首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王枫  许文良  葛文春  杨浩  裴福萍  吴韦 《岩石学报》2016,32(4):1129-1140
敦化-密山断裂带是郯庐断裂北段的重要分支之一,其大规模左行走滑发生的时限以及平移距离一直存在较大争议。本文系统地总结了松嫩-张广才岭地块东缘、佳木斯地块以及兴凯地块之上古生代-中生代火成岩的锆石U-Pb年代学资料,结合其空间分布特征,对敦化-密山断裂带的平移时限及距离提供了制约。研究表明,松嫩-张广才岭地块东缘与兴凯地块在古生代-中生代期间具有类似的岩浆活动历史,两个地块之上该时期的岩浆作用可以划分为8个主要期次:中-晚寒武世(ca.500~516Ma)、早奥陶世(ca.480~486Ma)、晚奥陶世(ca.450~456Ma)、中志留世(ca.426~430Ma)、早二叠世(ca.285~292Ma)、晚二叠世(ca.255~260Ma)、晚三叠世(ca.202~210Ma)和早侏罗世(ca.185~186Ma)。相比之下,佳木斯地块中的古生代-中生代早期岩浆事件则集中在晚寒武世(~492Ma)、晚泥盆世(~388Ma)、早二叠世(~288Ma)、晚二叠世(~259Ma)和早侏罗世(~176Ma),而晚奥陶世-志留纪和晚三叠世的岩浆活动在佳木斯地块未见报道。早白垩世晚期(ca.105~110Ma)和晚白垩世(ca.90~94Ma)的岩浆活动在三个地块均存在。上述结果表明兴凯地块东缘与松嫩-张广才岭地块东缘在早古生代经历了共同的地质演化历史,而中生代早期,兴凯地块西缘与松嫩-张广才岭地块东缘经历了同样的岩浆作用历史。上述结果暗示,敦化-密山断裂可能经历了至少两次平移,分别发生在中-晚二叠世-早三叠世和中-晚侏罗世-早白垩世,推测其总的平移距离约400km。结合研究区中生代期间的构造演化历史,敦化-密山断裂中生代的左行平移应与中-晚侏罗世-早白垩世期间古太平洋板块(Izanagi板块)的斜向俯冲相联系。  相似文献   

2.
Resulting from U-Pb geochronological study, it has been found that the gabbro-amphibolites composing the Bureya (Turan) Terrane in the eastern part of the Central Asian Fold Belt are Early Paleozoic (Early Ordovician; 455 ± 1.5 Ma) in age rather than Late Proterozoic as was believed earlier. The gabbro-amphibolites and associated metabasalts are close to tholeiites of the intraoceanic island arcs in terms of the geochemical properties. It is suggested that the tectonic block composed of these rocks was initially a seafloor fragment that divided the Bureya and Argun terranes in the Early Paleozoic and was later tectonically incorporated into the modern structure of the Bureya Terrane as a result of Late Paleozoic and Mesozoic events.  相似文献   

3.
西秦岭北缘早古生代天水—武山构造带及其构造演化   总被引:5,自引:1,他引:4  
西秦岭北缘早古生代天水-武山构造带位于甘肃省东部天水地区,主要由寒武纪关子镇-武山蛇绿岩带、晚寒武世-早奥陶世李子园群浅变质活动陆缘沉积-火山岩系、奥陶纪草滩沟群岛弧型火山-沉积岩系以及加里东期岛弧型深成侵入岩体、俯冲-碰撞型花岗岩体等组成.关子镇蛇绿岩中变质基性火山岩属于N-MORB型玄武岩,武山蛇绿岩中变质基性火山岩属于E-MORB型玄武岩,是洋脊型蛇绿岩的重要组成部分,形成时代大致在534~489Ma之间的寒武纪.李子园群火山岩主要形成于岛弧或与岛弧相关的弧前盆地构造环境,草滩沟群火山岩形成于与俯冲作用相关的岛弧环境.关子镇流水沟和百花中基性岩浆杂岩总体形成于中晚奥陶世(471~440Ma)古岛弧构造环境,同时发育加里东期俯冲型(450~456Ma)花岗岩类和碰撞型(438~400Ma)花岗岩类岩浆活动.西秦岭北缘早古生代古洋陆构造格局经历了从洋盆形成-洋壳俯冲消减直至陆-陆碰撞造山的板块构造演化过程.总体构造演化可划分为四个阶段:①晚寒武世古洋盆初始形成阶段;②早奥陶世洋盆初始俯冲阶段;③中晚奥陶世洋壳大规模俯冲与古岛弧发育阶段;④志留纪陆-陆或陆-弧碰撞造山阶段.  相似文献   

