首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method to obtain the three-dimensional harmonic response of a infinitely long cylindrical shell of circular cross-section embedded in a layered viscoelastic half-space and subjected to harmonic plane waves impinging at an oblique angle with respect to the axis of the shell is presented. The procedure combines an indirect integral representation for the field in the exterior half-space with a model of the pipeline or tunnel based on Donnell shell theory. The integral representation for the soil is based on the use of moving Green's functions for the layered viscoelastic half-space. The accuracy of the formulation is tested by comparison of results obtained by using different discretizations. Extensive comparisons with previous two- and three-dimensional results for the case of a shell embedded in a uniform half-space and some new numerical results for a shell embedded in a multilayered half-space are presented in a companion paper.  相似文献   

2.
This paper examines the axisymmetric torsional vibrations of an elastic pile and a hemispherical foundation embedded in a homogeneous elastic half-space. The embedded foundation–half-space system is decomposed into an extended half-space and a fictitious foundation. The deformations of the fictitious system are specified by an admissible function containing a set of generalized coordinates. The Lagrangian equations of motion are used to determine these coordinates associated with the assumed displacement function. Numerical results are presented for torsional impedance of an elastic pile and a hemisphere to illustrate the effects of relative flexibility and geometry. By employing certain simplifications on the pile–half-space system an approximate closed form solution is presented for the torsional impedance of an elastic pile.  相似文献   

3.
An integral equation technique to determine the response of foundations embedded in a layered viscoelastic half-space when subjected to various types of seismic waves is presented. The technique is validated by comparison with previous results for rigid hemispherical and cylindrical foundations embedded in a uniform half-space. Illustrative results for rigid cylindrical foundations embedded in layered media are also presented.  相似文献   

4.
A computationally efficient boundary integral equation technique to calculate the dynamic response of a group of rigid surface foundations bonded to a layered viscoelastic half-space and subjected to external forces and seismic waves is presented. The technique relies on an iterative scheme which minimizes in-core memory requirements and takes advantage of any geometrical symmetry of the foundations. Extensive results for the case of two rigid square foundations placed at different separations and bonded to a viscoelastic half-space are presented. It was found that the choice of discretization of the foundations has a marked effect on the calculated impedance functions for extremely small separations. Illustrative results for a case of several closely-spaced foundations bonded to a layered half-space are also presented.  相似文献   

5.
A numerical procedure is proposed to investigate the transient response of a group of rigid strip foundations resting on an elastic, homogeneous half-space subjected to either external forces or seismic motions. A fundamental solution is presented for uniform strip loadings with Heaviside function time-dependence applied on the half-space. In the procedure, each of the foundations is discretized into subelements. The tractions between the half-space and the subelements are assumed constant at every time step. The through-soil coupling effects between the foundations are studied numerically.  相似文献   

6.
Two modelling approaches for the analyses of half-space and train-track embankment on half-space subjected to dynamic loads are presented and compared. A three-dimensional (3D) modelling approach is performed by a coupled Boundary Element–Boundary Element method (BE–BE) and a two-dimensional (2D) one by a coupled Boundary Element–Finite Element method (BE–FE). Both approaches employ time domain algorithms. The comparison between the results of the presented approaches points out whether a problem can be treated as a 2D or as a 3D case. As an application, a parametric study of the wave propagation problem in a train-track embankment with an underlying half-space is presented.  相似文献   

7.
A transient Green function due to suddenly applied line loads in an isotropic and homogeneous half-space is reported in this paper. The derivation of the half-space Green function in the Laplace and the Fourier transform spaces is first reviewed. Following an explicit inversion of the Fourier transform, the inverse Laplace transform is implemented along the contour integral on the p-complex plane in an integral form. The half-space Green function consists of full-space Green functions and a singularity-free complementary term. It can be easily incorporated into current transient boundary elements using the transient full-space Green function. Combined with finite elements, the half-space Green function can be used in a hybrid procedure to solve transient half-space problems without discretization of the free surface. Numerical results are presented to illustrate transient wave propagation in a half-space.  相似文献   

8.
The fundamental solution for a periodic point force in the interior of a three-dimensional, homogeneous, isotropic, elastic half-space is derived. The method of synthesis and superposition is employed to obtain the solution in the Laplace transform as well as the frequency domain. These correspond to the dynamic equivalent of Mindlin's static half-space point force solutions. It is reduced, for certain limiting conditions, to the dynamic equivalent of Boussinesq's and Cerruti's problems of a normal and tangential periodic point force respectively, on the boundary of a half-space. Also, static solutions of Mindlin, Boussinesq and Cerruti are recovered for small frequency parameters. Finally, results are presented and compared with other available solutions.  相似文献   

