首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

As a result of recent drillings in the Walensee Valley (eastern Switzerland) a new facies model for the Quaternary filling of Alpine valleys has been developed. A detailed lithological model and some new radiocarbon dating allowed the calculation of regional sedimentation and denudation rates and their change during the Late- and Postglacial period. It is shown that these changes follow the paraglacial sedimentation model by Church and Ryder [1]. The absolute quantification of the sediment budgets between the Last Glaciation and today points to denudation rates in the order of 1.5 mm y?1 for the catchment of the Lake of Walenstadt. This is 50 % higher than suggested from current tectonic and isostatic estimates up to now. In that case present day uplift of the Alps would not be in balance with denudation. © Elsevier, Paris  相似文献   

2.
Glacial denudation can significantly perturb terrestrial cosmogenic nuclide depth profiles and, if this is not corrected for, derived apparent denudation rates will overestimate the actual denudation rates. Here we determine how much 10Be‐derived denudation rates – calculated under the assumption of steady state – deviate from actual denudation rates as a function of three parameters: (1) the total amount of glacial denudation, (2) the post‐glacial denudation rate and (3) the time elapsed since deglaciation. We provide correction lines for the full parameter space explored (glacial denudation: 0.01–100 m; post‐glacial denudation rate: 1–1000 mm/ka; deglaciation: 1–100 ka before present), to evaluate and, if necessary, correct denudation rates for the impact of glacial denudation. Applied to 10Be‐derived catchment‐averaged denudation rates for formerly glaciated catchments in the Black Forest, Germany, we find that uncorrected denudation rates overestimate actual rates by up to a factor of three.  相似文献   

3.
We present 10Be‐based basin‐averaged denudation rates for the entire western margin of the Peruvian Andes. Denudation rates range from c. 9 mm ka?1 to 190 mm ka?1 and are related neither to the subduction of the Nazca plate nor to the current seismicity along the Pacific coast and the occurrence of raised Quaternary marine terraces. Therefore, we exclude a tectonic control on denudation on a millennial time‐scale. Instead, we explain >60% of the observed denudation rates with a model where erosion rates increase either with mean basin slope angles or with mean annual water discharge. These relationships suggest a strong environmental control on denudation.  相似文献   

4.
The 10Be method was used to investigate the effect of mining activities on the natural denudation rates in alluvial sediments from catchments of the Southern Espinhaço Range (SER) in Minas Gerais State (Brazil). In this region, which is predominantly composed of quartzites, the 10Be concentrations were measured in alluvial sediments from catchments in a preserved natural area of the Serra do Cipó National Park and on the Diamantina Plateau, which was subjected to diamond extraction from beginnings of XVIII century until the end of the XX. Two types of drainage were identified in the Diamantina Plateau area: (i) reworked drainage (alluvial sediments reworked by panning) and (ii) overloaded drainage (alluvial sediments originating from panning processes on saprolites located upstream). The mean denudation value for the natural drainages (∼4.4 m.My-1) is similar to that of the reworked drainages (∼4.3 m.My-1) However, the denudation rates obtained for eleven samples from three sites in overloaded basins range from ∼6.4 m My-1 to ∼22.8 m My-1 and are thus higher than those determined for the reworked and natural basins. These results show that despite the alluvium deposits have been intensely reworked by panning, the values of denudation rates were not changed, they are similar to denudation rates from the natural drainages. However, the natural rates are lower than those affected by panning processes on saprolites.  相似文献   