4.
黑龙江省东部松嫩—张广才岭地块与佳木斯地块之间的演化历史以及古亚洲洋构造体系与环太平洋构造体系的叠加与转化一直是地学领域研究的热点问题之一。依据该区古生代—早中生代火成岩的年代学与岩石组合研究,结合碎屑锆石的年代学研究成果,讨论了松嫩—张广才岭地块与佳木斯地块之间的演化历史以及两大构造体系叠加与转化的时间。锆石U-Pb定年结果表明:黑龙江省东部古生代—早中生代岩浆作用可划分成8期:早奥陶世(485Ma)、晚奥陶世(450Ma)、中志留世(425Ma)、中泥盆世(386Ma)、早二叠世(291Ma)、中二叠世(268 Ma)、晚三叠世(201~228 Ma)以及早侏罗世(184 Ma)。早奥陶世—中志留世,岩浆作用主要分布在松嫩—张广才岭地块的东缘,并呈南北向带状展布,主要由闪长岩-英云闪长岩-二长花岗岩组成,显示活动陆缘—碰撞的构造演化历史,揭示松嫩—张广才岭地块与佳木斯地块于中志留世(425Ma)已经拼合在一起,这也得到了早泥盆世地层碎屑锆石年代学的支持。中泥盆世,火山作用分布在佳木斯地块东缘和松嫩—张广才岭地块上,前者为双峰式火山岩组合,后者为A型流纹岩,它们共同揭示该区处于一种碰撞后的伸展环境。早二叠世,佳木斯地块东缘发育一套钙碱性火山岩组合,揭示古亚洲洋俯冲作用的存在,而同期的张广才岭地区则发育一套典型的双峰式火成岩组合,揭示了陆内伸展环境的存在。中二叠世,同碰撞型火山岩分布于佳木斯地块东缘及东南缘,其形成可能与佳木斯地块和兴凯地块的碰撞拼合有关。晚三叠世,张广才岭地区存在的双峰式火山岩和敦—密断裂东南区发育的A型流纹岩均显示陆内的伸展环境,其形成应与古亚洲洋最终闭合后的伸展环境相联系。此外,结合牡丹江断裂两侧均发育中—晚二叠世花岗岩以及佳木斯地块上晚三叠世—早侏罗世岩浆作用的缺失,暗示松嫩—张广才岭地块与佳木斯地块在三叠纪早期沿牡丹江断裂可能存在一次裂解事件。而早—中侏罗世陆缘(东宁—汪清—珲春)钙碱性火山岩和陆内(小兴安岭—张广才岭)双峰式火成岩组合的出现,结合牡丹江断裂两侧"张广才岭群"和"黑龙江群"构造混杂岩的就位,暗示松嫩—张广才岭地块与佳木斯地块在早—中侏罗世再次拼合,这也标志着环太平洋构造体系的开始。  相似文献   

5.
 Basins within the African sector of Gondwana contain a Late Palaeozoic to Early Mesozoic Gondwana sequence unconformably overlying Precambrian basement in the interior and mid-Palaeozoic strata along the palaeo-Pacific margin. Small sea-board Pacific basins form an exception in having a Carboniferous to Early Permian fill overlying Devonian metasediments and intrusives. The Late Palaeozoic geographic and tectonic changes in the region followed four well-defined consecutive events which can also be traced outside the study area. During the Late Devonian to Early Carboniferous period (up to 330 Ma) accretion of microplates along the Patagonian margin of Gondwana resulted in the evolution of the Pacific basins. Thermal uplift of the Gondwana crust and extensive erosion causing a break in the stratigraphic record characterised the period between 300 and 330 Ma. At the end of this period the Gondwana Ice Sheet was well established over the uplands. The period 260–300 Ma evidenced the release of the Gondwana heat and thermal subsidence caused widespread basin formation. Late Carboniferous transpressive strike-slip basins (e.g. Sierra Australes/Colorado, Karoo-Falklands, Ellsworth-Central Transantarctic Mountains) in which thick glacial deposits accumulated, formed inboard of the palaeo-Pacific margin. In the continental interior the formation of Zambesi-type rift and extensional strike-slip basins were controlled by large mega-shear systems, whereas rare intracratonic thermal subsidence basins formed locally. In the Late Permian the tectonic regime changed to compressional largely due to northwest-directed subduction along the palaeo-Pacific margin. The orogenic cycle between 240 and 260 Ma resulted in the formation of the Gondwana fold belt and overall north–south crustal shortening with strike-slip motions and regional uplift within the interior. The Gondwana fold belt developed along a probable weak crustal zone wedged in between the cratons and an overthickened marginal crustal belt subject to dextral transpressive motions. Associated with the orogenic cycle was the formation of mega-shear systems one of which (Falklands-East Africa-Tethys shear) split the supercontinent in the Permo-Triassic into a West and an East Gondwana. By a slight clockwise rotation of East Gondwana a supradetachment basin formed along the Tethyan margin and northward displacement of Madagascar, West Falkland and the Gondwana fold belt occurred relative to a southward motion of Africa. Received: 2 October 1995 / Accepted: 28 May 1996  相似文献   

