首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Apatite fission-track analysis was applied to Triassic and Cretaceous sediments from the South-Iberian Continental Margin to unravel its thermal history. Apatite fission-track age populations from Triassic samples indicate partial annealing and point to a maximum temperature of around 100–110 °C during their post-depositional evolution. In certain apatites from Cretaceous samples, two different fission-track age populations of 93–99 and around 180 Ma can be distinguished. Track lengths associated with these two populations enabled thermal modelling based on experimental annealing and mathematical algorithms. These thermal models indicate that the post-depositional thermal evolution attained temperatures ≤ 70 °C, which is consistent with available vitrinite-reflectance data. Thermal modelling for the Cretaceous samples makes it possible to decipher a succession of cooling and heating periods, consisting of (a) a late Carboniferous–Permian cooling followed by (b) a progressive heating episode that ended approximately 120 Ma at a maximum T of around 110 °C. The first cooling episode resulted from a combination of factors such as: the relaxation of the thermal anomaly related to the termination of the Hercynian cycle; the progressive exhumation of the Hercynian basement and the thermal subsidence related to the rifting of the Bay of Biscay, reactivated during the Late Permian. Jurassic thermal evolution deduced from the inherited thermal signal in the Cretaceous sediments is characterized by progressive heating that ended around 120 Ma. This heating episode is related to thermal subsidence during Jurassic rifting, in agreement with the presence of abundant mantle-derived tholeiitic magmas interbedded in the Jurassic rocks. The end of the Jurassic rifting is well marked by a cooling episode apparently starting during Neocomiam times and ending at surface conditions by Albian times.  相似文献   

2.
The gravity of Ethiopian energy problem has initiated studies to explore various energy resources in Ethiopia, one among this is the exploration for coal resources. Studies confirmed the presence of coal deposits in the country. The coal-bearing sediments are distributed in the Inter-Trappean and Pre-Trap volcanic geological settings, and deposited in fluvio-lacustrine and paludal environments in grabens and half-grabens formed by a NNE–SSW and NNW–SSE fault systems. Most significant coal deposits are found in the Inter-Trappean geological setting. The coal and coal-bearing sediments reach a maximum thickness of 4 m and 300 m, respectively. The best coal deposits were hosted in sandstone–coal–shale and mudstone–coal–shale facies. The coal formations of Ethiopia are quite unique in that they are neither comparable to the coal measures of the Permo-Carboniferous Karroo Formation nor to the Late Devonian–Carboniferous of North America or Northwestern Europe. Proximate analysis and calorific value data indicated that the Ethiopian coals fall under lignite to high volatile bituminous coal, and genetically are classified under humic, sapropelic and mixed coal. Vitrinite reflectance studies confirmed 0.3–0.64% Ro values for the studied coals. Palynology studies confirmed that the Ethiopian coal-bearing sediments range in age from Eocene to Miocene. A total of about 297 Mt of coal reserve registered in the country. The coal reserve of the country can be considered as an important alternative source of energy.  相似文献   

3.
One hundred twenty-two samples of Jurassic and Paleogene brown coals and 1254 peat samples from the south-eastern region of the Western-Siberian platform were analyzed for gold by the neutron-activation method. Mean content of Au in Jurassic coals is 30 ± 8 ppb, in Paleogene coals is 10.6 ± 4.8 ppb, and in peat is 6 ± 1.4 ppb. Concentrations of gold as high as 4.4 ppm were found in coal ash and 0.48 ppm in the peat ash. Coal beds with anomalous gold contents were found at Western-Siberian platform for the first time.Negative correlation between gold and ash yield in coals and peat and highest gold concentrations were found in low-ash and ultra-low-ash coals and peat. Primarily this is due to gold's association with organic matter.For the investigation of mode of occurrence of Au in peat the bitumen, water-soluble and high-hydrolyzed substances, humic acids, cellulose and lignin were extracted from it. It was determined that in peat about 95% of gold is combined with organic matter. Forty to sixty percent of Au is contained in humic acids and the same content is in lignin. Bitumens, water-soluble and high-hydrolyzed substances contain no more than 1% of general gold quantity in peat.The conditions of accumulation of high gold concentrations were considered. The authors suggest that Au accumulation in peat and brown coals and the connection between anomalous gold concentrations and organic matter in low-ash coals and peat can explain a biogenic–sorption mechanism of Au accumulation. The sources of formation of Au high concentration were various Au–Sb, Au–Ag Au–As–Sb deposits that are abundant in the Southern and South-Eastern peripheries of the coal basin.  相似文献   

