, U/Th and V/(V + Ni)) suggest that the high-TOC layers were deposited under anoxic conditions, whereas the low-TOC layers under relatively dysoxic/oxic conditions. The relationship of the enrichment factors of Mo and U further shows a transition from suboxic low-TOC layers to euxinic high-TOC layers. On the basis of the Mo-TOC relationship, the Qiongzhusi Formation black shales were deposited in a basin under moderately restricted conditions. Organic carbon isotopes display temporal variations in the Qiongzhusi Formation, with a positive excursion of δ13Corg values in the lower part and a continuous positive shift in the middle and upper parts. All these geochemical and isotopic criteria indicate a paleoenvironmental change from bottom anoxic to middle and upper dysoxic/oxic conditions for the Qiongzhusi Formation black shales. The correlation of organic carbon isotopic data for the Lower Cambrian black shales in different regions of the Yangtze Block shows consistent positive excursion of δ13Corg values in the lower part for each section. This excursion can be ascribed to the widespread Early Cambrian transgression in the Yangtze Block, under which black shales were deposited.  相似文献   

4.
This paper examines disposal of metals and the origin, characteristics, and distribution of sedimentary organic matter (SOM) in a Mediterranean karstic estuary in the north-eastern Adriatic. This environment offers a real-time, small model system for studies of geochemical processes in microtidal Mediterranean estuaries that are infilling with sediments and classified as river-dominated disequilibrium estuaries. The results have shown that the longitudinal distribution of heavy metals in sediments follows the sedimentation dynamics and deposition pattern of river-borne, clay mineral particles. The highest concentration of metals was found in the restricted upper part of the estuary, characterized by rapid deposition of clay particles and terrestrial sedimentary organic matter, and decreases toward the open sea. The vertical distribution of metals in sediment cores depends on the prevailing pH and Eh conditions. Significant increases of the concentrations of metals in the uppermost strata are the result of recent anthropogenic inputs. The share of the terrestrial component in SOM, estimated by N/Corg atomic ratios and δ13C values, decreases with distance from the river mouth. The small vertical variation in δ13C values of SOM indicates that a fast sedimentation rate overrides the diagenetically determined decomposition. The results obtained indicate that river-borne inorganic particles, natural terrigenous organic material, and anthropogenic metal loads are trapped in sediments of the estuarine system. Under the prevailing conditions, there is negligible transport towards the open sea.  相似文献   

5.
The Es3L (lower sub-member of the third member of the Eocene Shahejie Formation) shale in the Jiyang Depression is a set of relatively thick and widely deposited lacustrine sediments with elevated organic carbon, and is considered to be one of the most important source rocks in East China. We can determine the mineralogy, organic and inorganic geochemistry of the Es3L shale and calculate paleoclimate indexes by using multiple geochemical proxies based on organic chemistry (total organic carbon [TOC] and Rock-Eval pyrolysis), major and trace elements, X-Ray diffraction, and carbon and oxygen isotope data from key wells alongside ECS (Elemental Capture Spectroscopy) well log data. These indicators can be used to analyze the evolution of the paleoenvironment and provide a mechanism of organic matter (OM) accumulation. The Es3L oil shale has high TOC abundance (most samples >3.0%) and is dominated by Type I kerogens. Additionally, the organic-rich shale is rich in CaO and enrichment in some trace metals is present, such as Sr, Ba and U. The positive δ13C and negative δ18O values, high Sr/Ba, B/Ga and Ca/Ca + Fe ratios and low C/S ratios indicate that the Es3L shales were mainly deposited in a semi-closed freshwater-brackish water lacustrine environment. The consistently low Ti/Al and Si/Al ratios reflect a restricted but rather homogeneous nature for the detrital supply. Many redox indicators, including the Th/U, V/(V + Ni), and δU ratios, pyrite morphology and TOC-TS-Fe diagrams suggest deposition under dysoxic to suboxic conditions. Subsequently, the brackish saline bottom water evolved into an anoxic water body under a relatively arid environment, during which organic-lean marls were deposited in the early stage. Later, an enhanced warm-humid climate provided an abundant mineral nutrient supply and promoted the accumulation of algal material. OM input from algal blooms reached a maximum during the deposition of the organic-rich calcareous shale with seasonal laminations. High P/Ti ratios and a strongly positive relationship between the P and TOC contents indicate that OM accumulation in the oil shale was mainly controlled by the high primary productivity of surface waters with help from a less stratified water column. Factors such as the physical protection of clay minerals and the dilution of detrital influx show less influence on OM enrichment.  相似文献   