6.
The Ordovician terrigenous, volcanic–sedimentary and volcanic sequences that formed in rifts of the active continental margin and igneous complexes of intraoceanic suprasubduction settings structurally related to ophiolites are closely spaced in allochthons of the Sakmara Zone in the southern Urals. The stratigraphic relationships of the Ordovician sequences have been established. Their age and facies features have been specified on the basis of biostratigraphic and geochronological data. The gabbro–tonalite–trondhjemite complex and the basalt–andesite–rhyolite sequence with massive sulfide mineralization make up a volcanic–plutonic association. These rock complexes vary in age from Late Ordovician to Early Silurian in certain structural units of the Sakmara Allochthon and to the east in the southern Urals. The proposed geodynamic model for the Ordovician in Paleozoides of the southern Urals reconstructs the active continental margin, whose complexes formed under extension settings, and the intraoceanic suprasubduction structures. The intraoceanic complexes display the evolution of a volcanic arc, back-, or interarc trough.  相似文献   

7.
塔里木地块与古亚洲/特提斯构造体系的对接   总被引:32,自引:15,他引:17  
塔里木盆地为环形山链所环绕,北缘为古亚洲体系的天山弧形山链,南缘为特提斯体系的西昆仑-阿尔金弧形山链。自新元古代晚期以来,塔里木地块及周缘地区经历了古亚洲洋盆和特提斯洋盆的开启、俯冲、闭合以及微陆块多次碰撞造山,发生多期的构造、岩浆及成矿作用。特别是受印度/亚洲碰撞(60~50Ma)以来的近程效应和远程效应影响,使塔里木盆地周缘发生强烈的隆升、缩短及走滑变形,形成了现今复杂的环型造山系,完成了古亚洲体系和特提斯体系与塔里木地块的最终对接。塔里木地块与周缘两大构造体系的焊接是从早古生代开始的。研究表明,早古生代末期塔里木已与西昆仑-阿尔金始特提斯造山系链接一起。此时,塔里木地块东段与中天山增生弧地体碰撞,而西段在晚古生代与中天山增生弧地体碰撞。塔里木盆地周缘早古生代造山系中存在早古生代中期和早古生代晚期的两次造山事件,致使塔里木盆地内映现两个早古生代构造不整合面:晚奥陶世-志留纪之间的角度不整合和中晚泥盆世与早古生代之间的角度不整合。塔里木盆地早古生代的古地理、古环境和古构造研究表明,塔里木早古生代台地位于盆地的中西部,盆地东部为陆缘斜坡和深海/半深海沉积盆地,与南天山早古生代被动陆缘链接。印度/亚洲碰撞导致塔里木盆地西南缘的喜马拉雅西构造结的形成与不断推进,使特提斯构造体系与古亚洲构造体系在西构造结处靠拢及对接,终使塔里木盆地最后定型。  相似文献   

8.
广西钦防海槽迁移与沉积-构造转换面   总被引:13,自引:0,他引:13       下载免费PDF全文
广西的钦州-防城-带,素以钦防海槽称之,系指加里东期构造运动后,扬子与华夏陆块间的“残留海”。其两侧为古隆所夹持,西为大明山古隆起,东为云开大山古隆起,其间划分为四个构造单元,由东向西依次为:博白坳陷,六万大山隆起,钦州坳陷和十万大山坳陷。现构造形迹的排列,反馈防海槽在早古生代至中生代间深海盆或浅海深水盆地在构造和沉积上有自东向西迁移的特点。晚古生代盆地迁移过程至少有八个沉积-构造转换面可记录盆地的构造演化:第1转换面为早奥陶世与晚寒武世间的沉积界面;第2转换面为早志留世与晚奥陶世间的沉积界面;第3转换面为早泥盆世早期与晚志留世间的海侵上超面;第4转换面为中泥盆世的海侵上超面;第5转换面为中二叠世与晚二叠世间的沉积界面;第6转换面为早三叠世的海侵面;第7转换面为中晚三叠世与早三叠世间的沉积界面;第8转换面为早侏罗世与晚三叠世间的沉积界面。前两个界面为盆山转换面,与华南加里东构造运动过程相耦合,为挤压的构造背景;第3界面为水下间断面,下泥盆统与上志留统为不连续沉积,在构造上应是挤压机制下的破裂不整合,也是加里东期构造运动的响应;第4界为海西期的海侵上超面,与盆地走滑拉张同步;第5界面则反馈于印支期造山的初始阶段,第6界面为中生代盆地迁移转换面;第7界面为印支期造山过程的盆地转换面;第8界面为燕山期造山造盆转换面。其转换面性质的转化,代表钦防海槽可能是个复杂大陆边缘前陆盆地演化史。  相似文献   

