首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Field estimates of the normal and shear compliance of water saturated fractures were obtained from a seismic experiment carried out on a wave‐cut platform of Upper Caithness Flagstone on the North coast of Scotland. The rocks are cut by two orthogonal sets of vertical fractures. Vertical geophones were glued to the rock surface and seismic waves were generated by striking the surface with a sledge hammer. First arrival traveltimes were obtained for source‐receiver distances up to 30 m. Differences of compressional velocity with direction across the platform were interpreted as resulting from the compliance of the fractures intersected by the transmitted waves. The average normal compliance for fractures at this site is 4.0 × 10?12± 1.0 × 10?12 m/Pa. There is much less certainty about the precise value of shear compliance. However, the normal/shear compliance ratio is determined to be ≤0.1.  相似文献   

2.
To provide a guide for future deep (<1.5 km) seismic mineral exploration and to better understand the nature of reflections imaged by surface reflection seismic data in two mining camps and a carbonatite complex of Sweden, more than 50 rock and ore samples were collected and measured for their seismic velocities. The samples are geographically from the northern and central parts of Sweden, ranging from metallic ore deposits, meta‐volcanic and meta‐intrusive rocks to deformed and metamorphosed rocks. First, ultrasonic measurements of P‐ and S‐wave velocities at both atmospheric and elevated pressures, using 0.5 MHz P‐ and S‐wave transducers were conducted. The ultrasonic measurements suggest that most of the measured velocities show positive correlation with the density of the samples with an exception of a massive sulphide ore sample that shows significant low P‐ and S‐wave velocities. The low P‐ and S‐wave velocities are attributed to the mineral texture of the sample and partly lower pyrite content in comparison with a similar type sample obtained from Norway, which shows significantly higher P‐ and S‐wave velocities. Later, an iron ore sample from the central part of Sweden was measured using a low‐frequency (0.1–50 Hz) apparatus to provide comparison with the ultrasonic velocity measurements. The low‐frequency measurements indicate that the iron ore sample has minimal dispersion and attenuation. The iron ore sample shows the highest acoustic impedance among our samples suggesting that these deposits are favourable targets for seismic methods. This is further demonstrated by a real seismic section acquired over an iron ore mine in the central part of Sweden. Finally, a laser‐interferometer device was used to analyse elastic anisotropy of five rock samples taken from a major deformation zone in order to provide insights into the nature of reflections observed from the deformation zone. Up to 10% velocity‐anisotropy is estimated and demonstrated to be present for the samples taken from the deformation zone using the laser‐interferometery measurements. However, the origin of the reflections from the major deformation zone is attributed to a combination of anisotropy and amphibolite lenses within the deformation zone.  相似文献   

3.
Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1–100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10?6–8 × 10?6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10?6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10?6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.  相似文献   

4.
Wave‐induced oscillatory fluid flow in the vicinity of inclusions embedded in porous rocks is one of the main causes for P‐wave dispersion and attenuation at seismic frequencies. Hence, the P‐wave velocity depends on wave frequency, porosity, saturation, and other rock parameters. Several analytical models quantify this wave‐induced flow attenuation and result in characteristic velocity–saturation relations. Here, we compare some of these models by analyzing their low‐ and high‐frequency asymptotic behaviours and by applying them to measured velocity–saturation relations. Specifically, the Biot–Rayleigh model considering spherical inclusions embedded in an isotropic rock matrix is compared with White's and Johnson's models of patchy saturation. The modeling of laboratory data for tight sandstone and limestone indicates that, by selecting appropriate inclusion size, the Biot‐Rayleigh predictions are close to the measured values, particularly for intermediate and high water saturations.  相似文献   

5.
Various xenoliths have been found in lavas of the 1763 (“La Montagnola”), 2001, and 2002–03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3–13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the “solidification front”, a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna’s plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 “La Montagnola”, 2001 and 2002–03 eruptions.  相似文献   