6.
The Western Desert of Egypt is one of the world’s most prolific Jurassic and Cretaceous hydrocarbon provinces. It is one of many basins that experienced organic-rich sedimentation during the late Cenomanian/early Turonian referred to as oceanic anoxic event 2 (OAE2). The Razzak #7 oil well in the Razzak Field in the northern part of the Western Desert encountered the Upper Cretaceous Abu Roash Formation. This study analyzed 23 samples from the upper “G”, “F”, and lower “E” members of the Abu Roash Formation for palynomorphs, particulate organic matter, total organic carbon (TOC) and δ13Corg in order to identify the OAE2, determine hydrocarbon source rock potential, and interpret the depositional environment. The studied samples are generally poor in palynomorphs, but show a marked biofacies change between the lower “E” member and the rest of the studied samples. Palynofacies analysis (kerogen quality and quantity) indicates the presence of oil- and gas-prone materials (kerogen types I and II/III, respectively), and implies reducing marine paleoenvironmental conditions. Detailed carbon stable isotopic and organic carbon analyses indicate that fluctuations in the δ13Corg profile across the Abu Roash upper “G”, “F”, and lower “E” members correspond well with changes in TOC values. A positive δ13Corg excursion (∼2.01‰) believed to mark the short-term global OAE2 was identified within the organic-rich shaly limestone in the basal part of the Abu Roash “F” member. This excursion also coincides with the peak TOC measurement (24.61 wt.%) in the samples.  相似文献   

7.
The lacustrine black shales in the Chang7 Member from the Upper Triassic Yanchang Formation of the Ordos Basin in Central China are considered one of the most important hydrocarbon source rocks. However, the mechanism of organic accumulation in the black shales remains controversial. To resolve the controversy, with the former paleontological data of Yanchang Formation and sedimentation rate data of the Chang7 black shales, we investigated the typical intervals of the Chang7 black shales (TICBS) which were obtained by drilling in Yaowan at the southern margin of the Ordos Basin and performed various sedimentary, isotopic and geochemical analysis, including the sedimentary petrography, pyrite morphology, total organic carbon (TOC) and total sulfur (TS), the ratio of pyritic Fe to total Fe (DOPT), major and trace elements, together with pyritic sulfur isotopes (δ34Spy). The high sulfur content, enrichment of redox-sensitive trace metals, and the lower sedimentation rate of the TICBS in addition to the presence of marine spined acritarchs and coelacanth fossils indicate that the TICBS were deposited in a lacustrine environment possibly influenced by seawater. The petrographic observations show a thick layer of black shale with interlayers of thin layered siltstone (silty mudstone) and laminated tuff, which were related to the turbidity currents and volcanism, respectively. The U/Th, C-S, and Mo-U covariations, pyrite morphology, DOPT, combined with the δ34Spy, suggest that the deposition occurred beneath the anoxic-sulfidic bottom waters, which was intermittently influenced by the oxygen-containing turbidity. The Ni/Al and Cu/Al possibly show extremely high to high primary productivity in the water column, which might be connected with the substantial nutrients input from seawater or frequently erupted volcanic ash entering the lake. In addition, the coincidence of an increased abundance of TOC with increased P/Al, Ni/Al, Cu/Al and U/Th, as well as relatively consistent Ti/Al suggest that the accumulation of the organic matter might be irrelevant to the clastic influx, and was mainly controlled by the high primary productivity and anoxic-sulfidic conditions. Further, the covariations of TOC vs. P/Al and TOC vs. Ba/Al indicate that the high primary productivity led to the elevated accumulation and burial of organic matter, while the anoxic to sulfidic conditions were likely resulted from an intense degradation of the organic matter during the early diagenesis. In summary, the organic matter accumulation is ultimately attributed to the high primary productivity possibly resulted from seawater or volcanic ash entering the lake.  相似文献   