4.
The objective of the study was to characterize changes of reflectance, reflectance anisotropy and reflectance indicating surface (RIS) shape of vitrinite, sporinite and semifusinite subjected to thermal treatment under inert conditions. Examination was performed on vitrinite, liptinite and inertinite concentrates prepared from channel samples of steam coal (Rr = 0.70%) and coking coal (Rr = 1.25%), collected from seam 405 of the Upper Silesian Coal Basin. The concentrates were heated at temperatures of 400–1200 °C for 1 h time in an argon atmosphere.All components examined in this study: vitrinite, sporinite and semifusinite as well as matrix of vitrinite and liptinite cokes, despite of rank of their parent coal, show, in general, the most important changes of reflectance value and optical anisotropy when heated at 500 °C, 800 °C (with the exception of bireflectance value of sporinite) and 1200 °C.After heating the steam coal at 1200 °C, the vitrinite and the semifusinite reveal similar reflectances, whereas the latter a slightly stronger anisotropy. Sporinite and matrix of liptinite coke have lower reflectances but anisotropy (Rbi and Ram values) similar to those observed for vitrinite and semifusinite. However, at 1000 °C sporinite and matrix of liptinite coke have the highest reflectivity of the studied components. The RIS at 1200 °C is the same for all components.The optical properties of the three macerals in the coking coal become similar after heating at 1000 °C. Coke obtained at 1200 °C did not contain distinguishable vitrinite grains. At 1200 °C semifusinite and vitrinite coke matrix have highest Rr values among the examined components. Maximum reflectance (Rmax) reach similar values for vitrinite and sporinite, slightly lower for semifusinite. Matrix of liptinite coke and matrix of vitrinite coke have considerably stronger anisotropy (Rbi and Ram values) than other components. RIS at 1200 °C is also similar for all components.  相似文献   

5.
The metamorphic evolution of a key sector of the western Mediterranean internal Alpine orogenic belt (southern Calabrian Peloritani Orogen) is identified and described by means of PT pseudosections calculated for selected metapelite specimens, showing evidence of multi-stage metamorphism.Attention focused on the two lowermost basement nappes of the Aspromonte Massif (southern Calabria), which were differently affected by poly-orogenic multi-stage evolution. After a complete Variscan orogenic cycle, the upper unit (Aspromonte Peloritani Unit) was involved in a late-Alpine shearing event. In contrast, the several underlying metapelite slices, here grouped together as Lower Metapelite Group, show exclusive evidence of a complete Alpine orogenic cycle.In order to obtain reliable PT constraints, an integrated approach was employed, based on: a) garnet isopleth thermobarometry; and b) theoretical predictions of the PT stability fields of representative equilibrium assemblages. This approach, which takes into account the role of the local equilibrium volumes in controlling textural developments, yielded reliable information about PT conditions from early to peak metamorphic stages, as well as estimates of the retrograde trajectory in the pseudosection PT space.According to inferred detailed PT paths, the evolution of the Aspromonte Peloritani Unit is characterised by a multi-stage Variscan cycle, subdivided into an early crustal thickening stage with PT conditions ranging from 0.56 ± 0.05 GPa at 570 ± 10 °C to 0.63–0.93 GPa at 650–710 °C (peak conditions) and evolving to a later crustal thinning episode in lower PT conditions (0.25 GPa at 540 °C), as documented by the retrograde trajectory.Conversely, the prograde evolution of the rocks of the Lower Metapelite Group shows evidence of a HP-LT early Alpine multi-stage cycle, with PT evolving from 0.75–0.90 GPa at 510–530 °C towards peak conditions, with pressure increasing northwards from 1.12 ± 0.02 GPa to 1.24 ± 0.02 GPa, and temperatures of 540–570 °C.A late-Alpine mylonitic overprint affected the rocks of both the Aspromonte Peloritani Unit and the Lower Metapelite Group. This overprint was characterised by an initial retrograde decompression trajectory (0.75 ± 0.05 GPa at 570–600 °C), followed by a joint cooling history, ranging from 0.38 ± 0.14 at temperature from 450 to 520 °C.These inferred results were then used: a) to interpret the Lower Metapelite Group as a single crystalline basement unit exclusively affected by a complete Alpine orogenic cycle, according to the very similar features of PT paths, comparable petrography and analogous structural characteristics; b) as a tool for more reliable correlations between the Aspromonte Massif, the other Calabrian terranes and the north African Orogenic Complexes. They may therefore consider a contribution to the geodynamic modelling of the western Mediterranean.  相似文献   