5.
《Geodinamica Acta》2001,14(4):231-263
Erosional denudation of the Alps and their role as sediment source underwent major changes throughout the Quaternary, by repeated glaciation and deglaciation. The sediment fluxes of 16 major Alpine drainage basins were quantified by determining the sediment volumes which have been trapped in valleys and lake basins. These became sedimentologically closed after the last glacier retreat around 17 000 cal. BP. The sediment volumes distributed over their provenance areas yield mean mechanical denudation rates between 250 to 1060 mm ka–1. In contrast, modern denudation rates, derived from river loads and delta surveys, range from 30 to 360 mm ka–1. Relief, such as mean elevation and slope, turned out to be the primary control of both modern and Late Glacial mechanical denudation. Rock types seem to be responsible for some scatter of the data, but their role is masked by other factors. Modern denudation rates increase with higher proportions of bare rocks and glaciated area, but decrease with forest cover. An area-weighted extrapolation of the studied drainage basins to the entire Alps on the basis of major morphotectonic zones yields a mean denudation rate of 620 mm ka–1 over the last 17 000 years. This rate clearly exceeds the modern rate of 125 mm ka–1. Lake sediments and palaeoclimatic reconstructions confirm that the sediment yield of the Alps reached a maximum during deglaciation when large masses of unconsolidated materials were available, vegetation was scarse, and transport capacities were high. During the early Holocene sediment yield declined to a minimum before some climate deterioration and human activities again accelerated erosional processes. Assuming a denudation rate in the early Holocene half of the modern one, the Late Glacial denudation rates must have been in the order of 1100 to 2900 mm ka–1. Consequently, denudation rates during a glacial/interglacial cycle probably varied by a factor of 14, which lies well within the range of other studies in central Europe, Scandinavia and North America. From large scale sediment budgets of perialpine sedimentary basins the overall denudation rate of the Alps during the Quaternary has been c. 400 mm ka–1, i.e. about one third lower than the estimate for the last 17000 years. This can be well explained by the outstanding role which deglaciation played in the time span studied here.  相似文献   

6.
Silicate weathering of soil-mantled slopes in an active Alpine landscape   总被引:1,自引:0,他引:1  
Despite being located on high, steep, actively uplifting, and formerly glaciated slopes of the Swiss Central Alps, soils in the upper Rhone Valley are depleted by up to 50% in cations relative to their parent bedrock. This depletion was determined by a mass loss balance based on Zr as a refractory element. Both Holocene weathering rates and physical erosion rates of these slopes are unexpectedly low, as measured by cosmogenic 10Be-derived denudation rates. Chemical depletion fractions, CDF, range from 0.12 to 0.48, while the average soil chemical weathering rate is 33 ± 15 t km−2 yr−1. Both the cosmogenic nuclide-derived denudation rates and model calculations suggest that these soils have reached a weathering steady-state since deglaciation 15 ky ago. The weathering signal varies with elevation and hillslope morphology. In addition, the chemical weathering rates decrease with elevation indicating that temperature may be a dominant controlling factor on weathering in these high Alpine basins. Model calculations suggest that chemical weathering rates are limited by reaction kinetics and not the supply rate of fresh material. We compare hillslope and catchment-wide weathering fluxes with modern stream cation flux, and show that high relief, bare-rock slopes exhibit much lower chemical weathering rates despite higher physical erosion rates. The low weathering fluxes from rocky, rapidly eroding slopes allow for the broader implication that mountain building, while elevating overall denudation rates, may not cause increased chemical weathering rates on hillslopes. In order for this sediment to be weathered, intermediate storage, for instance in floodplains, is required.  相似文献   

7.
Denudation rates from cosmogenic 10Be measured in quartz from recent river sediment have previously been used in the Central Alps to argue that rock uplift occurs through isostatic response to erosion in the absence of ongoing convergence. We present new basin-averaged denudation rates from large rivers in the Eastern and Southern European Alps together with a detailed topographic analysis in order to infer the forces driving erosion. Denudation rates in the Eastern and Southern Alps of 170–1,400 mm ky−1 are within a similar range to those in the Central Alps for similar lithologies. However, these denudation rates vary considerably with lithology, and their variability generally increases with steeper landscapes, where correlations with topographic metrics also become poorer. Tertiary igneous rocks are associated with steep hillslopes and channels and low denudation rates, whereas pre-Alpine gneisses usually exhibit steep hillslopes and higher denudation rates. Molasse, flysch, and schists display lower mean basin slopes and channel gradients, and, despite their high erodibility, low erosion rates. Exceptionally low denudation rates are also measured in Permian rhyolite, which has high mean basin slopes. We invoke geomorphic inheritance as a major factor controlling erosion, such that large erosive glaciers in the late Quaternary cold periods were more effective in priming landscapes in the Central Alps for erosion than in the interior Eastern Alps. However, the difference in tectonic evolution of the Eastern and Central Alps potentially adds to differences in their geomorphic response; their deep structures differ significantly and, unlike the Central Alps, the Eastern Alps are affected by ongoing tectonic influx due to the slow motion and rotation of Adria. The result is a complex pattern of high mountain erosion in the Eastern Alps, which has evolved from one confined to the narrow belt of the Tauern Window in late Tertiary time to one affecting the entire underthrust basement, orogenic lid, and parts of the Southern Alps today.  相似文献   