9.
采用LA-ICP-MS方法对青藏高原祁漫塔格山西部枯草沟地区花岗岩和闪长岩进行锆石U-Pb测年,获得405.7±1.3Ma、420.8±1.6Ma、423.9±1.5Ma和421.0±1.7Ma四个年龄,属于晚志留世—早泥盆世。这些锆石具有高Th/U值,是典型的岩浆锆石,其结晶年龄代表岩石形成年龄。综合统计目前已有锆石U-Pb年龄数据表明,该地区主要存在2期岩浆活动:350~500Ma和200~350Ma,分别对应早古生代和晚古生代—早中生代。祁漫塔格早古生代岩浆活动年龄数量占统计的60%以上,为主要岩浆活动期,主要分布于祁漫塔格北部和西部。东昆仑晚古生代—早中生代的岩浆约占古生代以来岩浆总量的77%以上,为东昆仑主要岩浆活动期。祁漫塔格晚古生代—早中生代岩浆活动主要分布于其东南部,靠近东昆仑山,暗示其可能受东昆仑主要岩浆活动的影响。以上结果暗示,早古生代期间祁漫塔格洋的活动性强于东昆仑洋的活动性,祁漫塔格和东昆仑可能自晚古生代以来才逐步形成统一的造山带。  相似文献   

10.
The Thomson Orogen forms the northwestern segment of the Tasman Orogenic Zone. It was a tectonically active area with several episodes of deposition, deformation and plutonism from Cambrian to Carboniferous time.Only the northeastern part of the orogen is exposed; the remainder is covered by gently folded Permian and Mesozoic sediments of the Galilee, Cooper and Great Artesian Basins. Information on the concealed Thomson Orogen is available from geophysical surveys and petroleum exploration wells which have penetrated the Permian and Mesozoic cover.The boundaries of the Thomson Orogen with other tectonic units are concealed, but discordant trends suggest that they are abrupt. To the west, the orogen is bordered by Proterozoic structural blocks which form basement west of the northeast-trending Diamantina River Lineament. The most appropriate boundary with the Lachlan and Kanmantoo Orogens to the south is an arcuate line marking a distinct change in the direction of gravity trends. The north-northwest orientation of the northern part of the New England Orogen to the east cuts strongly across the dominant northeast trend of the Thomson Orogen.The Thomson Orogen developed as a tectonic entity in latest Proterozoic or Early Cambrian time when the former northern extension of the Adelaide Orogen * was truncated along the Muloorinna Ridge. Early Palaeozoic deposition was dominated by finegrained, quartz-rich clastic sediments. Cambrian carbonates accumulated in the southwest and a Cambro-Ordovician island arc was active in the north. Along the western margin of the orogen, sediments were probably laid down on downfaulted blocks of deformed Proterozoic rocks, with oceanic crust further to the east.A mid- to Late Ordovician orogeny which affected the whole of the Thomson Orogen marked the climax of its precratonic (orogenic) stage. The northeast structural trend of the orogen (parallel to its western boundary with the Precambrian craton) was imposed at this time and has controlled the orientation of later folding and faulting. Up to three generations of folding have been recognized and fine-grained metasediments exhibit a prominent slaty cleavage. Metamorphism was to the greenschist and amphibolite facies, the highest grade rocks being associated with synorogenic granodiorite batholiths in the north. Following deposition of Late Ordovician marine sediments at the eastern margin, emplacement of post-tectonic Late Silurian or Early Devonian batholiths ended the precratonic history of the Thomson Orogen.The subsequent transitional tectonic regime was characterized by deposition of Devonian to Early Carboniferous shallow marine and continental sediments including widespread red-beds and andesitic volcanics. The maximum marine transgression occurred in the early Middle Devonian. Localized folding affected the easternmost part of the Thomson Orogen at the end of Middle Devonian time and was followed by intrusion of Devono-Carboniferous granitic plutons. However, the terminal orogeny which deformed all Devonian to Early Carboniferous rocks of the orogen was of mid-Carboniferous age. It produced northeast-trending open folds and normal and high-angle reverse faults which are considered to reflect basement structures. The cratonization of the Thomson Orogen was completed with the emplacement of Late Carboniferous granites and the eruption of comagmatic volcanics in the northeast, permian and Mesozoic sediments accumulated in broad, relatively shallow down warps which covered most of the former orogen.  相似文献   

11.
东南大陆边缘早侏罗世火成岩特征及其构造意义   总被引:36,自引:4,他引:36  
东南大陆边缘早侏罗世火成岩主要呈双峰式火山岩、基性超基性杂岩体及A型花岗岩等形态产出。本文运用岩石学探针技术,通过早侏罗世火成岩岩石学与地球化学研究,并与晚中生代火成岩作对比,提出早侏罗世火成岩的形成与南岭东段近EW向张性断裂活动有关,标志着印支挤压造山的结束;之后东南大陆进入晚中生代NE向活动大陆边缘俯冲造山阶段,经历了挤压造山—剪切拉张过程,并在晚白垩世末期进入又一轮后造山拉张裂解阶段,即中生代时东南大陆边缘经历了早中生代(三叠纪—早侏罗世)和晚中生代(中侏罗世—晚白垩世)两期造山事件,其中早侏罗世的区域拉张作用是特提斯构造域向滨太平洋构造域转换的前奏,构造域转换可能始于中侏罗世(165Ma)。  相似文献   