6.
A petrological, organic geochemical and geochemical study was performed on coal samples from the Soko Mine, Soko Banja basin, Serbia. Ten coal and two carbonaceous clay samples were collected from fresh, working faces in the underground brown coal mine from different parts of the main coal seam. The Lower Miocene, low-rank coal of the Soko Mine is a typical humic coal with huminite concentrations of up to 76.2 vol.%, liptinite less than 14 vol.% and inertinite less than 11 vol.%. Ulminite is the most abundant maceral with variable amounts of densinite and clay minerals. Sporinite and resinite are the most common macerals of the liptinite group. Inertodetrinite is the most abundant maceral of the inertinite group. The mineral-bituminous groundmass identified in some coal samples, and carbonaceous marly clay, indicate sub-aquatic origin and strong bacterial decomposition. The mean random huminite reflectance (ulminite B) for the main coal seam is 0.40 ± 0.05% Rr, which is typical for an immature to early mature stage of organic matter.The extract yields from the coal of the Soko Banja basin ranges from 9413 to 14,096 ppm, in which alkanes constituted 1.0–20.1%, aromatics 1.3–14.7%, asphaltenes 28.1–76.2% and resins 20.2–43.5%. The saturated hydrocarbon fractions included n-C15 to n-C32, with an odd carbon number that predominate in almost all the samples. The contents of n-C27 and n-C29 alkanes are extremely high in some samples, as a contribution of epicuticular waxes from higher plants. Acyclic isoprenoid hydrocarbons are minor constituents in the aliphatic fraction, and the pristane/phytane (Pr/Ph) ratio varies between 0.56 and 3.13, which implies anaerobic to oxic conditions during sedimentation. The most abundant diterpanes were abietane, dehydroabietane and 16α(H)-phyllocladane. In samples from the upper part of the coal seam, diterpanes are the dominant constituents of the alkane fraction. Polycyclic alkanes of the triterpane type are important constituents of alkane fractions. The occurrence of ββ- and αβ-type hopanes from C27 to C31, but without C28, is typical for the Soko Banja coals.The major and trace elements in the coal were analysed using X-ray fluorescence (XRF), and inductively coupled plasma-mass spectrometry (ICP-MS). In comparison with world lignites, using the geometric mean value, the coal from the Soko Banja Basin has a high content of strontium (306.953 mg/kg). Higher values than the world lignites were obtained for Mo (3.614 mg/kg), Ni (8.119 mg/kg), Se (0.884 mg/kg), U (2.642 mg/kg) and W (0.148 mg/kg). Correlation analysis shows inorganic affinity for almost all the major and trace elements, except for S, which has an organic affinity.  相似文献   

7.
A detailed magnetostratigraphic and rock magnetic study was conducted on Tertiary lacustrine/fluvial sediments from Jiyang, Shandong, East China. High temperature susceptibility variation and thermal demagnetization show that magnetite is the main magnetic remanence carrier. The characteristic remanent magnetization (ChRM) was isolated above 150 °C by thermal demagnetization, and a detailed magnetic polarity sequence was established. The lacustrine/fluvial sediments were dated from polarity chron C18n.1r to polarity chron C15n, i.e., within the interval 39.631–34.655 Ma. The results of this study indicate the likelihood that either no hydrocarbon-bearing fluids were present after 34.655 Ma or, if there was any such fluid flow, the fluids must have gone through the section very quickly, without having any significant influence on the magnetic signal.  相似文献   