8.
Cosmogenic nuclide-based denudation rates and published erosion rates from recent river gauging in the Napo River basin (Peruvian Amazonia) are used to decipher erosion and sedimentation processes along a 600 km long transect from the headwaters to the lowlands. The sediment-producing headwaters to the Napo floodplain are the volcanically active Ecuadorian Andes, which discharge sediment at a cosmogenic nuclide-based denudation rate of 0.49 ± 0.12 mm/yr. This denudation rate was calculated from an average 10Be nuclide concentration of 2.2 ± 0.5 × 104 at/g(Qz) that was measured in bedload-derived quartz. Within the Napo lowlands, a significant drop in trunk stream 10Be nuclide concentrations relative to the Andean hinterland is recorded, with an average concentration of 1.2 ± 0.5 × 104 at/g(Qz). This nuclide concentration represents a mixture between the 10Be nuclide concentration of eroded floodplain deposits, and that of sediment eroded from the Andean hinterland that is now carried in the trunk stream. Evidence for addition of sediment from the floodplain to the trunk stream is provided by published decadal-scale sediment flux measurements from gauging stations operated in the Napo basin, from which an increase from 12 × 106 t/yr at the outflow of the Andes to ~47 × 106 t/yr at the confluence with the Solimões (upper Amazon River) is recorded. Therefore, approximately 35 × 106 t of floodplain sediment are added annually to the active Napo trunk stream. Combined with our nuclide concentration measurements, we can estimate that the eroded floodplain deposits yield a nuclide concentration of ~0.9 × 104 at/g(Qz) only. Under steady state surface erosion conditions, this nuclide concentration would translate to a denudation rate of the floodplain of ~0.47 mm/yr. However, we have no geomorphologic explanation for this high denudation rate within the low relief floodplain and thus suggest that this low-nuclide concentrated sediment is Andean-derived and would have been deposited in the floodplain at a time when erosion rates of the Andes were elevated. Therefore, the recently eroded floodplain sediment provides an Andean “paleo denudation rate” of 1.2 mm/yr that was calculated for high Andean production rates. A likely period for elevated erosion rates is the LGM, where climate and vegetation cover of the Andes differed from that of the Holocene. A possible cause for the erosion of the floodplain is the tectonic uplift of the Eastern Andes, which progressively shifts the Napo River northwards. Hence, the river cuts into ancient lowland sediment, which is admixed to the Andean sediment carried in the main Napo River.  相似文献   

9.
Studies on denudation processes and soil loss rates can provide insight into the landscape evolution, climate change, and human activities, as well as on land degradation risk. The aims of this study were to analyze the space–time distribution of denudation processes and evaluate the soil loss changes occurred during the period 1955–2016 by using an approach integrating geomorphological, geospatial and modeling analysis. The study area is a representative stream catchment of the Crati Valley (Calabria, southern Italy), which is affected by severe erosion processes. The combined use of aerial photographs interpretation, field survey, geostatistics, and GIS processing has allowed to characterize the types of denudation processes and land use change in space and time. Revised universal soil loss equation implemented in GIS environment was used to estimate the space–time pattern of soil loss and the soil erosion rates for each investigated year. The results showed that from 1955 to 2016, the study area was highly affected by denudation processes, mainly related to landslides and water erosion (slope wash erosion and gully erosion). Comparison of denudation processes maps showed that the total area affected by erosion processes has increased by about 31% and the distribution of geomorphic processes and their space–time evolution resulted from the complex interrelation between geoenvironmental features and human activities. The main land use changes concerned a decrease in areas covered by woodland, scrubland and pasture and an increase in croplands and barren lands that favored erosion processes. The most susceptible areas to soil loss in both years were mapped, and the mean soil loss rates for the study area were 6.33 Mg ha?1 y?1 in 1955 and 10.38 Mg ha?1 y?1 in 2016. Furthermore, the soil loss in 2016 has increased by about 64% compared to 1955. Finally, the results showed that integrating multi-temporal analysis of denudation processes, land use changes and soil loss rates might provide significant information on landscape evolution which supports decision makers in defining soil management and conservation practices.  相似文献   