9.
The three-dimensional harmonic response in the vicinity of an infinitely long, cylindrical cavity of circular cross-section buried in a layered, viscoelastic half-space is obtained when the half-space is subjected to homogeneous plane waves and surface waves impinging at an oblique angle with respect to the axis of the cavity. The solution is obtained by an indirect boundary integral method based on the use of moving Green's functions for the viscoelastic half-space. Numerical results describing the motion on the ground surface and the motion and stresses on the wall of the cavity are presented for obliquely incident P-, SV-, SH- and Rayleigh waves with different horizontal angles of incidence.  相似文献   

10.
Vertical dynamic response of a disk on a saturated poroelastic half-space   总被引:2,自引:0,他引:2  
This paper considers the vertical dynamic response of a disk on a saturated poroelastic half-space. Firstly the pressure-solid displacement form of the harmonic equations of motion for a poroelastic solid are developed from the form of the equations originally presented by Biot. These equations are solved by a new method. Then the mixed boundary value problem for the vertical harmonic vibration of a disk on a poroelastic half-space is studied. The two types of drainage conditions at the surface of the poroelastic half-space are considered: (a) the surface of the poroelastic half-space is assumed to be completely pervious both within and exterior to the plate; (b) The interface between the plate and the poroelastic half-space is assumed to be impervious and the exterior region is assumed to be pervious. By using the Hankel transform techniques, the paper develops the governing dual integral equations. These governing integral equations are further reduced to systems of standard Fredholm integral equations of the second kind by Abel transform.  相似文献   

11.
A procedure to calculate the three-dimensional harmonic response of a infinitely long cylindrical shell of circular cross-section embedded in a layered viscoelastic half-space and subjected to harmonic plane waves impinging at an oblique angle with respect to the axis of the shell is validated by extensive comparisons with previous two- and three-dimensional results for the particular case of a shell embedded in a uniform half-space. New numerical results describing the motion and stresses within a shell embedded in a multilayered half-space and subjected to obliquely incident P-, SV- and SH-waves with different horizontal angles of incidence are presented and discussed.  相似文献   

12.
The transmission of vibrations over the surface of the ground, due to high-speed moving, vertical harmonic rectangular loads, is investigated theoretically. The problem is three-dimensional and the interior of the ground is modelled as an elastic half-space or a multilayered ground. The transformed solutions are obtained using the Fourier transform on the space variable. A new damping model in the spatial wavenumber domain, presented in Lefeuve-Mesgouez et al. [J. Sound. Vibr. 231 (2000) 1289] is used. Numerical results for the displacements on the surface are presented for loads moving with speeds up to and beyond the Rayleigh wave speed of the half-space.  相似文献   

13.
本文运用数值解法,求解了两类散射问题:(1)在声学近似下,平面P波在半无限介质空间表面上任意形状的三维空腔上的散射;(2)平面SH波在半无限弹性空间中埋藏着任意形状截面的无限长、且平行于地面的弹性柱体上的散射,得到了几种几何形状的物体所引起的散射数值结果。把某些特殊情况下的散射结果与已知的精确解作对比,两者能很好地吻合。  相似文献   

14.
With the aid of the analytical layer-element method, a comprehensive analytical derivation of the response of transversely isotropic multilayered half-space subjected to time-harmonic excitations is presented in a cylindrical coordinate system. Starting with the governing equations of motion and the constitutive equations of transversely isotropic elastic body, and based on the Fourier expansion, Hankel and Laplace integral transform, analytical layer-elements for a finite layer and a half-space are derived. Considering the continuity conditions on adjacent layers׳ interfaces and the boundary conditions, the global stiffness matrix equations for multilayered half-space are assembled and solved. Finally, some numerical examples are given to make a comparison with the existing solution and to demonstrate the influence of parameters on the dynamic response of the medium.  相似文献   

15.
A combined boundary and finite element method is developed and applied to study the dynamic behaviour of a system of flexible surface footings of arbitrary shape bearing on an elastic half-space. The proposed method employs the frequency domain Green's function for the surface of the elastic half-space while a layered plate model is used for the flexible footing. Both the footing and the surface of the half-space are discretized by 8-noded quadratical isoparametric elements, and the meshes are identical. Thus, the compatibility of displacements and equilibrium of forces between the footing and the half-space are fully satisfied. This model provides a better approximation of the stress concentration at edges of relatively rigid footings. Numerical examples demonstrating the effects due to the excitation frequency, the relative rigidity and the distance between footings on the interaction between two square footings are presented. The external forces can be either harmonic or transient.  相似文献   