8.
Stable carbon and nitrogen isotopic composition of particulate organic matter(POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon(POC) and particulate nitrogen(PN) showed high concentrations in the shelf and slope regions and decreased with depth in the slope and basin, indicating that biological processes play an important role on POM distribution. The low C/N ratio and heavy isotopic composition of POM, compared to those from the Alaska River, suggested a predominant contribution of marine biogenic organic matter in the Bering Sea. The fact that δ13C and δ15N generally increased with depth in the Bering Sea basin demonstrated that organic components with light carbon or nitrogen were decomposed preferentially during their transport to deep water. However, the high δ13C and δ15N observed in shelf bottom water were mostly resulted from sediment resuspension.  相似文献   

9.
通过对楚科奇海及邻近的北冰洋深水区表层沉积物中有机碳同位素含量(δ13C)、氮同位素含量(δ15N)及生物成因SiO2(BSiO2)含量分析,结果表明海源和陆源有机质的分布受海区环流结构和营养盐结构所制约.楚科奇海中西部和楚科奇海台受太平洋富营养盐海水的影响,海洋生产力高,沉积物中海源有机质和BSiO2含量高;靠阿拉斯加一侧海域海水的营养盐含量和生产力都偏低,沉积物中陆源有机质比重增加;在研究区北部和东北部的楚科奇高地和加拿大海盆,冰封时间较长,营养盐供应少,海洋生产力低,但来自马更些河和阿拉斯加北部的陆源有机质增多,沉积物中BSiO2含量小于5%,海源有机质百分含量小于40%.由于亚北极太平洋水通过楚科奇海向北冰洋海盆输送,研究区营养盐池表现为开放系统,营养盐的利用率与它的供应成反比,与海洋生产力成反比.  相似文献   

10.
Authigenic minerals were studied in Holocene shelf sediments of the Laptev Sea (cold methane seep site, water depth 71 m). The study presents the first finds of large hard carbonate concretions with Mg-calcite cement in recent sediments of the Arctic shelf seas. These concretions differ from previously reported glendonites and concretions from bottom sediments of the White Sea, Kara Sea, Sea of Okhotsk, etc. A study of the morphology, microstructure, and composition of these newly reported concretions revealed the multistage formation of carbonates (structural varieties of Mg-calcite and aragonite). It was shown that organic matter played an important role in the formation of authigenic carbonates, i.e., in the formation of sedimentary–diagenetic Mg-calcite. The role of methane as a possible source for authigenic carbonate formation was estimated. It was found that methane-derived Mg-calcite accounts for 17–35% of concretion materials. Mg-calcite had δ13С-Сcarb values between–24 and–23‰ and δ13С-Сorg values between–44.5 and–88.5‰.  相似文献   