10.
《International Geology Review》2012,54(15):1873-1883
Mt Sanqingshan, a global Geopark and world natural heritage site located in Jiangxi Province, China, is famous for its eroded granite peaks. The uplift and denudation history of the area has been reconstructed using fission track methods for the first time. Apatite fission track ages (AFTAs) cluster into three groups at ca. 25 Ma, 45–55 Ma, and 70 Ma. These ages can be related to ancient multilevel denudation planes at about 900, 1200, and 1500 m above sea level, respectively. The apatite data also reveal four cooling stages for the Mt Sanqingshan region, from ca. 90 to 65–60 Ma, 65–60 to 45 Ma, 45 to 20–15 Ma, and 20–15 Ma to the present, with cooling rates of 1.96°C, 1.18°C, 0.37°C, and 3.78°C per million years, respectively, and an average cooling rate of 1.80°C per million years. Calculated uplift rates are 0.055, 0.034, 0.011, and 0.11 mm year?1 in the four stages, yielding uplifts of 4140, 570, 290, and 1940 m, respectively. The uplift rate of the last stage was significantly faster than that of the other three preceding stages, reflecting rejuvenation of Mt Sanqingshan, as a result of new tectonism. The average uplift rate at Mt Sanqingshan is 0.053 mm year?1, and the average denudation rate is 0.048 mm year?1, resulting in 3550 m of uplift and 2540 m of denudation relative to eustatic sea level. The 1010 m difference is very close to the average elevation of about 1000 m at present. A comparison of uplift–denudation histories for Mt Sanqingshan and Mt Huangshan shows that fission track results can be useful for defining geomorphological development stages.  相似文献   

11.
The chemical, sediment and total load carried by the major river basins in India—Ganges, Brahmaputra, Indus (Jhelum), Godavari, Krishna, Narmada, Tapti, Mahnadi and Cauvery have been calculated, based partly on new set of data and partly on existing data. There is a significant amount of chemical load transported by all the Indian rivers, and for global mass transfer calculation, these cannot and should not be ignored. The chemical mass transfer during the monsoon is not surprisingly small, as would be expected for excess discharge and dilution controlled run-off. The sediment mass transfer from non-Himalyan rivers, all within the same range of magnitude, accounts for less than a tenth of that of the Ganges but during the monsoon, except for Cauvery, all the Indian rivers carry a sediment load of greater than 1000 ppm. The total mass transfer from the Indian subcontinent accounts for 6·5 per cent of the global transfer. Except for the Ganges and the Brahmaputra, the erosion rates are similar for all Indian basins, independent of their size and these rates are agreeable with the continental earth average. The Ganges-Brahmaputra basin erosion rates are highest on the continental earth. Based on the average rate of denudation of the Indian subcontinent, the mean elevation of this landmass will be that of the present day mean sea level in 5 million years from now. The average denudation rate of 2·1 cm/100 years is different from the calculated average sedimentation rate of 2·1 cm/100 years is different from the calculated average sedimentation rate of 6·7 cm/100 years in the Bay of Bengal suggesting that an accurate erosion rate in the continent is needed to determine sedimentation rate in the oceans. The chemical and sediment mass transfer rates appear to have a logarithmic linear relationship on a global scale, as against the reported negative logarithmic trend for North America alone.  相似文献   

12.
Coupling between tectonics and surface processes is usually ill‐quantified as other factors such as climate and lithology affect the later. We provide catchment‐wide 10Be denudation rates of the Mand catchment in the Zagros Fold Belt (Iran) to infer correlations between these rates and ongoing tectonic shortening in the region. Denudation rates are generally low (~0.05–0.1 mm/a) but increase to ~1 mm/a near the Halikan anticline, where changes in precipitation, lithology or hillslope gradient are insignificant. The denudation rates upstream and downstream of the Halikan anticline are consistent with the GPS convergence rates in these areas. The sharp increase in denudation rates over the Halikan anticline denotes its growth as previously detected from terrace incision. It also reveals small wavelength coupling between crustal deformation and erosion. Denudation rates are therefore a useful and sensitive tool that helps constraining non‐brittle active tectonics such as folding of a sedimentary cover.  相似文献   