6.
A laboratory study was carried out to investigate the influence of confining stress on compressional- and shear-wave velocities for a set of rock samples from gas-producing sandstone reservoirs in the Cooper Basin, South Australia. The suite of samples consists of 22 consolidated sublitharenites with helium porosity ranging from 2.6% to 16.6%. We used a pulse-echo technique to measure compressional- and shear-wave velocities on dry samples (cylindrical 4.6 × 2 cm) at room temperature and at elevated confining stress (≤ 60 MPa). Compressional- and shear-wave velocities in samples increase non-linearly with confining stress. A regression equation of the form V = A ? Be?DP gives a good fit to the measured velocities with improved prediction of velocities at high confining stresses compared with equations suggested by other studies. The predicted microcrack-closure stresses of the samples show values ranging from 70 MPa to 95 MPa and insignificant correlation with porosity, permeability or clay content. There is a positive correlation between change in velocity with core porosity and permeability, but this association is weak and diminishes with increasing confining stress. Experimental results show that pore geometry, grain-contact type, and distribution and location of clay particles may be more significant than total porosity and clay content in describing the stress sensitivity of sandstones at in situ reservoir effective stress. The stress dependence of Cooper Basin sandstones is very large compared with data from other studies. The implication of our study for hydrocarbon exploration is that where the in situ reservoir effective stress is much less than the microcrack-closure stress of the reservoir rocks, the variation of reservoir effective stress could cause significant changes in velocity of the reservoir rocks. The velocity changes induced by effective stress in highly stress-sensitive rocks can be detected at sonic-log and probably surface-seismic frequencies.  相似文献   

7.
分布于地震破裂带上的断层岩具有高孔隙度的特征.该特点造成了其弹性波速度与结晶岩石和沉积岩存在明显的差异.确定断层岩的弹性波速度与孔隙度和矿物组成的关系对于利用地震资料探测深部断层和测井资料的解释至关重要.在10~600 MPa条件下,本文对地震断层岩的纵波波速(Vp)和总孔隙度(φt)进行了测量,并深入分析了Vp与孔隙度的关系.结果表明在10~600 MPa的压力范围内,Vp(p)随着压力的增高呈现对数增加,其增长率随着压力的上升而逐渐减小,遵从∂Vp(p)/∂p=av/p的变化规律.断层岩中的孔隙度随着压力的增高呈对数减小.与传统的认识不同,实验发现在压力高达600 MPa以上,大多数断层岩中仍然可以残留可观的孔隙量.分析显示Vp与总孔隙度及总粘土含量呈负线性相关.该发现有助于认识深部流体的活动通道特征,有助于理解断层带中存在大量粘土矿物、断层带内的物质可被大量带出、围陷波的形成等地质和地球物理现象.  相似文献   

8.
含流体砂岩地震波频散实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究孔隙流体对不同渗透率岩石地震波速度的影响,在实验室利用跨频带岩石弹性参数测试系统得到了应变幅值10-6的2~2000Hz频段下的地震波速度和1 MHz频率下的超声波速度,利用差分共振声谱法得到了频率600Hz岩石干燥和完全饱水情况下岩石声学参数.实验表明,在低饱和度下,致密砂岩在地震和超声频段下没有明显的频散;在高饱和度下纵波速度的频散变得明显.从干燥到完全水饱和条件,不同频率测量的致密砂岩的体积模量随岩石孔隙度增高而降低,且体积模量的变化量受岩石微观孔隙结构的影响较大.高孔、高渗砂岩无论在低含水度下还是在高含水饱和度下频散微弱,并且在地震频段下围压对于岩石纵横波速度的影响要大于频率的影响.高孔、高渗砂岩和致密砂岩不同含水饱和度下的频散差异可应用于储层预测,油气检测等方面,同时该研究可以更好地帮助理解岩石的黏弹性行为,促进岩石物理频散理论的发展,提高地震解释的精度.  相似文献   

9.
Velocities of compressional and shear waves in limestones   总被引:2,自引:1,他引:2  
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional‐ and shear‐wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse‐echo method. The measurements were made both in vacuum‐dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin‐impregnated polished thin sections, X‐ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional‐ and shear‐wave velocities (Vp and Vs, respectively) decrease with increasing porosity and that Vp decreases approximately twice as fast as Vs. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore‐structure‐dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot–Gassmann velocity values are greater than the measured velocity values due to the rock–fluid interaction. This is not accounted for in the Biot–Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time‐average relationships overestimated the measured velocities even more than the Biot model.  相似文献   