11.
The data on the isotopic composition of particulate organic carbon (δ13CPOC) in the Caspian Sea water in summer–autumn 2008, 2010, 2012, and 2013 are discussed in the paper. These data allowed as to reveal the predominant genesis of organic carbon in suspended particulate matter of the active seawater layer (from 0 to 40 m). The δ13CPOC =–27‰ (PDB) and δ13CPOC =–20.5‰ (PDB) values were taken as the reference data for terrigenous and planktonogenic organic matter, respectively. Seasonal (early summer, late summer, and autumn) variations in the composition of suspended particulate matter in the active sea layer were revealed. A shift of δ13CPOC towards greater values was seen in autumn (with a slight outburst in the development (bloom) of phytoplankton) in comparison with summer (with large accumulations and an extraordinary phytoplankton bloom confined to the thermocline area). The seasonal dynamics of autochthonous and allochthonous components in the suspended particulate matter of the Middle and Southern Caspian Sea was studied with the use of data on the concentration of particulate matter and chlorophyll a, the phytoplankton biomass and the POC content.  相似文献   

12.
南海西部越南岸外MD05-2901孔沉积物分析显示,该孔覆盖氧同位素1-12期,底界年龄约为48万年。生源组分记录显示表层古生产力冰期高、间冰期低,体现间冰期海平面下降、陆源物质输入增强的影响。生产力在末次冰期达到最高,体现末次盛冰期海陆差异增强,东北风发育对生产力提高的促进作用。碳酸钙含量变化呈现冰期早期含量低、冰消期和间冰期含量高的趋势。其冰消期的高值在MIS1/2、MIS3/4和MIS5/6分界处,与浮游有孔虫碳同位素低值对应,揭示该地区的碳酸钙沉积旋回是“稀释旋回”。同时碳酸钙含量变化领先于同一地区浮游有孔虫氧同位素的变化,证明低纬海区碳酸钙泵作用对大气二氧化碳浓度和温度有影响。滤波分析结果显示碳同位素存在23 ka的岁差周期和偏心率长周期,生源组分的含量变化显示出典型的岁差周期,体现南海季风环流的轨道响应,证明低纬热带过程是调节气候变化的重要因素。  相似文献   

13.
通过中国第1至第3次北极科学考察在北冰洋西部所采集的99个表层沉积物中生源与陆源粗组分的分析,研究了该海域表层生产力的变化,有机质来源以及陆源粗颗粒物质的输入方式和影响因素.研究区域生源组分所反映的表层生产力变化与通过白令海峡进入楚科奇海的3股太平洋洋流密切相关.楚科奇海西侧高盐高营养盐的阿纳德尔流流经区域,表层生产力...  相似文献   

14.
《Marine Geology》1999,153(1-4):303-318
Organic geochemistry and micropaleontology are used to determine the origin of sapropel S1 in the Aegean Sea. Low-molecular-weight (C15, C17 and C19) n-alkane data show that net primary productivity (NPP) increased from ∼14,000 to 10,000 yr BP at the glacial interglacial transition, but the onset of S1 at 9600 yr BP marks a sharp decline in NPP, which remained low until ∼8200 yr BP. The start of sapropel deposition is marked by increased total organic carbon (TOC) and pollen-spore concentrations, together with increased high-molecular-weight (C27, C29, C31 and C33) n-alkanes. Pollen assemblages show large influx of tree pollen from central-northern European forests. Increases in high-molecular-weight n-alkanes suggest greater influx of fresh vascular plant material at the start of S1, although the amount is small compared to other insoluble organic matter. Palynological studies showed that most of this insoluble organic matter are flocks of dark-brown amorphous kerogen, typical of terrigenous humic compounds. From ∼8200 yr BP to the top of S1 at ∼6400 yr BP, there is a decline in high-molecular-weight n-alkanes and terrigenous kerogen, and an increase in low-molecular-weight n-alkanes, suggesting that NPP recovered during the later deposition of S1 in the Aegean Sea. The increase in low-molecular-weight n-alkanes coincides with the recovery of coccolithophores and dinoflagellates, suggesting that these phytoplankton are primarily responsible for the low-molecular-weight n-alkane variations. These data from the Aegean Sea support the model for sapropel deposition resulting from increased influx of TOC during times of stagnant bottom water, but disagree with Mediterranean models prescribing a large increase in marine productivity.  相似文献   