13.
Seismostratigraphical studies of the 11.8‐km2‐large and ~140‐m‐deep Lake Bolshoye Shchuchye, Polar Ural Mountains, reveal up to 160‐m‐thick acoustically laminated sediments in the lake basin. Using a dense grid of seismic lines, the spatial and temporal distributions of the sedimentary history have been reconstructed. Three regional seismic horizons have been identified and correlated with the well‐dated 24‐m‐long sediment core retrieved from the lake. Isopach maps constructed from the seismic data show four phases of sedimentation. A contour map of the deepest regional seismic reflector represents the earliest hemipelagic sedimentation in the lake. Three contour maps represent time intervals covering the last 23 cal. ka based on the well‐dated core stratigraphy from the lake. The detailed time constraints on the upper stratigraphical units in the lake allow calculation of the lake's development in terms of sediment fluxes and the denudation rates from the Last Glacial Maximum (LGM) to the present. The sedimentation in Lake Bolshoye Shchuchye has been dominated by hemipelagic processes during at least the last 24 cal. ka BP only locally interrupted by delta progradation and slope processes. A major shift in the sediment accumulation at c. 18.7 cal. ka BP is interpreted to mark the end of the local glacial maximum, greatly reduced denudation and the onset of the deglaciation period; this also demonstrates how fast the glaciers melted and possibly disappeared at the end of the LGM. The denudation rate during the Holocene is only a fifth of the LGM rate. The age of the oldest stratified sediments in Lake Bolshoye Shchuchye is not well constrained, but estimated as c. 50–60 ka.  相似文献   

14.
The influence of the morphological setting on the denudation of carbonate landscapes and the respective contributions of mechanical and chemical weathering processes are still debated. We have addressed these questions by measuring 36Cl concentrations in 40 samples from the Luberon mountain, SE France, to constrain the denudation of various landscape elements. We observe a clear contrast between the local denudation rates from the flat summit surface, clustered around 30 mm/ka, and the basin‐average denudation rates across the flanks, ranging from 100 to 200 mm/ka. This difference highlights the transient evolution of the range, whose topography is still adjusting to previous uplift events. Such a pattern also suggests that carbonate dissolution is not the only driver of denudation in this setting, which appears to be significantly controlled by slope‐dependent processes.  相似文献   

15.
In Fayetteville Green Lake, past sedimentation rates can be accurately and precisely estimated by separating annual couplets or varves in dried sediment samples. Two measures were used, which serve as upper and lower limits on estimated sedimentation rate. They agree within 5 % with average annual sedimentation rate in couplets for recent years. Between 3 and 5 replicate samples are needed to reduce the half-width of 95 % confidence intervals on individual couplet sedimentation rates to 30 g m?2 yr?1 about 5 % of average recent rates. In the late 1800s sedimentation rate averaged 392 g m?2 yr?1 and ranged between 324 and 466 g m?2 yr?1, while in the 1970s the rate averaged 581 g m?2 yr?1 by the same measure, and ranged between 384 and 646 g m?2 yr?1. Sedimentation rate averaged for 13 years does not vary over short distances in the profundal zone, but lateral variation in sedimentation rate can be detected for individual years over the same distance. Not all this variation was associated with the non-uniform distribution of dark sublaminae and thin turbidites which cannot be separated from the annual layers. This indicates that although precise estimates of sedimentation rates can be made at different points in the lake, estimates will have to be made at numerous points before annual sedimentation rates for the lake as a whole can be accurately assessed.  相似文献   

16.
This paper investigates the denudation rates in the Quadrilátero Ferrífero, Minas Gerais State (Brazil). The aim is to compare chemical weathering rates from measurements of solute fluxes in rivers and long-term mean erosion rates deduced from in situ-produced cosmogenic 10Be concentrations measured in fluvial sediments. Both water samples and sediments were collected in fifteen stations (checkpoints) located in four hydrographic basins with low anthropogenic perturbations.Depending of the type of substratum, three degrees of chemical denudation rates from water samples are observed: (i) high rates in marbles; (ii) medium rates in schists, phyllites, granites, gneisses and migmatites; (iii) low rates in quartzites and itabirites. Preliminary results of long-term erosion rates deduced from in situ-produced 10Be are comparable with those of chemical rates.  相似文献   