10.
A field investigation of fracture compliance   总被引:2,自引:0,他引:2  
A field measurement of fracture compliance is described. The aim was to determine how compliance scales with fracture size and, specifically, how laboratory measurements of fracture compliance compared with field estimates from sonic and seismic data. A test site was constructed, consisting of three 40 m vertical boreholes drilled in the floor of a Carboniferous Limestone quarry. Detailed knowledge of the rocks in the test area was obtained from core analysis, wireline logging and local area fracture mapping. Seismic cross‐hole surveys were performed using a sparker source with a dominant frequency of 2000 Hz and hydrophone receivers. The rocks had a compressional‐wave velocity anisotropy of 10%, which was attributed to the presence of predominantly horizontal, partially open fractures. Estimates of normal fracture compliance within a range from 2.5 × 10?13 m/Pa to 3.5 × 10?12 m/Pa were obtained from both the cross‐hole data and the sonic‐log data. This is an order of magnitude greater than values obtained from laboratory experiments which are reported elsewhere.  相似文献   

11.
We design a velocity–porosity model for sand-shale environments with the emphasis on its application to petrophysical interpretation of compressional and shear velocities. In order to achieve this objective, we extend the velocity–porosity model proposed by Krief et al., to account for the effect of clay content in sandstones, using the published laboratory experiments on rocks and well log data in a wide range of porosities and clay contents. The model of Krief et al. works well for clean compacted rocks. It assumes that compressional and shear velocities in a porous fluid-saturated rock obey Gassmann formulae with the Biot compliance coefficient. In order to use this model for clay-rich rocks, we assume that the bulk and shear moduli of the grain material, and the dependence of the compliance on porosity, are functions of the clay content. Statistical analysis of published laboratory data shows that the moduli of the matrix grain material are best defined by low Hashin–Shtrikman bounds. The parameters of the model include the bulk and shear moduli of the sand and clay mineral components as well as coefficients which define the dependence of the bulk and shear compliance on porosity and clay content. The constants of the model are determined by a multivariate non-linear regression fit for P- and S-velocities as functions of porosity and clay content using the data acquired in the area of interest. In order to demonstrate the potential application of the proposed model to petrophysical interpretation, we design an inversion procedure, which allows us to estimate porosity, saturation and/or clay content from compressional and shear velocities. Testing of the model on laboratory data and a set of well logs from Carnarvon Basin, Australia, shows good agreement between predictions and measurements. This simple velocity-porosity-clay semi-empirical model could be used for more reliable petrophysical interpretation of compressional and shear velocities obtained from well logs or surface seismic data.  相似文献   

12.
Physical property measurements were integrated with mineralogical analyses to better understand the nature of the seismic reflectivity of the deepest (>3.5 km depth) gold ore body (Carbon Leader Reef). The CLR lies at depths between 3.5 km and 4.5 km below the surface. Over 50 drill-core samples were selected for geochemical analyses, density and seismic velocity measurements. Ultrasonic measurements were conducted at ambient and elevated stresses, using transducers operating at 0.5 MHz. The study reveals that P-wave velocities generally increase with increasing bulk density. The CLR conglomerate, the gold-bearing reef, has slightly higher P-wave velocity (~5070–5468 m/s) and density values (~2.78 g/cm3) amongst the quartzitic units, possibly due to its massive pyrite content. The quartzite hangingwall and footwall rocks to the CLR exhibit similar P-wave velocity (~5028–5480 and ~4777–5211 m/s, respectively) and density values (~2.68 and 2.66 g/cm3, respectively). The reflection coefficients calculated at the interface between the CLR conglomerate and its hangingwall and footwall units range between ~0.02 and 0.05 which is below the required minimum reflection coefficient value of 0.06 to produce a strong reflection between two lithological boundaries. This suggests that seismic reflection methods might not be able to directly image the CLR, as observed from its poor reflectivity in the 3D seismic data. Samples were also subjected to stresses of up to 65 MPa to simulate in situ-like conditions and to investigate the dependence of seismic velocities on applied stresses. P-wave velocities increase with progressive loading, but at different rates in shale and quartzite rocks as a result of the presence of micro-defects.  相似文献   

