首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
刘灿  赵玉晖  季江徽 《天文学报》2023,64(1):11-125
彗星是太阳系遗留的原始星子,研究彗星彗核的演化对理解太阳系其他天体的形成和演化历史具有重要意义.在太阳的辐射作用下,彗星携带的挥发性成分会发生升华,并带动尘埃运动,造成彗核物质的损失.因此,彗核的升华活动对其表面形貌甚至整体形状演化都会产生影响.从IAU (International Astronomical Union) MPC (Minor Planet Center)获取轨道数据,并考虑了彗核的自转以及进动,利用MONET (Mass lossdriven shape evolution model)形状演化模型对短周期彗星做数值模拟,计算得到了短周期彗星1P/Halley、9P/Tempel 1、 19P/Borrelly、 67P/C-G (Churyumov-Gerasimenko)、 81P/Wild 2和103P/Hartley 2在一个轨道周期内的太阳辐射能量以及表面侵蚀深度的分布,结合其动力学参数讨论了自转、进动和公转等特性对其表面水冰升华分布的影响以及造成南北侵蚀差异的可能性.  相似文献   

2.
The paper considers morphology of craters, smooth surfaces, and flows as well as signatures of layering observed on nuclei of Borrelly, Wild 2, and Tempel 1. In our analysis, we emphasize the role of the so-called planation process, which involves avalanche-type flows and can be responsible for the formation of flow-like features, smooth terrains, terraces, and flat floors of some craters observed on cometary nuclei. In agreement with some other researchers (e.g., Belton, 2006), we suggest that in the thicker layers on Tempel 1 and in some features on Borrelly and Wild 2, we may see elements of the comet primordial structure. We also see more and less degraded impact craters formed early in the comet history in distant parts of the Solar System and landforms formed very recently during comet visits to the inner part of the Solar System. The recent resurfacing processes certainly changed the nucleus surface materials, possibly enhancing the sublimation of volatile species, so it should be taken into account in interpretations of the Deep Impact results and in selecting study areas when the Rosetta spacecraft will approach its target comet.  相似文献   

3.
The NASA-JPL Deep Space 1 Mission (DS1) encountered the short-period Jupiter-family Comet 19P/Borrelly on September 22, 2001, about 8 days after perihelion. DS1's payload contained a remote-sensing package called MICAS (Miniature Integrated Camera Spectrometer) that included a 1024 square CCD and a near IR spectrometer with ∼12 nm resolution. Prior to its closest approach of 2171 km, the remote-sensing package on the spacecraft obtained 25 CCD images of the comet and 45 near-IR spectra (L. Soderblom et al., 2002, Science 296, 1087-1091). These images provided the first close-up view of a comet's nucleus sufficiently unobscured to perform quantitative photometric studies. At closest approach, corresponding to a resolution of 47 meters per pixel, the intensity of the coma was less than 1% of that of the nucleus. An unprecedented range of high solar phase angles (52-89 degrees), viewing geometries that are in general attainable only when a comet is active, enabled the first quantitative and disk resolved modeling of surface photometric physical parameters, including the single particle phase function and macroscopic roughness. The disk-integrated geometric albedo of Borrelly's nucleus is 0.029±0.006, comparable to the dark hemisphere of Iapetus, the lowest albedo C-type asteroids, and the uranian rings. The Bond albedo, 0.009±0.002, is lower than that of any Solar System object measured. Such a low value may enhance the heating of the nucleus and sublimation of volatiles, which in turn causes the albedo to decrease even further. A map of normal reflectance of Borrelly shows variations far greater than those seen on asteroids. The two main terrain types, smooth and mottled, exhibit mean normal reflectances of 0.03 and 0.022. The physical photometric parameters of Borrelly's nucleus are typical of other small dark bodies, particularly asteroids, except preliminary modeling results indicate its regolith may be substantially fluffier. The nucleus exhibits significant variations in macroscopic roughness, with the oldest, darkest terrain being slightly smoother. This result suggests the infilling of low-lying areas with dust and particles that have not been able to leave the comet. The surface of the comet is backscattering, but there are significant variations in the single particle phase function. One region exhibits a flat particle phase function between solar phase angles of 50° and 75° (like cometary dust and unlike planetary surfaces), suggesting that its regolith is controlled by native dust rather than by meteoritic bombardment.  相似文献   