17.
Salt exposures and weathering residuum on several salt diapirs in different geographic/climatic settings were studied. Anhydrite, gypsum, hematite, calcite, dolomite, quartz, and clay minerals are the main constituents of the weathering residuum covering the salt diapirs in various thicknesses. Erosion rates of residuum as well as of rock salt exposures were measured at selected sites for a period of 5 years by plastic pegs as benchmarks. Recorded data were standardized to a horizontal surface and to long-term mean precipitation. For the rock salt exposures the following long-term denudation rates were determined of 30–40 mm a−1 for coastal diapirs and up to 120 mm a−1 for mountain salt diapirs. Long-term mean superficial denudation rate measured on weathering residuum of low thickness reached 3.5 mm a−1 on coastal diapirs. The total denudation rate estimated for the thin residuum is close to 4–7 mm a−1 based on apparent correlation with the uplift rate on Hormoz and Namakdan diapirs. Denudation of rock salt exposures is much faster compared to parts of diapirs covered by weathering residuum. The extent of salt exposures is an important factor in the morphological evolution of salt diapirs as it can inhibit further expansion of the diapir. Salt exposures produce huge amounts of dissolved and clastic load, thus affecting the surrounding of the diapir.  相似文献   

18.
Post-Aswan dam sedimentation rate of lagoons of the Nile Delta,Egypt   总被引:1,自引:0,他引:1  
This study uses radiometric analysis (210Pb and 137Cs) of short sediment cores with high-resolution sampling (1-cm interval) to trace sedimentation rates in the Nile Delta lagoons, particularly since completion of the Aswan High Dam in 1964. A declining trend in 210Pbex as calculated by the CIC model is clearly identified in about 10 cm of the upper-core sediments from the lagoons of Manzala and Edku, accompanied by two spikes of 137Cs in cores from the lagoons of Burullus and Edku. These findings illustrate average post-dam sedimentation rates ranging from 0.22 to 0.27 cm a−1 in the lagoons, in contrast with those found previously based on low-resolution sampling. The lower sedimentation rates in the lagoons are a consequence of a dramatic reduction in riverine sediment load to the coastal area as a result of the damming. Although widespread erosion occurs along the open estuarine coast, the lagoon setting remains calmer than before due to coastal diking and freshwater regulation in the delta plain in the past decades. This provides the possibility of continuously preserved radiometric records in the less-bioturbated lagoon sediments. Dating individual layers using the CRS model has revealed increasing sedimentation rates in Manzala and Burullus since the 1980s, which can largely be explained as a consequence of the reduction in lagoon area due to intensifying reclamation. The post-dam sedimentation in the shrinking lagoons may have some adverse ecological consequences due to finer sediment’s affinity with pollutants. These findings would shed light on the environmental conservation and socioeconomic development in the Nile Delta region.  相似文献   

19.
柳振江  王建平  郑德文  刘家军  刘俊  付超 《岩石学报》2010,26(12):3597-3611
矿床形成后会经历不同形式的变化,区域隆升与剥蚀是影响矿床变化保存最为关键的因素之一。构造-热年代学是目前广泛运用于研究区域隆升剥蚀的一种重要手段,本文以我国最大金矿集中区———胶东西北部金矿及赋矿围岩玲珑花岗岩为研究对象,尝试将构造-热年代学引用到矿床成矿后变化与保存研究。通过磷灰石裂变径迹热年代学测试获得玲珑花岗岩距今110Ma以来的隆升演化历史,结果显示岩体剥蚀速率很小,平均0.0303±0.0044mm.a-1,自金矿形成后区域热-构造运动趋于平静,这对矿床的保存非常有利。胶东金矿成矿深度范围集中于4~10km,根据剥蚀速度计算玲珑花岗岩剥蚀量仅为2.0~4.2km,远未达到金矿最大成矿深度。当前本区金矿勘探和开采深度普遍小于2km,深部金矿找矿潜力良好。  相似文献   

20.
Ten cores were obtained from a marsh developed along Mad Island Slough, Texas, USA, upstream of a weir constructed in 1948. The cores were analyzed for cesium-137 to identify time-stratigraphic marker horizons and calculate recent sedimentation rates. The cesium-137 analysis provided a 1954 marker horizon in nine of the ten cores. A second marker horizon, present in all ten cores, consisted of an abrupt downcore change in lithology from dark organic-rich muds to grey organic-poor sands. This transition was tentatively identified as coinciding with 1948 and the beginning of marsh sedimentation. Resulting sedimentation rates show that surprisingly little sedimentation has occurred behind the weir, averaging only 27 cm in almost 50 years. Sedimentation rates in the marsh declined from an average of 2.4 cm yr–1 in 1948–1954 to 0.32 cm yr–1 in 1954–1994. A similar trend of declining sedimentation has been documented for adjoining Mad Island Lake, suggesting that land-use changes in the lake's watershed have reduced the sediment supply in recent decades. The results also suggest that the weir is not a very efficient sediment trap in this watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号