16.
The seismic response analysis of a base-isolated liquid storage tank on a half-space was examined using a coupling method that combines the finite elements and boundary elements. The coupled dynamic system that considers the base isolation system and soil–structure interaction effect is formulated in time domain to evaluate accurately the seismic response of a liquid storage tank. Finite elements for a structure and boundary elements for liquid are coupled using equilibrium and compatibility conditions. The base isolation system is modeled using the biaxial hysteretic element. The homogeneous half-space is idealized using the simple spring-dashpot model with frequency-independent coefficients. Some numerical examples are presented to demonstrate accuracy and applicability of the developed method.Consequently, a general numerical algorithm that can analyze the dynamic response of base-isolated liquid storage tanks on homogeneous half-space is developed in three-dimensional coordinates and dynamic response analysis is performed in time domain.  相似文献   

17.
A five-parameter discrete model that approximates the dynamic force4isplacement relationship for rigid foundations undergoing vertical vibrations on a uniform elastic half-space is presented. The model involves a combination of two springs, two viscous dampers and a mass. Values of the parameters for circular, square and rectangular foundations placed on the surface or embedded in an elastic half-space are listed. The parameters are obtained by minimizing the discrepancy between the force4isplacement relation for the model and that obtained by solution of the mixed boundary-value problem of the rigid foundation on an elastic half-space. The definition of an appropriate input motion to represent wave excitation is also discussed. The input motion to the discrete model differs from the input motion that should be used in a continuum model.  相似文献   

18.
王小岗 《地球物理学报》2009,52(8):2084-2092
基于孔隙介质的Biot理论,首先利用Laplace变换,给出圆柱坐标系下横观各向同性饱和弹性多孔介质在变换域上的波动方程;将波动方程解耦后,根据方位角的Fourier展开和径向Hankel变换,求解了Biot波动方程,得到以土骨架位移、孔隙水压力和土介质总应力分量的积分形式的一般解;借助一般解,建立了有限厚度饱和土层和饱和半空间的精确动力刚度矩阵,并由土层的层间界面连续条件建立三维非轴对称层状饱和地基的总刚度方程;在此基础上,系统研究了横观各向同性饱和半空间体在内部集中荷载激励下的动力响应,并给出了问题的瞬态解答.该研究为运用边界元法求解饱和地基动力响应奠定了理论基础.  相似文献   

19.
A Gibson half-space model (a non-layered Earth model) has the shear modulus varying linearly with depth in an inhomogeneous elastic half-space. In a half-space of sedimentary granular soil under a geostatic state of initial stress, the density and the Poisson’s ratio do not vary considerably with depth. In such an Earth body, the dynamic shear modulus is the parameter that mainly affects the dispersion of propagating waves. We have estimated shear-wave velocities in the compressible Gibson half-space by inverting Rayleigh-wave phase velocities. An analytical dispersion law of Rayleigh-type waves in a compressible Gibson half-space is given in an algebraic form, which makes our inversion process extremely simple and fast. The convergence of the weighted damping solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Calculation efficiency is achieved by reconstructing a weighted damping solution using singular value decomposition techniques. The main advantage of this algorithm is that only three parameters define the compressible Gibson half-space model. Theoretically, to determine the model by the inversion, only three Rayleigh-wave phase velocities at different frequencies are required. This is useful in practice where Rayleigh-wave energy is only developed in a limited frequency range or at certain frequencies as data acquired at manmade structures such as dams and levees. Two real examples are presented and verified by borehole S-wave velocity measurements. The results of these real examples are also compared with the results of the layered-Earth model.  相似文献   

20.
An analysis is presented of the transient flexural vibrations of an elastic column supported by an elastic half-space under the condition that an arbitrarily shaped free-field lateral acceleration and displacement are given as inputs. Applying Laplace transformations with respect to time and numerical inverse Laplace transformations, the time histories of the column acceleration at the interface and free end, and the column and half-space displacement distributions are obtained. After the input free-field acceleration terminates, slightly damped and almost harmonically variable acceleration is observed. The acceleration frequency after the disappearance of the input acceleration nearly coincides with the resonant frequency of the system. The slight damping with the first resonant frequency, even if the half-space is soft compared with the column, is characteristic of the transient flexural vibrations of a column supported by a half-space. Such a phenomenon is not typical of the transient longitudinal vibration problem. Therefore, it may be concluded: when buildings and structures are subjected to an earthquake or an explosive force, their flexural vibrations will continue with their first resonant frequencies, even if their foundations are soft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号