4.
Deep Impact images of the nucleus of Comet Tempel 1 reveal pervasive layering, possible impact craters, flows with smooth upper surfaces, and erosional stripping of material. There are at least 3 layers 50-200 m thick that appear to extend deep into the nucleus, and several layers 1-20 m thick that parallel the surface and are being eroded laterally. Circular depressions show geographical variation in their forms and suggest differences in erosion rates or style over scales >1 km. The stratigraphic arrangement of these features suggests that the comet experienced substantial periods of little erosion. Smooth surfaces trending downslope suggest some form of eruption of materials from this highly porous object. The Deep Impact images show that the nucleus of Tempel 1 cannot be modeled simply as either an onion-layer or rubble pile structure.  相似文献   

5.
Surface morphology and related issues for nuclei of three comets: Halley, Borrelly and Wild 2, are considered in the paper. Joint consideration of publications and results of our analysis of the comets’ images led to conclusions, partly new, partly repeating conclusions published by other researchers. It was found that typical for all three nuclei is the presence of rather flat areas: floors of craters and other depressions, mesas and terraces. This implies that flattening surfaces or planation is a process typical for the comet nuclei. Planation seems to work through the sublimation-driven slope collapse and retreat. This requires effective sublimation so this process should work only when a comet is close to the Sun and if on the nucleus there are starting slopes, steep and high enough to support the “long-distance” avalanching of the collapsing material. If the surface had no starting slopes, then instead of planation, the formation of pitted-and-hilly surfaces should occur. An example of this could be the mottled terrain of the Borelly nucleus. Both ways of the sublimational evolution on the nucleus surface should lead to accumulation of cometary regolith. The thickness of the degassed regolith is not known, but it is obvious that in surface depressions, including the flat-floor ones, it should be larger compared with nondepression areas. This may have implications for the in situ study of comets by the Deep Impact and Rosetta missions.Our morphological analysis puts constraints on the applicability of the popular “rubble-pile comet nucleus” hypothesis (Weissman, 1986. Are cometery nuclei primordial rubble piles? Nature 320, 242-244.). We believe that the rubble pile hypothesis can be applicable to the blocky Halley nucleus. The Borelly and Wild 2 nuclei also could be rubble piles. But in these cases the “rubbles” have to be either smaller than 30-50 m (a requirement to keep lineament geometry close to ideal), or larger than 1-2 km (a requirement to form the rather extended smooth, flat surfaces of mesa tops and crater floors). Another option is that the Borelly and Wild 2 nuclei are not rubble piles.In relation to surface morphology we suggest that three end-member types of the comet nuclei may exist: (1) impact cratered “pristine” bodies, (2) non-cratered fragments of catastrophic disruption, and (3) highly Sun-ablated bodies. In this threefold classification, the Wild 2 nucleus is partially ablated primarily cratered body. Borrelly is significantly ablated and could be either primarily cratered or not-cratered fragment. Halley is certainly partially ablated but with the available images it is difficult to say if remnants of impact craters do exist on it.Recently published observations and early results of analysis of the Tempel 1 nucleus images taken by Deep Impact mission are in agreement with our conclusions on the processes responsible for the Halley, Borrelly and Wild 2 nuclei morphologies. In particular, we have now more grounds to suggest that decrease in crater numbers and increase of the role of smooth flat surfaces in the sequence Wild 2?Tempel 1?Borelli reflects a progress in the sublimational degradation of the nucleus surface during comet passages close to the Sun.  相似文献   

6.
Reactive torques, due to anisotropic sublimation on a comet nucleus surface, produce slow variations of its rotation. In this paper the secular effects of this sublimation are studied. The general rotational equations of motion are averaged over unperturbed fast rotation around the mass center (Euler-Poinsot motion) and over the orbital comet motion. We discuss the parameters that define typical properties of the rotational evolution and discover different classifications of the rotational evolution. As an example we discuss some possible scenarios of rotational evolution for the nuclei of the comets Halley and Borrelly.  相似文献   