12.
杨鑫  徐旭辉  邓尚  翟常博  孔强夫  王石 《地球科学》2020,45(11):4153-4175
通过对塔里木西南地区奥陶系-泥盆系的钻井和露头碎屑岩样品开展锆石U-Pb年代学、地球化学和重矿物分析,探讨塔西南大陆边缘原特提斯洋的俯冲增生演化过程.碎屑锆石记录了482~443 Ma、438~425 Ma和414~406 Ma三期寒武纪以来的构造-热事件,以及840~750 Ma的新元古代裂谷岩浆事件.奥陶系-泥盆系碎屑岩具有高的SiO2含量和相对低的Al2O3和TFe2O3+MgO含量,以及弱-中等的Eu负异常、LREE相对富集和HREE分布较平坦的特征.地球化学图解反映晚奥陶统碎屑岩来源于大陆岛弧和活动大陆边缘环境,早志留世-中泥盆世期间物源区可能以大陆岛弧和被动陆缘环境为主,还间断出现少量活动大陆边缘环境,晚泥盆世以后主要呈现被动陆缘环境.重矿物组合指示早志留世至中泥盆世期间,中-酸性岩浆活动加剧,而基性岩浆活动趋弱,晚泥盆世以后陆壳基底或造山带已大规模隆升.塔西南边缘原特提斯洋构造演化以奥陶纪向北俯冲、志留纪弧后洋盆关闭-褶皱造山和泥盆纪后碰撞伸展为特征.   相似文献   

13.
The conducted comprehensive study of the western part of Kyrgyz Ridge provided new data on the structure, composition and age of Precambrian and Early Paleozoic stratified and igneous complexes. The main achievements of these studies are: (1) the establishment of a wide age spectrum, embracing the interval from the Neoproterozoic to the end of the Early Ordovician, for the clastic-carbonate units composing the cover of the Northern Tian Shan sialic massif; (2) the reconstruction and dating of Early and Late Cambrian ophiolite complexes formed in suprasubduction settings;(3) the discovery and dating of the Early-Middle Ordovician volcano-sedimentary complex of island-arc affinity; and (4) proof of the wide occurrence of Late Ordovician granitoids, some of which bear Cu-Au-Mo ores. The intricate thrust-and-fold structure of the western part of the Kyrgyz Ridge, formed in several stages from the Middle Cambrian (?) until the end of the Middle Ordovician, was scrutinized; the importance of the Early Ordovician stage was demonstrated. The intrusion of large batholiths in the early Late Ordovician accomplished the caledonide structural evolution. Formation of Neoproterozoic and Early Paleozoic caledonide complexes, which were possibly related to the protracted and entangled evolution of the active continental margin, ceased by the Late Ordovician.  相似文献   

14.
The Melbourne Zone comprises Early Ordovician to Early Devonian marine turbidites, which pass conformably upward into a mid-Devonian fluviatile succession. There are four pulses of Silurian to mid-Devonian deep-marine sandstone-dominated sedimentation: Early Silurian (late Llandovery), Late Silurian (Ludlow), earliest Devonian (Lochkovian) and late Early Devonian (Emsian). Two dispersal patterns have been defined using more than 1100 palaeocurrent measurements, mainly from sole marks and cross-laminations in graded beds, together with sandstone compositions. The older pattern, of Silurian to earliest Devonian age, contains the lowest three sandstone pulses. Palaeocurrents and provenance define a wedge of southwesterly derived sediment, of largely cratonic provenance, thinning eastward. This older dispersal pattern is part of an Early Ordovician to earliest Devonian east-facing passive continental margin succession. Palaeocurrents and provenance in the Emsian sandstone pulse comprise three patterns: (1) west- to southwesterly directed palaeocurrents associated with fine- to coarse-grained, locally conglomeratic, lithic sandstones containing a high proportion of volcanic detritus; (2) east- to northeasterly directed palaeocurrents associated with fine- to medium-grained quartz-lithic sandstones; (3) north- to northwesterly and south- to southeasterly directed palaeocurrents associated with fine- to medium-grained sandstones of variable lithic composition. The palaeocurrent and provenance pattern defines a NNW-elongate basin with a tectonically active eastern margin, and is similar to the coeval Mathinna basin of northeastern Tasmania. Both basins are part of the same system of wrench basins, which developed along the western side of the Wagga–Omeo Metamorphic Belt during the earliest Devonian to Middle Devonian. The change in tectonic setting in the earliest Devonian appears to have occurred during an interval of significant dextral translation of the eastern Lachlan Fold Belt towards the SSE along the Governor and associated fault zones.  相似文献   