8.
The Francisco I. Madero deposit, central Mexico, occurs in the Mesozoic Guerrero Terrane, which hosts many ore deposits, both Cretaceous (volcanogenic massive sulfides) and Tertiary (epithermal and skarn deposits). It is hosted by a 600 m-thick calcareous-pelitic unit, of Lower Cretaceous age, crosscut by porphyritic dikes that strike NW–SE. A thick felsic volcanic Tertiary sequence, consisting of andesites and rhyolitic ignimbrites, unconformably overlies the Cretaceous series. At the base, the mineralization consists of several mantos developed within calcareous beds. They are dominantly composed of sphalerite, pyrrhotite and pyrite with minor chalcopyrite, arsenopyrite and galena. At the top of the orebody, there are calcic skarns formed through prograde and retrograde stages. The resulting mineral assemblages are rich in manganoan hedenbergite (Hd75–28Di40–4Jh40–20), andraditic garnets (Adr100–62Grs38–0), epidote (Ep95–36Czo60–5Pie8–0), chamosite, calcite and quartz. The temperature of ore deposition, estimated by chlorite and arsenopyrite geothermometry, ranges from 243° to 277 °C and from 300° to 340 °C, respectively. The pressure estimated from sphalerite geobarometry averages 2.1 kbar. This value corresponds to a moderately deep skarn and agrees with the high Cu content of the deposit. Paragenesis, PT conditions and geological characteristics are compatible with a distal, dike-related, Zn skarn deposit. Its style of mineralization is similar to that of many high-temperature carbonate replacement skarn deposits in the Southern Cordillera.  相似文献   

9.
L. Millonig  A. Zeh  A. Gerdes  R. Klemd 《Lithos》2008,103(3-4):333-351
The Bulai pluton represents a calc-alkaline magmatic complex of variable deformed charnockites, enderbites and granites, and contains xenoliths of highly deformed metamorphic country rocks. Petrological investigations show that these xenoliths underwent a high-grade metamorphic overprint at peak P–T conditions of 830–860 °C/8–9 kbar followed by a pressure–temperature decrease to 750 °C/5–6 kbar. This P–T path is inferred from the application of P–T pseudosections to six rock samples of distinct bulk composition: three metapelitic garnet–biotite–sillimanite–cordierite–plagioclase–(K-feldspar)–quartz gneisses, two charnoenderbitic garnet–orthopyroxene–biotite–K-feldspar–plagioclase–quartz gneisses and an enderbitic orthopyroxene–biotite–plagioclase–quartz gneiss. The petrological data show that the metapelitic and charnoenderbitic gneisses underwent uplift, cooling and deformation before they were intruded by the Bulai Granite. This relationship is supported by geochronological results obtained by in situ LA-ICP-MS age dating. U–Pb analyses of monazite enclosed in garnet of a charnoenderbite gneiss provide evidence for a high-grade structural-metamorphic–magmatic event at 2644 ± 8 Ma. This age is significantly older than an U–Pb zircon crystallisation age of 2612 ± 7 Ma previously obtained from the surrounding, late-tectonic Bulai Granite. The new dataset indicates that parts of the Limpopo's Central Zone were affected by a Neoarchaean high-grade metamorphic overprint, which was caused by magmatic heat transfer into the lower crust in a ‘dynamic regional contact metamorphic milieu’, which perhaps took place in a magmatic arc setting.  相似文献   

10.
Burial depth, cumulative displacement, and peak temperature of frictional heat of a fault system are estimated by thermal analysis in the fold–thrust belt of the Western Foothills complex, western Taiwan based on the vitrinite reflectance technique. The regional thermal structure across the complex reveals that the rocks were exposed to maximum temperatures ranging from 100 °C to 180 °C, which corresponds to a burial depth of 3.7–6.7 km. A large thermal difference of 90 °C were observed at the Shuilikeng fault which make the eastern boundary of the fold–thrust belt where it is in contact with metamorphic rock of Hsuehshan Range. The large thermal difference corresponds to cumulative displacements on the Shuilikeng fault estimated to be in the range of 5.2–6.9 km. However, thermal differences in across the Shuangtung and Chelungpu faults cannot be determined apparently due to small vertical offsets. The large displacement observed across the Shuilikeng fault is absent at the other faults which are interpreted to be younger faults within the piggyback thrust system. Localized high temperatures adjacent to fault zones were observed in core samples penetrating the Chelungpu fault. Three major fracture zones were observed at core lengths of 225 m, 330 m, and 405 m and the two lower zones which comprise dark gray narrow shear zones. A value of vitrinite reflectance of 1.8%, higher than the background value of 0.8%, is limited at a narrow shear zone of 1 cm thickness at the fracture zone at 330 m. The estimated peak temperature in the range of 550–680 °C in the shear zone is far higher than the background temperature of 130 °C, and it is interpreted as due to frictional heating during seismic faulting.  相似文献   