7.
As any comet nears the Sun, gas sublimes from the nucleus taking dust with it. Jupiter family comets are no exception. The neutral gas becomes ionized, and the interaction of a comet with the solar wind starts with ion pickup. This key process is also important in other solar system contexts wherever neutral particles become ionized and injected into a flowing plasma such as at Mars, Venus, Io, Titan and interstellar neutrals in the solar wind. At comets, ion pickup removes momentum and energy from the solar wind and puts it into cometary particles, which are then thermalised via plasma waves. Here we review what comets have shown us about how this process operates, and briefly look at how this can be applied in other contexts. We review the processes of pitch angle and energy scattering of the pickup ions, and the boundaries and regions in the comet-solar wind interaction. We use in-situ measurements from the four comets visited to date by spacecraft carrying plasma instrumentation: 21P/Giacobini-Zinner, 1P/Halley, 26P/Grigg-Skjellerup and 19P/Borrelly, to illustrate the process in action. While, of these, comet Halley is not a Jupiter class comet, it has told us the most about cometary plasma environments. The other comets, which are from the Jupiter family, give an interesting comparison as they have lower gas production rates and less-developed interactions. We examine the prospects for Rosetta at comet Churyumov-Gerasimenko, another Jupiter family comet where a wide range of gas production rates will be studied.  相似文献   

8.
Boice  D. C.  Soderblom  L. A.  Britt  D. T.  Brown  R. H.  Sandel  B. R.  Yelle  R. V.  Buratti  B. J.  Hicks  Nelson  Rayman  Oberst  J.  Thomas  N. 《Earth, Moon, and Planets》2000,89(1-4):301-324
NASA's Deep Space 1 (DS1) spacecraft successfully encountered comet 19P/Borrelly near perihelion and the Miniature Integrated Camera and Spectrometer (MICAS) imaging system onboard DS1 returned the first high-resolution images of a Jupiter-family comet nucleus and surrounding environment. The images span solar phase angles from 88° to 52°, providing stereoscopic coverage of the dust coma and nucleus. Numerous surface features are revealed on the 8-km long nucleus in the highest resolution images(47–58 m pixel). A smooth, broad basin containing brighter regions and mesa-likestructures is present in the central part of the nucleus that seems to be the source ofjet-like dust features seen in the coma. High ridges seen along the jagged terminator lead to rugged terrain on both ends of the nucleus containing dark patches and smaller series of parallel grooves. No evidence of impact craters with diameters larger thanabout 200-m are present, indicating a young and active surface. The nucleus is very dark with albedo variations from 0.007 to 0.035. Short-wavelength, infrared spectra from 1.3 to 2.6 μm revealed a hot, dry surface consistent with less than about10% actively sublimating. Two types of dust features are seen: broad fans and highlycollimated “jets” in the sunward hemisphere that can be traced to the surface. The source region of the main jet feature, which resolved into at least three smaller “jets” near the surface, is consistent with an area around the rotation pole that is constantly illuminated by the sun during the encounter. Within a few nuclear radii, entrained dustis rapidly accelerated and fragmented and geometrical effects caused from extended source regions are present, as evidenced in radial intensity profiles centered on the jet features that show an increase in source strength with increasing cometocentric distance. Asymmetries in the dust from dayside to nightside are pronounced and may show evidence of lateral flow transporting dust to structures observed in the nightside coma. A summary of the initial results of the Deep Space 1 Mission is provided, highlighting the new knowledge that has been gained thus far.  相似文献   

9.
The Antarctic Dry Valleys (ADV) are generally classified as a hyper-arid, cold-polar desert. The region has long been considered an important terrestrial analog for Mars because of its generally cold and dry climate and because it contains a suite of landforms at macro-, meso-, and microscales that closely resemble those occurring on the martian surface. The extreme hyperaridity of both Mars and the ADV has focused attention on the importance of salts and brines on soil development, phase transitions from liquid water to water ice, and ultimately, on process geomorphology and landscape evolution at a range of scales on both planets. The ADV can be subdivided into three microclimate zones: a coastal thaw zone, an inland mixed zone, and a stable upland zone; zones are defined on the basis of summertime measurements of atmospheric temperature, soil moisture, and relative humidity. Subtle variations in these climate parameters result in considerable differences in the distribution and morphology of: (1) macroscale features (e.g., slopes and gullies); (2) mesoscale features (e.g., polygons, including ice-wedge, sand-wedge, and sublimation-type polygons, as well as viscous-flow features, including solifluction lobes, gelifluction lobes, and debris-covered glaciers); and (3) microscale features (e.g., rock-weathering processes/features, including salt weathering, wind erosion, and surface pitting). Equilibrium landforms are those features that formed in balance with environmental conditions within fixed microclimate zones. Some equilibrium landforms, such as sublimation polygons, indicate the presence of extensive near-surface ice; identification of similar landforms on Mars may also provide a basis for detecting the location of shallow ice. Landforms that today appear in disequilibrium with local microclimate conditions in the ADV signify past and/or ongoing shifts in climate zonation; understanding these shifts is assisting in the documentation of the climate record for the ADV. A similar type of landform analysis can be applied to the surface of Mars where analogous microclimates and equilibrium landforms occur (1) in a variety of local environments, (2) in different latitudinal bands, and (3) in units of different ages. Documenting the nature and evolution of the ADV microclimate zones and their associated geomorphic processes is helping to provide a quantitative framework for assessing the evolution of climate on Mars.  相似文献   