15.
古亚洲洋不是西伯利亚陆台和华北地台间的一个简单洋盆,而是在不同时间、不同地区打开和封闭的多个大小不一的洋盆复杂活动(包括远距离运移)的综合体.其北部洋盆起始于新元古代末-寒武纪初(573~522Ma)冈瓦纳古陆裂解形成的寒武纪洋盆.寒武纪末-奥陶纪初(510~480Ma),冈瓦纳古陆裂解的碎块、寒武纪洋壳碎块和陆缘过渡壳碎块相互碰撞、联合形成原中亚-蒙古古陆.奥陶纪时,原中亚-蒙古古陆南边形成活动陆缘,志留纪形成稳定大陆.泥盆纪初原中亚-蒙古古陆裂解,裂解的碎块在新形成的泥盆纪洋内沿左旋断裂向北运动,于晚泥盆世末到达西伯利亚陆台南缘,重新联合形成现在的中亚-蒙古古陆.晚古生代时,在现在的中亚-蒙古古陆内发生晚石炭世(318~316Ma)和早二叠世(295~285Ma)裂谷岩浆活动,形成双峰式火山岩和碱性花岗岩类.蒙古-鄂霍次克带是西伯利亚古陆和中亚-蒙古古陆之间的泥盆纪洋盆,向东与古太平洋连通,洋盆发展到中晚侏罗世,与古太平洋同时结束,其洋壳移动到西伯利亚陆台边缘受阻而向陆台下俯冲,在陆台南缘形成广泛的陆缘岩浆岩带,从中泥盆世到晚侏罗世都非常活跃.古亚洲洋的南部洋盆始于晚寒武世.此时,华北古陆从冈瓦纳古陆裂解出来,在其北缘形成晚寒武世-早奥陶世的被动陆缘和中奥陶世-早志留世的沟弧盆系.志留纪腕足类生物群的分布表明,华北地台北缘洋盆与塔里木地台北缘、以及川西、云南、东澳大利亚有联系,而与上述的古亚洲洋北部洋盆没有关连,两洋盆之间有松嫩-图兰地块间隔.晚志留世-早泥盆世,华北地台北部发生弧-陆碰撞运动,泥盆纪时,在松嫩地块南缘形成陆缘火山岩带,晚二叠世-早三叠世华北地台与松嫩地块碰撞,至此古亚洲洋盆封闭.古亚洲洋的南、北洋盆最后的褶皱构造,以及与塔里木地台之间发生的直接关系,很可能是后期的构造运动所造成的.  相似文献   

16.
塔里木盆地古生代重要演化阶段的古构造格局与古地理演化   总被引:14,自引:4,他引:10  
塔里木盆地在古生代经历了中-晚奥陶世、晚奥陶世末、中泥盆世末等多个重要的盆地变革期,形成了多个重要的不整合,盆地构造古地理发生了重要的变化。中、晚奥陶世盆地的变革形成了由巴楚古斜坡-塔中隆起-和田河隆起构成的大型古隆起带、相对沉降的北部坳陷带以及由于挤压挠曲沉降形成的塘古孜巴斯坳陷带。中部古隆起带制约着晚奥陶世东窄西宽的弧立碳酸盐岩台地体系的发育,而开始形成于震旦纪的满加尔拗拉槽及东南侧的塘古孜巴斯坳陷接受了巨厚的中、晚奥陶世重力流沉积。奥陶纪末的盆地变革形成了北东东向展布的西南-东南缘和西北缘的强烈隆起带,总体的古构造地貌控制着早志留世北东东向展布的滨浅海陆源碎屑盆地的沉积格局。中泥盆纪世末期的盆地强烈隆升并遭受了夷平化的剥蚀作用,形成了大范围分布的角度不整合面,并以塔北隆起和塔东隆起的强烈抬升为显著特征。盆地古构造地貌从东低西高转为东高、西低,制约着晚泥盆和早石炭世由东向西南方向从滨岸到浅海的古地理分布。中、晚奥陶世主要不整合及其剥蚀量的分布反映出北昆仑向北碰撞和挤入是造成盆地南缘、东南缘及盆内隆起的主要原因。南天山洋的俯冲、碰撞在奥陶世末至早志留世已对盆地西北缘产生影响,导致塔北英买力隆起的抬升和遭受剥蚀。  相似文献   

17.
Variscan geodynamic evolution of the Carnic Alps (Austria/Italy)   总被引:1,自引:1,他引:1  
The South-Alpine Carnic Alps are part of the southern flank of the European Variscides and display a continuous sedimentary record from Late Ordovician to Devonian times followed by Carboniferous S-directed nappe stacking and Late Carboniferous to Early Permian post-collisional collapse. The tectonometamorphic and sedimentary evolution of the Carnic Alps resembles a continuous process where pre- and syn-orogenic volcanism, syn-orogenic flysch sedimentation, deformation including nappe stacking, metamorphism and tectonic collapse shift in age from internal zones in the N towards external zones in the S. New structural, petrological and sedimentological data are presented concerning the tectonometamorphic history of the Carnic Alps. We distinguish three thrust sheets or tectonic nappes differing in their stratigraphic, sedimentological, deformational and metamorphic histories which were thrust over each other in Carboniferous times. Our data lead to a new geodynamic model showing an evolution from rifting or back-arc spreading in the Late Ordovician to the establishment of a mature passive continental margin in the Late Devonian/Early Carboniferous, flysch sedimentation in an active continental margin setting during the Visean/Namurian and finally collision during the Late Carboniferous between the northern margin of Gondwana and a microcontinent to the N.  相似文献   