13.
We investigate the scaling relationships among earthquake source parameters using more than 300 good quality broad band seismograms from 30 small earthquakes in the Kumaon Himalaya from the spectral analysis of P and S waves. The average ratio of P/S wave corner frequency is found to be 1.13, which is suggestive of shift in the corner frequency. The estimated seismic moment range from 1.6?×?1013–5.8?×?1015 N?m, while the stress drop varies from 0.6 to 16 bars with 80 % of the events below 10 bars. An analysis of stress drop and apparent stress drop indicates the partial stress drop mechanism in the region. The source radii are between 0.17 and 0.88 km. The total seismic energy varies from 1.79?×?108 to 7.30?×?1011 J. We also observe the variation in seismic energy for a given seismic moment. The scaling relation between the seismic moment and stress drop suggests the breakdown of constant stress drop scaling for the range of seismic moments obtained here for the region. This shows the anomalous behavior of small earthquakes in the region. The study indicates that the stress drop is the dominant scaling factor for the moments studied here.  相似文献   

14.
A laboratory instrument was developed to investigate the electrical properties of rock samples with respect to changes of frequency, temperature and pressure. The instrument can be used to obtain general trends and typical values for geological media. It should be of particular interest in geothermal studies and research in the geophysical properties of rocks. The design intervals for quantities under investigation were 20–300°C, 105-4 × 107 Pa and 5 × 10?4-103 Hz. Certain limitations exist on the simultaneous use of the highest values of temperature and pressure. The main features of the instrument are: analog electrical outputs recorded by an x-y recorder or observed on a scope with an attached camera (according to the frequency range); pressures produced by an oil hydraulic system in order to ensure electrical insulation of the sample; temperatures obtained by placing the pressure vessel into a thermostatically controlled room. Thus the monitoring instrumentation is directly accessible during the experiment. Information is also given about calibration procedures and examples of rock sample data are given.  相似文献   

15.
水饱和裂纹对地壳岩样中地震波速及各向异性的影响   总被引:11,自引:3,他引:8       下载免费PDF全文
选择4种地壳岩石样品,经干燥或水饱和处理后在不同围压条件下测量了在其中传播的纵、横波的速度及其各向异性.在大气压条件下低孔隙度(<1%岩样中,水饱和样品中的纵波速度明显地比干燥样品中的高,但横波速度的差别不大.因为在低孔隙度岩样中纵波速度对孔隙流体的反应比横波速度敏感,可以用泊松比的变化来反映随着围压的增加晶粒间流体对弹性波传播特性的影响.根据实验数据,按O’Connell模型分别计算了干燥和水饱和岩样中的裂纹密度,与通过实测体应变曲线得到的裂纹孔隙度十分吻合.利用横波的速度和偏振特性可以推断岩样中定向排列微裂纹的空间取向情况.研究表明,同时测量在岩样中传播的纵、横波的速度,通过Vp/Vs比值可以给出有关颗粒边界流体的证据,也可以估计岩样中的裂纹密度.  相似文献   

16.
The 2-D shallow velocity structure along the north-south Palashi-Kandi profile in the West Bengal sedimentary basin has been updated by travel-time inversion of seismic refraction, wide-angle reflection and gravity data. A six-layer shallow model up to a depth of about 7 km has been derived. The first layer, which has an average velocity of 2.0 kms?1, represents the alluvium deposit, which rests over the shale formation with average velocity of 3.0 kms?1. The thin (200 m) Sylhet limestone, observed at a nearby Palashi well, remains hidden in the present data set. Hence a 200-m thin layer with a velocity of 3.7 kms?1, corresponding to the Sylhet limestone, has been assumed to be present throughout the profile. The fourth layer with a velocity of 4.5–4.7 kms?1 at a depth of 1.7–2.4 km represents the Rajmahal traps. The ‘skip’ phenomenon and rapid amplitude decay of first arrivals indicate a low-velocity zone (LVZ) in the study area. Using the ‘skip’ phenomena and wide-angle reflection data, identified on seismograms, the LVZ with a velocity of 4.0 kms?1, indicating the Gondwana sediments, has been delineated below the Rajmahal traps. The next layer with a velocity 5.4–5.6 kms?1 overlying the crystalline basement (5.8–6.25 kms?1) may be associated with the Singhbhum group of meta volcanic rock that has been exposed in the western part of the basin. The basement lies at a variable depth of 4.9 to 6.8 km. The overall uncertainties of various velocity and boundary nodes are ± 0.15 kms?1 and ± 0.5 km, respectively. The elevated basement feature in the north might have acted as a structural barrier for the deposition of Sylhet limestone during the Eocene epoch. The seismically derived shallow structure correctly explains the observed Bouguer gravity anomaly along the profile. The addition of reflections in the present analysis provides a stronger control on the depths and velocities of basement and overlying sedimentary formations, compared to the earlier model derived mainly by the first arrival seismic data.  相似文献   