10.
Mariner 9 pictures indicate that the surface of Mars has been shaped by impact, volcanic, tectonic, erosional and depositional activity. The moonlike cratered terrain, identified as the dominant surface unit from the Mariner 6 and 7 flyby data, has proven to be less typical of Mars than previously believed, although extensive in the mid- and high-latitude regions of the southern hemisphere. Martian craters are highly modified but their size-frequency distribution and morphology suggest that most were formed by impact. Circular basins encompassed by rugged terrain and filled with smooth plains material are recognized. These structures, like the craters, are more modified than corresponding features on the Moon and they exercise a less dominant influence on the regional geology. Smooth plains with few visible craters fill the large basins and the floors of larger craters; they also occupy large parts of the northern hemisphere where the plains lap against higher landforms. The middle northern latitudes of Mars from 90 to 150† longitude contain at least four large shield volcanoes each of which is about twice as massive as the largest on Earth. Steep-sided domes with summit craters and large, fresh-appearing volcanic craters with smooth rims are also present in this region. Multiple flow structures, ridges with lobate flanks, chain craters, and sinuous rilles occur in all regions, suggesting widespread volcanism. Evidence for tectonic activity postdating formation of the cratered terrain and some of the plains units is abundant in the equatorial area from 0 to 120° longitude.Some regions exhibit a complex semiradial array of graben that suggest doming and stretching of the surface. Others contain intensity faulted terrain with broader, deeper graben separated by a complex mosaic of flat-topped blocks. An east-west-trending canyon system about 100–200 km wide and about 2500 km long extends through the Coprates-Eos region. The canyons have gullied walls indicative of extensive headward erosion since their initial formation. Regionally depressed areas called chaotic terrain consist of intricately broken and jumbled blocks and appear to result from breaking up and slumping of older geologic units. Compressional features have not been identified in any of the pictures analyzed to data. Plumose light and dark surface markings can be explained by eolian transport. Mariner 9 has thus revealed that Mars is a complex planet with its own distinctive geologic history and that it is less primitive than the Moon.  相似文献   

11.
The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) has imaged the sublimation of Mars’ seasonal CO2 polar cap with unprecedented detail for one complete martian southern spring. In some areas of the surface, beneath the conformal coating of seasonal ice, radially-organized channels are connected in spidery patterns. The process of formation of this terrain, erosion by gas from subliming seasonal ice, has no earthly analog. The new capabilities (high resolution, color, and stereo images) of HiRISE enable detailed study of this enigmatic terrain. Two sites are analyzed in detail, one within an area expected to have translucent seasonal CO2 ice, and the other site outside that region. Stereo anaglyphs show that some channels grow larger as they go uphill - implicating gas rather than liquid as the erosive agent. Dark fans of material from the substrate are observed draped over the seasonal ice, and this material collects in thin to thick layers in the channels, possibly choking off gas flow in subsequent years, resulting in inactive crisscrossing shallow channels. In some areas there are very dense networks of channels with similar width and depth, and fewer fans emerging later in the season are observed. Subtle variations in topography affect the channel morphology. A new terminology is proposed for the wide variety of erosional features observed.  相似文献   

12.
The comet 67P/Churyumov-Gerasimenko is the current target of the mission Rosetta, initially planned to investigate comet 46P/Wirtanen. These two comets have similar orbits, except the distance to the Sun at perihelion, but different orbital histories and different masses. Thus, structures of the nuclei can be significantly different. The evolution of comet Wirtanen was simulated by several authors, while comet Churyumov-Gerasimenko became an object of high interest only recently and is not well investigated. In the present work we simulate the evolution of the nucleus, down to tens of meters below the surface, using an extended version of the model previously applied for comet Wirtanen [Kossacki et al., 1999. Comet 46P/Wirtanen: evolution of the subsurface layer. Icarus 142, 202-218.]. The model includes strengthening of the nucleus due to sintering of the ice grains. Simulations are performed for different latitudes, accounting for the evolution of the orbit and for changes of the nucleus orientation, as well as diurnal and seasonal changes of insolation. The calculated loss of water vapor from the comet is integrated over the nucleus surface and is compared with the observational data. We have found, that the sublimation through the dust mantle can be large enough to reproduce the profile of the total water production as a function of time from perihelion. The required dependence of thickness of the dust layer on latitude qualitatively matches present distribution of the absorbed solar flux. The non-gravitational acceleration in the comet motion together with the simulated sublimation flux are used in order to estimate the mass and the bulk density of the nucleus.  相似文献   