18.
Thermochronological data from the Songpan-Ganze˛Fold Belt and Longmen Mountains Thrust-Nappe Belt, on the eastern margin of the Tibetan Plateau in central China, reveal several phases of differential cooling across major listric thrust faults since Early Cretaceous times. Differential cooling, indicated by distinct breaks in age data across discrete compressional structures, was superimposed upon a regional cooling pattern following the Late Triassic Indosinian Orogeny. 40Ar/39Ar data from muscovite from the central and southern Longmen Mountains Thrust-Nappe Belt suggest a phase of differential cooling across the Wenchuan-Maouwen Shear Zone during the Early Cretaceous. The zircon fission track data also indicate differential cooling across a zone of brittle re-activation on the eastern margin of the Wenchuan-Maouwen Shear Zone during the mid-Tertiary, between 38 and 10 Ma. Apatite fission track data from the central and southern Longmen Mountains Thrust-Nappe Belt reveal differential cooling across the Yingxiu-Beichuan and Erwangmiao faults during the Miocene. Forward modelling of apatite fission track data from the northern Longmen Mountains Thrust-Nappe Belt suggests relatively slow regional cooling through the Mesozoic and early Tertiary, followed by accelerated cooling during the Miocene, beginning at ca. 20 Ma, to present day.

Regional cooling is attributed to erosion during exhumation of the evolving Longmen Mountains Thrust-Nappe Belt (LMTNB) following the Indosinian Orogeny. Differential cooling across the Wenchuan-Maouwen Shear Zone and the Yingxiu-Beichuan and Erwangmiao faults is attributed to exhumation of the hanging walls of active listric thrust faults. Thermochronological data from the Longmen Mountains Thrust-Nappe Belt reveal a greater amount of differential exhumation across thrust faults from north to south. This observation is in accord with the prevalence of Proterozoic and Sinian basement in the hanging walls of thrust faults in the central and southern Longmen Mountains. The two most recent phases of reactivation occurred following the initial collision of India with Eurasia, suggesting that lateral extrusion of crustal material in response to this collision was focused along discrete structures in the LMTNB.  相似文献   