11.
Multi-equilibrium thermobarometry shows that low-grade metapelites (Cubito-Moura schists) from the Ossa–Morena Zone underwent HP–LT metamorphism from 340–370 °C at 1.0–0.9 GPa to 400–450 °C at 0.8–0.7 GPa. These HP–LT equilibriums were reached by parageneses including white K mica, chlorite and chloritoid, which define the earliest schistosity (S1) in these rocks. The main foliation in the schists is a crenulation cleavage (S2), which developed during decompression from 0.8–0.7 to 0.4–0.3 GPa at increasing temperatures from 400–450 °C to 440–465 °C. Fe3+ in chlorite decreased greatly during prograde metamorphism from molar fractions of 0.4 determined in syn-S1 chlorites down to 0.1 in syn-S2 chlorites. These new data add to previous findings of eclogites in the Moura schists indicating that a pile of allochtonous rocks situated next to the Beja-Acebuches oceanic amphibolites underwent HP–LT metamorphism during the Variscan orogeny. To cite this article: G. Booth-Rea et al., C. R. Geoscience 338 (2006).  相似文献   

12.
Supercritical gas sorption on moist coals   总被引:2,自引:1,他引:1  
The effect of moisture on the CO2 and CH4 sorption capacity of three bituminous coals from Australia and China was investigated at 55 °C and at pressures up to 20 MPa. A gravimetric apparatus was used to measure the gas adsorption isotherms of coal with moisture contents ranging from 0 to about 8%. A modified Dubinin–Radushkevich (DR) adsorption model was found to fit the experimental data under all conditions. Moisture adsorption isotherms of these coals were measured at 21 °C. The Guggenheim–Anderson–de Boer (GAB) model was capable of accurately representing the moisture isotherms over the full range of relative pressures.Moist coal had a significantly lower maximum sorption capacity for both CO2 and CH4 than dry coal. However, the extent to which the capacity was reduced was dependent upon the rank of the coal. Higher rank coals were less affected by the presence of moisture than low rank coals. All coals exhibited a certain moisture content beyond which further moisture did not affect the sorption capacity. This limiting moisture content was dependent on the rank of the coal and the sorbate gas and, for these coals, corresponded approximately to the equilibrium moisture content that would be attained by exposing the coal to about 40–80% relative humidity. The experimental results indicate that the loss of sorption capacity by the coal in the presence of water can be simply explained by volumetric displacement of the CO2 and CH4 by the water. Below the limiting moisture content, the CO2 sorption capacity reduced by about 7.3 kg t− 1 for each 1% increase in moisture. For CH4, sorption capacity was reduced by about 1.8 kg t− 1 for each 1% increase in moisture.The heat of sorption calculated from the DR model decreased slightly on addition of moisture. One explanation is that water is preferentially attracted to high energy adsorption sites (that have high energy by virtue of their electrostatic nature), expelling CO2 and CH4 molecules.  相似文献   

13.
The Achankovil Zone of southern India, a NW–SE trending lineament of 8–10 km in width and > 100 km length, is a kinematically debated crustal feature, considered to mark the boundary between the Madurai Granulite Block in the north and the Trivandrum Granulite Block in the south. Both these crustal blocks show evidence for ultrahigh-temperature metamorphism during the Pan-African orogeny, although the exhumation styles are markedly different. The Achankovil Zone is characterized by discontinuous strands of cordierite-bearing gneiss with an assemblage of cordierite + garnet + quartz + plagioclase + spinel + ilmenite + magnetite ± orthopyroxene ± biotite ± K-feldspar ± sillimanite. The lithology preserves several peak and post-peak metamorphic assemblages including: (1) orthopyroxene + garnet, (2) perthite and/or anti-perthite, (3) cordierite ± orthopyroxene corona around garnet, and (4) cordierite + quartz symplectite after garnet. We estimate the peak metamorphic conditions of these rocks using orthopyroxene-bearing geothermobarometers and feldspar solvus which yield 8.5–9.5 kbar and 940–1040 °C, the highest PT conditions so far recorded from the Achankovil Zone. The retrograde conditions were obtained from cordierite-bearing geothermobarometers at 3.5–4.5 kbar and 720 ± 60 °C. From orthopyroxene chemistry, we record a multistage exhumation history for these rocks, which is closely comparable with those reported in recent studies from the Madurai Granulite Block, but different from those documented from the Trivandrum Granulite Block. An evaluation of the petrologic and geochronologic data, together with the nature of exhumation paths leads us to propose that the Achankovil Zone is probably the southern flank of the Madurai Granulite Block, and not a unit of the Trivandrum Granulite Block as presently believed. Post-tectonic alkali granites that form an array of “suturing plutons” along the margin of the Madurai Granulite Block and within the Achankovil Zone, but are absent in the Trivandrum Granulite Block, suggest that the boundary between the Madurai Granulite Block and the Trivandrum Granulite Block might lie along the Tenmalai shear zone at the southern extremity of the Achankovil Zone.  相似文献   