15.
The Jiaozhou Bay is characterized by heavy eutrophication that is associated with intensive anthropogenic activities. Four core sediments from the Jiaozhou Bay are analyzed using bulk technologies, including sedimentary total organic carbon(TOC), total nitrogen(TN), the stable carbon(δ~(13)C) and nitrogen(δ~(15) N) isotopic composition to obtain the comprehensive understanding of the source and composition of sedimentary organic matter and further shed light on the environmental changes of the Jiaozhou Bay on a centennial time scale.Results suggest that the TOC and TN concentrations increase in the upper core, having indicated a probable eutrophication process since the 1920 s in the inner bay and the 2000 s in the bay mouth. The TOC and TN concentrations outside the bay have also changed since 1916 owing to the variation of terrigenous input.Considering TOC/TN ratio, δ~(13) C and δ~(15) N, it can be concluded there is a mixture of terrigenous and marine organic matter sources in the study area. A simple two end-member(terrigenous and marine) mixing model usingδ~(13) C indicats that 45%–79% of TOC in the Jiaozhou Bay is from the marine source. The environmental changes of the Jiaozhou Bay are recorded by geochemical proxies, which are influenced by the intensive anthropogenic activities(e.g., extensive use of fertilizers, and discharge of sewage) and climate changes(e.g., rainfall).  相似文献   

16.
We present data on the quality and quantity of particulate organic material deposited to the benthos in the Chukchi Sea. This analysis is undertaken by using 7Be, a short-lived radiotracer, which is associated with particle deposition, the stable carbon isotopic composition of organic material and its C/N ratio in the water column and within the sediments, and the inventories of chlorophyll a present in surface sediments. Using previously published data, we show that sedimentation processes in the regional Bering Strait ecosystem may have shifted in the past decade. Surface sediments collected in 2004 adjacent to the Russian coastline in the Chukchi Sea are less refractory in terms of carbon isotope ratios and C/N ratios than was observed for surface sediments at similar locations in 1995 and 1988. Based upon sediment 7Be and chlorophyll a inventories, short-term sedimentation on the shelf occurs immediately north of Bering Strait, and within and downstream of Barrow and Herald Canyons. Seasonal differences (i.e., ice-covered versus open-water conditions) in the quality of particulate organic carbon reaching the benthos appear to be small in the most productive waters, such as Barrow Canyon. However, in less productive waters, C/N ratios and δ13C values show seasonal variations. Once on the bottom, δ13C values in the organic fractions of the sediments are less negative than observed in settling material in the water column, which is commonly thought to result from biological processing within the sediments.  相似文献   

17.
Sediments were sampled and oxygen profiles of the water column were determined in the Indian Ocean off west and south Indonesia in order to obtain information on the production, transformation, and accumulation of organic matter (OM). The stable carbon isotope composition (δ13Corg) in combination with C/N ratios depicts the almost exclusively marine origin of sedimentary organic matter in the entire study area. Maximum concentrations of organic carbon (Corg) and nitrogen (N) of 3.0% and 0.31%, respectively, were observed in the northern Mentawai Basin and in the Savu and Lombok basins. Minimum δ15N values of 3.7‰ were measured in the northern Mentawai Basin, whereas they varied around 5.4‰ at stations outside this region. Minimum bottom water oxygen concentrations of 1.1 mL L?1, corresponding to an oxygen saturation of 16.1%, indicate reduced ventilation of bottom water in the northern Mentawai Basin. This low bottom water oxygen reduces organic matter decomposition, which is demonstrated by the almost unaltered isotopic composition of nitrogen during early diagenesis. Maximum Corg accumulation rates (CARs) were measured in the Lombok (10.4 g C m?2 yr?1) and northern Mentawai basins (5.2 g C m?2 yr?1). Upwelling-induced high productivity is responsible for the high CAR off East Java, Lombok, and Savu Basins, while a better OM preservation caused by reduced ventilation contributes to the high CAR observed in the northern Mentawai Basin. The interplay between primary production, remineralisation, and organic carbon burial determines the regional heterogeneity. CAR in the Indian Ocean upwelling region off Indonesia is lower than in the Peru and Chile upwellings, but in the same order of magnitude as in the Arabian Sea, the Benguela, and Gulf of California upwellings, and corresponds to 0.1–7.1% of the global ocean carbon burial. This demonstrates the relevance of the Indian Ocean margin off Indonesia for the global OM burial.  相似文献   