19.
The northern part of the Tasman Fold Belt System in Queensland comprises three segments, the Thomson, Hodgkinson- Broken River, and New England Fold Belts. The evolution of each fold belt can be traced through pre-cratonic (orogenic), transitional, and cratonic stages. The different timing of these stages within each fold belt indicates differing tectonic histories, although connecting links can be recognised between them from Late Devonian time onward. In general, orogenesis became younger from west to east towards the present continental margin. The most recent folding, confined to the New England Fold Belt, was of Early to mid-Cretaceous age. It is considered that this eastward migration of orogenic activity may reflect progressive continental accretion, although the total amount of accretion since the inception of the Tasman Fold Belt System in Cambrian time is uncertain.The Thomson Fold Belt is largely concealed beneath late Palaeozoic and Mesozoic intracratonic basin sediments. In addition, the age of the more highly deformed and metamorphosed rocks exposed in the northeast is unknown, being either Precambrian or early Palaeozoic. Therefore, the tectonic evolution of this fold belt must remain very speculative. In its early stages (Precambrian or early Palaeozoic), the Thomson Fold Belt was probably a rifted continental margin adjacent to the Early to Middle Proterozoic craton to the west and north. The presence of calc-alkaline volcanics of Late Cambrian Early Ordovician and Early-Middle Devonian age suggests that the fold belt evolved to a convergent Pacific-type continental margin. The tectonic setting of the pre-cratonic (orogenic) stage of the Hodgkinson—Broken River Fold Belt is also uncertain. Most of this fold belt consists of strongly deformed, flysch-type sediments of Silurian-Devonian age. Forearc, back-arc and rifted margin settings have all been proposed for these deposits. The transitional stage of the Hodgkinson—Broken River Fold Belt was characterised by eruption of extensive silicic continental volcanics, mainly ignimbrites, and intrusion of comagmatic granitoids in Late Carboniferous Early Permian time. An Andean-type continental margin model, with calc-alkaline volcanics erupted above a west-dipping subduction zone, has been suggested for this period. The tectonic history of the New England Fold Belt is believed to be relatively well understood. It was the site of extensive and repeated eruption of calc-alkaline volcanics from Late Silurian to Early Cretaceous time. The oldest rocks may have formed in a volcanic island arc. From the Late Devonian, the fold belt was a convergent continental margin above a west-dipping subduction zone. For Late Devonian- Early Carboniferous time, parallel belts representing continental margin volcanic arc, forearc basin, and subduction complex can be recognised.A great variety of mineral deposits, ranging in age from Late Cambrian-Early Ordovician and possibly even Precambrian to Early Cretaceous, is present in the exposed rocks of the Tasman Fold Belt System in Queensland. Volcanogenic massive sulphides and slate belt-type gold-bearing quartz veins are the most important deposits formed in the pre-cratonic (orogenic) stage of all three fold belts. The voicanogenic massive sulphides include classic Kuroko-type orebodies associated with silicic volcanics, such as those at Thalanga (Late Cambrian-Early Ordovician. Thomson Fold Belt) and at Mount Chalmers (Early Permian New England Fold Belt), and Kieslager or Besshi-type deposits related to submarine mafic volcanics, such as Peak Downs (Precambrian or early Palaeozoic, Thomson Fold Belt) and Dianne. OK and Mount Molloy (Silurian—Devonian, Hodgkinson Broken River Fold Belt). The major gold—copper orebody at Mount Morgan (Middle Devonian, New England Fold Belt), is considered to be of volcanic or subvolcanic origin, but is not a typical volcanogenic massive sulphide.The most numerous ore deposits are associated with calc-alkaline volcanics and granitoid intrusives of the transitional tectonic stage of the three fold belts, particularly the Late Carboniferous Early Perman of the Hodgkinson—Broken River Fold Belt and the Late Permian—Middle Triassic of the southeast Queensland part of the New England Fold Belt. In general, these deposits are small but rich. They include tin, tungsten, molybdenum and bismuth in granites and adjacent metasediments, base metals in contact meta somatic skarns, gold in volcanic breccia pipes, gold-bearing quartz veins within granitoid intrusives and in volcanic contact rocks, and low-grade disseminated porphyry-type copper and molybdenum deposits. The porphyry-type deposits occur in distinct belts related to intrusives of different ages: Devonian (Thomson Fold Belt), Late Carboniferous—Early Permian (Hodgkinson—Broken River Fold Belt). Late Permian Middle Triassic (southeast Queensland part of the New England Fold Belt), and Early Cretaceous (northern New England Fold Belt). All are too low grade to be of economic importance at present.Tertiary deep weathering events were responsible for the formation of lateritic nickel deposits on ultramafics and surficial manganese concentrations from disseminated mineralisation in cherts and jaspers.  相似文献   

20.
Seismic and drilling well data were used to examine the occurrence of multiple stratigraphic unconformities in the Tarim Basin, NW China. The Early Cambrian, the Late Ordovician and the late Middle Devonian unconformities constitute three important tectonic sequence boundaries within the Palaeozoic succession. In the Tazhong, Tabei, Tadong uplifts and the southwestern Tarim palaeo‐uplift, unconformities obviously belong to superimposed unconformities. A superimposed unconformity is formed by superimposition of unconformities of multiple periods. Areas where superimposed unconformities develop are shown as composite belts of multiple tectonic unconformities, and as higher uplift areas of palaeo‐uplifts in palaeogeomorphologic units. The contact relationship of unconformities in the lower uplift areas is indicative of truncation‐overlap. A slope belt is located below the uplift areas, and the main and secondary unconformities are characterized by local onlap reflection on seismic profiles. The regional dynamics controlled the palaeotectonic setting of the Palaeozoic rocks in the Tarim Basin and the origin and evolution of the basin constrained deposition. From the Sinian to the Cambrian, the Tarim landmass and its surrounding areas belonged to an extensional tectonic setting. Since the Late Ordovician, the neighbouring north Kunlun Ocean and Altyn Ocean was transformed from a spreading ocean basin to a closed compressional setting. The maximum compression was attained in the Late Ordovician. The formation of a tectonic palaeogeomorphologic evolution succession from a cratonic margin aulacogen depression to a peripheral foreland basin in the Early Caledonian cycle controlled the deposition of platform, platform margin, and deep‐water basin. Tectonic uplift during the Late Ordovician resulted in a shallower basin which was followed by substantial erosion. Subsequently, a cratonic depression and peripheral or back‐arc foreland basin began their development in the Silurian to Early–Middle Devonian interval. In this period, the Tabei Uplift, the Northern Depression and the southern Tarim palaeo‐uplift showed obvious control on depositional systems, including onshore slope, shelf and deep‐water basin. The southern Tarim Plate was in a continuous continental compressional setting after collision, whereas the southern Tianshan Ocean began to close in the Early Ordovician and was completely closed by the Middle Devonian. At the same time, further compression from peripheral tectonic units in the eastern and southern parts of the Tarim Basin led to the expansion of palaeo‐uplift in the Late Devonian–Early Carboniferous interval, and the connection of the Tabei Uplift and Tadong Uplift, thus controlling onshore, fluvial delta, clastic coast, lagoon‐bay and shallow marine deposition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号