14.
Peculiar magmatic rocks were erupted and emplaced at depth at the margin of the Gondwana supercontinent during the Cambro-Ordovician transition. These rocks are characterized by high contents in silica and iron but they do not have equivalents in the high-silica members of the calc-alkaline series. They have particular geochemical signatures, with Al saturation index, ASI > 1, FeO > 2.5 wt.%, MgO > 0.8 wt.% for very low contents in calcium (CaO < 2.0 wt.%), supporting a derivation from near-total melting (> 80 vol.% melt) of metagreywackes. The results from inverse experiments indicate that the most plausible conditions are within the range 1000 °C (excess water) and 1100–1200 °C (subsaturated and dry) at pressures of 1.5 to 2.0 GPa. A tectonic scenario implying melting of subducted sediments within an ascending mantle-wedge plume is suggested for the generation of primary ferrosilicic melts at the Gondwana continental margin during Upper Cambrian to Lower Ordovician times.  相似文献   

15.
Frictional sliding of gabbro gouge under hydrothermal conditions   总被引:12,自引:0,他引:12  
We investigated the frictional sliding behaviour of gabbro gouge under hydrothermal conditions. Experiments were performed on 1-mm-thick gabbro gouge sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) in a triaxial testing system with argon gas as the confining medium. In the first series, experiments were conducted under effective normal stresses of 200 MPa and 300 MPa respectively, with pore pressure of 10 MPa. For temperature over 400 °C, pore pressure of 30 MPa was also applied to implement supercritical water conditions. At temperatures up to 615 °C, slip rate steps ranging from 0.0488 μm/s to 1.22 μm/s were applied to obtain the rate dependence of friction.At 200 MPa effective normal stress and a pore pressure of 10 MPa, the steady state rate dependence ab shows velocity-weakening behaviour for temperatures between  200 and  310 °C. The higher temperature limit for velocity-weakening behaviour to occur extends up to  510 °C under supercritical water conditions with a pore pressure of 30 MPa. For the limited sliding distance in our experiments, only velocity-strengthening behaviour occurred at 300 MPa effective normal stress. Considering the limited displacement (< 3.5 mm), velocity-weakening behaviour may not be excluded in the high effective normal stress case for temperature below  510 °C.The coefficient of friction shows an increasing trend with increasing temperature in the low temperature range. The cut-off temperatures for the increasing trend are  250 °C and  440 °C, respectively for the 200 MPa and 300 MPa effective normal stress cases. Above the cut-off temperatures, the coefficient of friction at 1.83 mm permanent displacement varies around an average of 0.73, which is identical to the average for the oven-dried case [He, C., Yao, W., Wang, Z., Zhou, Y., 2006. Strength and stability of frictional sliding of gabbro gouge at elevated temperatures. Tectonophysics 427, 217–229, doi:10.1016/j.tecto.2006.05.023]. Together with the small value of rate dependence (ab < 0.0073) for the whole temperature range, these results indicate the absence of fluid-assisted creep.With the result of our experiments as a constraint on strength of frictional sliding, comparison between converted strength for strike–slip faults and creep strength of gabbro-like rocks implies fracturing and faulting behaviours in the lower crust of a cool area (Zhangbei) in North China.  相似文献   