17.
引入基于Gassmann方程的流体替换方法,在分析地震波P波速度、波速比与岩石孔隙度和饱和度关系的基础上,应用于珊溪水库地震波速比和P波速度变化特征研究,得到:(1)珊溪水库震中区岩石始终处于接近水饱和的饱水状态,波速比和P波速度"下降-回升"的变化实质上反映了震中区岩石"孔隙度增大(饱和度减小)-饱和度增大"的变化,每一丛地震的波速比由极小值逐渐增大为极大值是由于岩石从不饱和状态变化到饱和状态;(2)根据每一丛地震波速比的变化,计算得到珊溪水库流体扩散率αs=1.06×104 cm2 s-1,该数值与美国南卡罗莱纳水库、巴西Acu水库、广东新丰江水库的流体扩散率基本一致;(3)震源区岩石孔隙度上限值为8.7%~2.0%,该数值与华东勘测设计研究院通过室内岩石物理力学性质试验测定的珊溪水库坝址区新鲜流纹斑岩的孔隙度平均值一致。  相似文献   

18.
裂缝广泛分布于地球介质中并且具有多尺度的特点,裂缝尺度对于油气勘探和开发有着重要的意义.本文制作了一组含不同长度裂缝的人工岩样,其中三块含裂缝岩样中的裂缝直径分别为2 mm、3 mm和4 mm,裂缝的厚度都约为0.06 mm,裂缝密度大致相同(分别为4.8%、4.86%和4.86%).在岩样含水的条件下测试不同方向上的纵横波速度,实验结果表明,虽然三块裂缝岩样中的裂缝密度大致相同,但是含不同直径裂缝岩样的纵横波速度存在差异.在各个方向上,含数量众多的小尺度裂缝的岩样中纵横波速度都明显低于含少量的大尺度裂缝的岩样中纵横波速度.尤其是对纵波速度和SV波速度,在不同尺度裂缝岩样中的差异更明显.在含数量多的小尺度裂缝的岩样中纵波各向异性和横波各向异性最高,而含少量的大尺度的裂缝的岩样中的纵波各向异性和横波各向异性较低.实验测量结果与Hudson理论模型预测结果进行了对比分析,结果发现Hudson理论考虑到了裂缝尺度对纵波速度和纵波各向异性的影响,但是忽略了其对横波速度和横波各向异性的影响.  相似文献   

19.
The experimental studies done at high temperature and high pressure find that increased temperature can lead to dramatic velocity and strength reductions of most of rocks at high confining pressure[1,2]. What causes this phenomenon? Is it due to dehydrati…  相似文献   

20.
利用新方法制作出含可控裂缝的双孔隙人工砂岩物理模型,具有与天然岩石更为接近的矿物成分、孔隙结构和胶结方式,其中裂缝密度、裂缝尺寸和裂缝张开度等裂缝参数可以控制以得到实验所需要的裂缝参数,岩样具有真实的孔隙和裂缝空间并可以在不同饱和流体状态下研究流体性质对于裂缝介质性质的影响.本次实验制作出一组具有不同裂缝密度的含裂缝人工岩样,对岩样利用SEM扫描电镜分析可以看到真实的孔隙结构和符合我们要求的裂缝参数,岩样被加工成八面棱柱以测量不同方向上弹性波传播的速度,用0.5 MHz的换能器使用透射法测量在饱和空气和饱和水条件下各个样品不同方向上的纵横波速度,并得出纵横波速度、横波分裂系数和纵横波各向异性强度受裂缝密度和饱和流体的影响.研究发现流体对于纵波速度和纵波各向异性强度的影响较强,而横波速度、横波分裂系数和横波各向异性强度受饱和流体的影响不大,但是对裂缝密度的变化更敏感.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号