13.
Shih  Frank Y.  Kowalski  Artur J. 《Solar physics》2003,218(1-2):99-122
This paper presents a new method which allows for the automatic extraction and tracking of the evolution of filaments in solar images. Series of Hα full-disk images are taken in regular time intervals to observe the changes of the solar disk features. In each picture, the solar chromosphere filaments are identified for further evolution examination. Two alternative preprocessing techniques converting grayscale images into black-and-white pictures with enhanced chromosphere granularity are examined: local thresholding based on median values and global thresholding with brightness and area normalization. The next step employs morphological closing operations with multi-directional linear structuring elements to extract elongated shapes in the image. After logical intersection of directional filtering results, remaining noise is removed from the final outcome using morphological dilation and erosion with a circular structuring element. Experimental results show that the developed technique can achieve excellent results in detecting large filaments and good detection rates for small filaments.  相似文献   

14.
Steven W. Squyres 《Icarus》1978,34(3):600-613
Viking orbital photographs of two regions of Martian fretted terrain have revealed a number of landforms which appear to possess distinct flow lineations. These range from valley floors with lineations which parallel the valley walls to debris aprons with distinctly lobate profiles and lineations which radiate outward from the source area. These features are attributed to the deformation and flow of a mass consisting of erosional particles and ice incorporated from the atmosphere. Such a flow should behave much like a terrestrial rock glacier. A plastic deformation model is presented which is consistent with the known mechanical properties of rock glaciers and with the observed features of the landforms. The valley floor lineations are interpreted as being due to compressional forces resulting from debris flowing inward from the valley walls. Climatic implications of the features are discussed.  相似文献   

15.
C.F. Pain  M. Thomas 《Icarus》2007,190(2):478-491
Relief inversion has been invoked to explain a number of geomorphic features of the martian surface. Terrestrial relief inversion occurs when former depressions become elevated because their fill is more resistant to erosion than the surrounding terrain. It is a common product of long-term landscape evolution on Earth, especially in relatively stable intra-cratonic settings and flat, or near flat lying successions. The inverted relief will preserve relicts of former land surfaces and is therefore older than the surrounding terrain. Relief inversion can occur by a range of processes, including infill of depressions by intrinsically resistant material, selective secondary cementation via diagenesis and weathering, or surface armouring. We examine a number of possible cases of inverted relief on Mars that appear to have formed by these three processes. We suggest that the most likely cementing agents for surface induration are iron oxides, silica, and sulfates. Possible cementation mechanisms include fluid mixing during regional groundwater flow, cooling of hydrothermal or basinal fluids as they near the surface, and evaporation and sublimation of near surface water. Wind action appears the most common erosive process on Mars capable of the regional landscape lowering necessary for relief inversion to occur, unlike on Earth where both deflation and runoff are important. Preliminary crater densities of selected features show that the tops of the proposed inverted relief have considerably more craters than the surrounding plains, as is predicted by the inversion hypothesis. More accurate dating of inverted surfaces and the adjacent areas may provide a simple way of measuring the degree of erosion over time in at least some areas of Mars.  相似文献   

16.
J Oberst  B Giese  R Kirk  B Buratti  R Nelson 《Icarus》2004,167(1):70-79
Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly's surface are very minor (<10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly's large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly's main jets. Borrelly's surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties.  相似文献   

17.
In this work, we continue revising the theoretical basis ofnumerical models describing the transport of matter andenergy inside a porous dust-ice mixture at low temperature. Amodel of a light-absorbing near-surface layer of a comet nucleus isinvestigated. Gas transport is considered simultaneously with thesolution of the general heat transfer equation. Thequasi-stationary temperature distribution and the H2O massflux and sublimation rate are computed for a nucleus model ofcomet 19P/Borrelly at the Deep Space 1 (DS1) encounter. Theenergy is deposited in a layer of about 20 particle radii: Thiscorresponds to a solid-state greenhouse effect. The surfacetemperature of the layer-absorbing model as well as the gasproduction rate are significantly smaller than the ones in thesurface-absorbing model. An active fraction of 40–50% would berequired to explain the observed water production rate ofP/Borrelly with our layer-absorption model at the time of the DS1encounter.  相似文献   