16.
Recent discoveries over the last decade of new gemfields, exploitation of new and existing deposits, and application of relatively new techniques have greatly increased our knowledge of the basalt-derived gem sapphire–ruby–zircon deposits. In this paper we focus on the Late Mesozoic to Cenozoic intraplate basaltic fields of the West Pacific continental margins. We review advances made in understanding the genesis of these deposits, based on the application of newer techniques. We also critically review existing data on the gem corundum deposits, in order to further refine a model for their origin.In some of the intraplate basaltic fields, corundum-bearing xenoliths have been found showing a range of PT formation conditions from 790 °C at 0.85 GPa to as much as 1100 to 1200 °C at 1.0 to 2.5 GPa. Although most magmatic sapphires contain syngenetic inclusions of columbite-group phases, zircon, spinel and rutile, some contain additional nepheline and K-feldspar, suggesting crystallization from more undersaturated alkaline magma while the Weldborough field of NE Tasmania also contains molybdenite and beryl, suggesting at least some interaction with more fractionated ‘granitic-type’ magmas. There is a large range in PT conditions calculated for the metamorphic rubies (from 780 to 940 °C, through 800 to 1150 °C up to 1000 to 1300 °C). Fluid/melt inclusion studies on magmatic corundums generally suggest that they formed in a CO2-rich environment from a ‘syenitic’ melt under a range of T conditions from 720 to 880 °C up to 1000 to 1200 °C. Oxygen isotope studies reveal that typical magmatic corundums have values of + 4.4 to 6.9‰, whereas metamorphic corundums from the same basaltic host have lower values of + 1.3 to 4.2‰.Geochronological studies have shown that some fields produced a simple eruptive and zircon/corundum crystallization event while others had multiple eruptive events but only one or two zircon crystallization events. For a few fields, some corundums/zircons crystallized in storage regions and then remained relatively inert for periods of 200 to 400 Ma without significant change before transport to the surface in the Cenozoic. Tectonic studies of the Australian region suggest that many of the corundums crystallized from magmas related to episodic basaltic volcanism in a tectonic regime of extension, associated with the opening of the Tasman and Coral Seas. For the Asian region, the magmatic–polygenetic corundums within the basaltic fields largely crystallized in a tectonic regime of distributed E–W extension, whereas the metamorphic-metasomatic corundums crystallised in a transpressional regime associated with the collision of the Indian Plate with the Eurasian Plate (e.g., [Garnier, V., Giuliani, G., Maluski, H., Ohnenstetter, D., Deloule, E., 2003. Ar–Ar and U–Pb ages of marble-hosted ruby deposits from Central and South-east Asia. Geophysical Research Abstracts 5, 03751; Garnier, V., Giuliani, G., Ohnenstetter, D., and Schwarz, D., 2004. Les gisements de corindon: classification et genese. Les placers a corindon gemme. Le Regne Mineral 55, 7-47; Garnier, V., Ohnenstetter, D., Giuliani, G., Maluski, H., Deloule, E., Phan Trong, T., Pham Van, L., Hoang Quang, V., 2005a. Age and significance of ruby-bearing marble from the Red River Shear Zone, Northern Vietnam. Canadian Mineralogist 43, 1315–1329]).  相似文献   

17.
Paramagnetic centers in two- and three-component coal blends carbonized at 1000 °C were studied by X-band (9.3 GHz) electron paramagnetic resonance (EPR) technique. The blends were prepared from three different Polish coals with carbon contents [wt.%]: 88.66, 86.21, and 82.67, respectively. The aim of this work was to compare EPR parameters and concentrations of paramagnetic centers in the initial and carbonized coal samples. Furthermore the spin–spin and spin–lattice interactions were characterized.EPR spectra were measured with magnetic modulation 100 kHz and microwave power 0.7 mW. Amplitudes and linewidths of EPR spectra were obtained. g-Factors were calculated from resonance condition. Concentrations of paramagnetic centers in the samples were determined. Influence of microwave power in the range 0.7–70 mW on EPR spectra was analyzed.All the studied samples revealed paramagnetism. Unpaired electrons are localized in the same atoms, because similar g-values in the range 2.0035–2.0038 were obtained for all the original samples. The EPR parameters of coal blends were additive in comparison with the parent coals. EPR spectra strongly changed after carbonization of the coal samples. Narrower EPR lines were measured for the original coal samples than for carbonized ones. We detected lower concentrations of paramagnetic centers in carbonized three-component coal blends than in two-component carbonized blends. EPR lines of the studied carbonized blends were not saturated at the microwave power used, which suggests fast spin–lattice relaxation processes in the samples. EPR examination proved chemical interactions between coal constituents during carbonization of coal blends.  相似文献   