18.
白令海DSDP188站氧同位素3期以来的古海洋与古气候记录   总被引:1,自引:0,他引:1  
白令海南部DSDP188站沉积物生源组分分析显示,该地区表层生产力在MIS3早、晚期(3.3和3.1)以及MIS2期增加,而其他时期表层生产力相应降低,并且表层生产力的变化没有显示明显的冰期与间冰期旋回。沉积物的C/N比值反映了有机碳的混合来源,说明该地区表层生产力可能受陆源营养物质输入的影响。该站位沉积物的非生源组分分析显示,MIS3早、晚期陆源物质输入量增加,反映洋流加强和气候变化。MIS2出现两次陆源物质输入量的增加,显示了洋流和气候的波动。MIS3和末次冰消期碳屑丰度增加,但MIS2降低,指示MIS3和MIS1陆地天然火灾概率大,而MIS2天然火灾概率低,反映间冰期比冰期更容易发生天然火灾。  相似文献   

19.
Origin of sedimentary organic matter in the north-western Adriatic Sea   总被引:1,自引:0,他引:1  
In order to evaluate the origin and the transformation of organic matter on the shallow shelf of the NW Adriatic Sea, organic carbon, total nitrogen and stable isotope ratios of organic carbon were analysed in riverine suspended matter and sediments as well as in marine suspended and sedimentary organic matter, in marine phytoplankton and zooplankton.The deposition of organic matter is influenced by fine sediment concentration. Surface sediments were characterised by highly variable biogeochemical conditions on the sea floor, whereas sub-surface sediments showed a more homogeneous hypoxic/anoxic environment.Low Corg/N ratio and high organic carbon and nitrogen concentrations in riverine suspended organic matter indicate an important contribution of freshwater phytoplankton within rivers, particularly during low flow regimes, which adds to the marine phyto- and zooplankton at shelf locations.In order to evaluate the importance of terrestrial, riverine and marine sources of OM in shelf sediments, a three end-member mixing model was applied to shelf surface sediments using 13C/12C values for organic matter and N/C ratios. The model showed an elevated contribution of terrestrial organic substances at intermediate depths (10–15 m), mostly corresponding to an area of coarser grain-size, whereas the riverine and marine organic fractions were mainly accumulating near the coast and offshore, respectively.  相似文献   

20.
Source rock formation influenced by river-delta system, especially in continental margin basins, is still poorly understood. This article aimed to reveal the effect of river-delta system on the formation of the source rock by taking the Baiyun Sag of the Pearl River Mouth Basin for example. Paleo-Pearl River began to develop since the Enping Formation, providing abundant organic matter beneficial for the formation of the source rocks in the Baiyun Sag. The main controlling factor of source rock formation in the Baiyun Sag is terrestrial organic matter supply rather than the paleoproductivity or redox conditions. Low Al/Ti and P/Ti ratios suggest low marine productivity, which may be associated with a large number of terrigenous detritus input, occupying about 43.04%–94.91%. There is a positive correlation between the oleanane/C30hopane ratio and the TOC value, showing that terrigenous organic matter controls the source rock formation. The size of the delta below Pearl River estuary determines the extent of terrestrial organic matter supply. Source rocks with high organic matter abundance mainly formed in delta environment, and those in neritic environment in Enping and Zhuhai Formations also have high TOC values as a result of adequate terrestrial organic matter supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号