18.
The surface of Titan has been revealed by Cassini observations in the infrared and radar wavelength ranges as well as locally by the Huygens lander instruments. Sand seas, recently discovered lakes, distinct landscapes and dendritic erosion patterns indicate dynamic surface processes. This study focus on erosional and depositional features that can be used to constrain the amount of liquids involved in the erosional process as well as on the compositional characteristics of depositional areas. Fluvial erosion channels on Titan as identified at the Huygens landing site and in RADAR and Visible and Infrared Mapping Spectrometer (VIMS) observations have been compared to analogous channel widths on Earth yielding average discharges of up to 1600 m3/s for short recurrence intervals that are sufficient to move centimeter-sized sediment and significantly higher discharges for long intervals. With respect to the associated drainage areas, this roughly translates to 1-150 cm/day runoff production rates with 10 years recurrence intervals and by assuming precipitation this implies 0.6-60 mm/h rainfall rates. Thus the observed surface erosion fits with the methane convective storm models as well as with the rates needed to transport sediment. During Cassini's T20 fly-by, the VIMS observed an extremely eroded area at 30° W, 7° S with resolutions of up to 500 m/pixel that extends over thousands of square kilometers. The spectral characteristics of this area change systematically, reflecting continuous compositional and/or particle size variations indicative of transported sediment settling out while flow capacities cease. To account for the estimated runoff production and widespread alluvial deposits of fine-grained material, release of area-dependent large fluid volumes are required. Only frequent storms with heavy rainfall or cryovolcanic induced melting can explain these erosional features.  相似文献   

19.
The central Valles Marineris is the widest part of the equatorial trough system of Mars. Melas Chasma and parts of Coprates and Candor Chasmata provide some of the clearest clues on the relationships between erosional landforms, deposits and various volcanic and tectonic features. A detailed geomorphic study of the troughs allows the identification of faults and other structures in most parts of this area, in spite of local obliteration by erosional and depositional processes. Tectonic control on erosional landforms appears mainly in the northern walls of Melas Chasma and in the edge of the inner plateau above the trough floor. Longitudinal major faults are identified only along the northern wall. However the trough may not be a simple half graben: another fault line is inferred inside Melas Chasma southern walls along the edge of a wide bench of layered deposits. A deep and relatively narrow graben linking those of Ius and Coprates Chasmata appears to be downfaulted inside a wider basin with eroded sides. Transverse or oblique faults control some outlines of these erosional landforms, whereas a few monoclines or faults restricted to the basin beds reveal compressional stresses or differential vertical movements related to the basin development.  相似文献   

20.
《Planetary and Space Science》1999,47(6-7):855-872
From the current understanding we know that comet nuclei have heterogeneous compositions and complex structures. It is believed that cometary activity is the result of a combination of physical processes in the nucleus, like sublimation and recondensation of volatile ices, dust grains release, phase transition of water ice, depletion of the most volatile components in the outer layers and interior differentiation.The evolution of the comet depends on the sublimation of ices and the release of different gases and dust grains: the formation of a dust crust, the surface erosion and the development of the coma are related to the gas fluxes escaping from the nucleus. New observations, laboratory experiments and numerical simulations suggest that the gas and dust emissions are locally generated, in the so-called active regions. This localized activity is probably superimposed to the global nucleus activity. The differences between active and inactive regions can be attributed to differences in texture and refractory material content of the different areas.In this paper we present the results of numerical models of cometary nucleus evolution, developed in order to understand which are the processes leading to the formation of active and non-active regions on the cometary surface. The used numerical code solves the equations of heat transport and gas diffusion within a porous nucleus composed of different ices—such as water (the dominant constituent), CO2, CO- and of dust grains embedded in the ice matrix.By varying the set of physical parameters describing the initial properties of comet P/Wirtanen, the different behaviour of the icy and dusty areas can be followed.Comet P/Wirtanen is the target of the international ROSETTA mission, the cornerstone ESA mission to a cometary nucleus. The successful design of ROSETTA requires some knowledge of comet status and activity: surface temperatures, amount of active and inactive surface areas, gas production rate and dust flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号