18.
The Cretaceous blueschist belt, Tavşanlı Zone, representing the subducted and exhumed northern continental margin of the Anatolide–Tauride platform is exposed in Western Anatolia. The Sivrihisar area east of Tavşanlı is made up of tectonic units consisting of i) metaclastics and conformably overlying massive marbles (coherent blueschist unit), ii) blueschist-eclogite unit, iii) marble–calcschist intercalation and iv) metaperidotite slab. The metaclastics are composed of jadeite–lawsonite–glaucophane and jadeite–glaucophane–chloritoid schists, phengite phyllites, and calcschists with glaucophane–lawsonite metabasite layers. The blueschist-eclogite unit representing strongly sheared, deeply buried and imbricated tectonic slices of accreted uppermost levels of the oceanic crust with minor metamorphosed serpentinite bodies consists of lawsonite-bearing eclogitic metabasites (approximately 90% of the field), lawsonite eclogites, metagabbros, serpentinites, pelagic marbles, omphacite–glaucophane–lawsonite metapelites and metacherts. The mineral assemblage of the lawsonite eclogite (garnet + omphacite > 70%) is omphacite, garnet, lawsonite, glaucophane, phengite and rutile. Lawsonite eclogite lenses are enclosed by garnet–lawsonite blueschist envelopes.Textural evidence from lawsonite eclogites and country rocks reveals that they did not leave the stability field of lawsonite during subduction and exhumation. The widespread preservation of lawsonite in eclogitic metabasites and eclogites can be attributed to rapid subduction and subsequent exhumation in a low geothermal gradient of the oceanic crust material without experiencing a thermal relaxation. Peak PT conditions of lawsonite eclogites are estimated at 24 ± 1 kbar and 460 ± 25 °C. These PT conditions indicate a remarkably low geotherm of 6.2 °C/km corresponding to a burial depth of 74 km.  相似文献   

19.
Ralf Hesse   《Quaternary Research》2009,71(3):426-436
Aeolian dunes are widely used to reconstruct paleoenvironmental conditions. However, terminal dune fields (ergs) in the coastal desert of southern Peru – where information regarding Quaternary paleoenvironmental conditions is very limited – have until now not been used for paleoenvironmental reconstructions and the time depth of their accumulation is unknown. Here, different estimates are derived to constrain the time depth recorded in the Dunas Pampa Blanca, a terminal dune field in coastal southern Peru. Dune field age is calculated using the volume of the Dunas Pampa Blanca and (i) recent aeolian transport rate in migrating transverse dunes feeding the Dunas Pampa Blanca (derived from digital processing of sequential Landsat and Quickbird images) and (ii) limitations posed by recent fluvial sediment supply to the source of aeolian transport. The resulting maximum age estimate of 70 ± 8 ka (from aeolian transport) compares with a minimum age estimate of 4–75 ka (from sediment supply). However, a minimum age estimate of 110–450 ka is deduced from the tectonic and topographic evolution of the region. This discrepancy contradicts the hypothesis of late Quaternary stability in the Peruvian coastal desert and indicates that recent conditions of aeolian sediment supply and transport are not representative for the late Quaternary.  相似文献   

20.
The Ballantrae ophiolite in southern Scotland includes a NEE–SWW-trending serpentinite mélange that contains blocks of mafic blueschist and high-pressure, granulite facies, metapyroxenite (Sm–Nd metamorphic age: 576 ± 32 and 505 ± 11 Ma). Tectonic blocks of mafic schist are less than 3 × 3 m in size, and have greenschist, blueschist or epidote amphibolite facies assemblages corresponding to the high-pressure intermediate-type metamorphic facies series.Adjacent rocks of the serpentinite mélange are hydrothermally-altered MORB-like ophiolitic basalt (prehnite–pumpellyite facies), dolerite (actinolite–oligoclase sub-facies) and gabbro (amphibolite facies), all with assemblages that are diagnostic of the low-pressure metamorphic facies series.The difference in metamorphic facies series and parageneses of minerals between the high-pressure mafic blocks and the adjacent, low-pressure ophiolitic meta-basic rocks suggests that the former were exhumed from > 25 km depth within a cold subducted slab, and were juxtaposed with the latter, the bottom of a MORB-like ophiolite in the hanging wall of a trench. An ENE–WSW-trending, 501 ± 12 Ma volcanic arc belt extends for 3 km south of the serpentinite mélange. We suggest that ridge subduction associated with a slab window created arc-related gabbro (483 ± 4 Ma) at Byne Hill and within-plate gabbro (487 ± 8 Ma) at Millenderdale. Final continental collision created the duplex structure of the Ballantrae complex that includes the HP blocks and serpentinite mélange. These relations define diapiric exhumation in the Caledonian orogen of SW Scotland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号