首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The tropical seagrass Halophila stipulacea is dominant in most regions of the Indo‐Pacific and the Red Sea and was introduced into the Mediterranean Sea after the opening of the Suez canal. The species is considered invasive in the Mediterranean Sea and has been progressively colonizing new areas westward. Growth and photosynthetic responses of H. stipulacea have been described but no information is yet available on the nitrogen nutrition of the species. Here we simultaneously investigated the uptake kinetics of ammonium and nitrate and the internal translocation of incorporated nitrogen in H. stipulacea using 15N‐labelled substrates across a range of Ni levels (5, 25, 50 and 100 μm ). The ammonium uptake rates exceeded the nitrate uptake rates 100‐fold, revealing a limited capacity of H. stipulacea to use nitrate as an alternative nitrogen source. The uptake rates of ammonium by leaves and roots were comparable up to 100 μm 15NH4Cl. At this concentration, the leaf uptake rate was 1.4‐fold higher (6.22 ± 0.70 μmol·g?1 DW h?1) than the root uptake rate (4.54 ± 0.28 μmol·g?1 DW h?1). The uptake of ammonium followed Michaelis–Menten kinetics, whereas nitrate uptake rates were relatively constant at all nutrient concentrations. The maximum ammonium uptake rate (Vmax) and the half‐saturation constant (Km) of leaves (9.79 μmol·g?1 DW h?1 and 57.95 μm , respectively) were slightly higher than that of roots (6.09 μmol·g?1DW h?1 and 30.85 μm , respectively), whereas the affinity coefficients (α = Vmax/Km) for ammonium of leaves (0.17) and roots (0.20) were comparable, a characteristic that is unique among seagrass species. No substantial translocation (<2.5%) of 15N incorporated as ammonium was detected between plant parts, whereas the translocation of 15N incorporated as nitrate was higher (40–100%). We conclude that the Ni acquisition strategy of H. stipulacea, characterized by a similar uptake capacity and efficiency of leaves and roots, favors the geographical expansion potential of the species into areas with variable water‐sediment N levels throughout the Mediterranean.  相似文献   

2.
In marine wetlands, nitrogen fixation is a potentially important nutrient source for nitrogen‐limited primary producers, but interactions between nitrogen fixers and different vascular plant species are not fully understood. Nitrogen fixation activity was compared in sediments vegetated by three plant species, Spartina foliosa, Salicornia virginica, and Salicornia bigelovii in the Kendall Frost Reserve salt marsh in Mission Bay (CA). This study addressed the effects of plant type, day and night conditions, and sediment depths on nitrogen fixation. Higher rates of nitrogen fixation were associated with S. foliosa than with either of the two Salicornia spp., which are known to compete more effectively than Spartina for exogenous nitrogen in the salt marsh environment. Rates of nitrogen fixation, determined by acetylene reduction, in sediments vegetated by S. virginica were low during the day (7.7 ± 1.2 μmol C2H4 m−2 h−1) but averaged 13 ± 6.6 μmol C2H4 m−2 h−1 at night, with particularly high rates in samples from locations with visible cyanobacterial mats. The opposite diel pattern was found for sediments containing S. foliosa plants, in which average daytime and nighttime rates of nitrogen fixation were 62 ± 23 and 21 ± 15 μmol C2H4 m−2 h−1, respectively. For S. foliosa, nitrogenase activity of rinsed roots and different sediment sections (0–1, or 4–5 cm depths) were measured. Although nitrogen fixation rates in vegetated sediment samples were substantial, all but one of rinsed S. foliosa root samples (n = 12) and subsurface sediments at 4–5 cm depths failed to show nitrogen fixation activity after 2 h, suggesting that the most active nitrogen fixers in these systems likely reside in surface sediments. Further, nitrogenase activity in shaded and unshaded S. foliosa samples did not differ, suggesting that nitrogen fixers may not rapidly respond to changes in plant photosynthetic activity. Average nitrogen fixation rates in S. foliosa‐vegetated samples from the Mission Bay salt marsh were on the same order as those of highly productive Atlantic coast marshes, and this microbially‐mediated nitrogen source may be similarly substantial in other Mediterranean wetlands. Sediment abiotic variables seem to exert greater control upon nitrogen fixation activity than the effects of particular plant species. Nonetheless, dominant plant species may differ substantially in their reliance on nitrogen fixation as a nutrient source, with potentially important consequences for wetland conservation and restoration.  相似文献   

3.
Porites panamensis is a hermatypic coral present in the eastern Pacific Ocean. Skeletal growth parameters have been reported, but studies of the relationship between annual calcification rates and environmental controls are scarce. In this study, we investigated three aspects of the annual calcification rates of P. panamensis: growth parameters among three P. panamensis populations; the sea surface temperature as a calcification rate control spanning a latitudinal gradient; and calcium carbonate production among three sites. Growth parameters varied among the sites due to the colony growth form. Massive colonies in the north showed a higher calcification rate than encrusting colonies in the south (mean: 1.22–0.49 g CaCO3 · cm?2 · yr?1), where variations in calcification rates were related to growth rate (0.91–0.38 cm · yr?1) rather than to skeletal density differences (overall mean ± SD, 1.31 ± 0.04 g CaCO3 · cm?3). Our results showed a positive linear relationship between annual calcification rates and sea surface temperatures within these P. panamensis populations. Differences were related to distinct oceanographic environments (within and at the entrance of the Gulf of California) with different sea surface temperature regimes and other chemical properties. Different populations calcified under different environmental conditions. Calcium carbonate production was dependent upon the calcification rate and coral cover and so carbonate production was higher in the north (coral cover 12%) than in the south (coral cover 3.5). Thus, the studied sites showed low calcium carbonate production (0.25–0.43 kg CaCO3 · m?2 · yr?1). Our results showed reduced calcification rates, regional temperature regime control over calcification rates, different growth forms, low coral cover and low calcium carbonate production rates in P. panamensis.  相似文献   

4.
The aim of the present study was to investigate seasonal and spatial patterns of soil oxygen consumption, nitrification, denitrification and fluxes of dissolved inorganic nitrogen (DIN) in a tidal salt marsh of the Lagoon of Venice, Italy. In the salt marsh, intact soil cores including overlying water were collected monthly at high tide from April to October in salt marsh creeks and in areas covered by the dominant vegetation, Limonium serotinum. In May, cores were also collected in areas with vegetation dominated by Juncus maritimus and Halimione portulacoides. In laboratory incubations at in situ temperature in the dark, flux rates of oxygen and DIN were monitored in the overlying water of the intact cores. 15N-nitrate was added to the overlying water and nitrification and denitrification were measured using isotope-dilution and -pairing techniques. The results show that highest soil oxygen consumption coincided with the highest water temperature in June and July. The highest denitrification rates were recorded in spring and autumn coinciding with the highest nitrate concentrations. Soil oxygen consumption and nitrification rates differed between sampling sites, but denitrification rates were similar among the different vegetation types. The highest rates were recorded in areas covered with L. serotinum. Burrowing soil macrofauna enhanced oxygen consumption, nitrification and denitrification in April and May. The data presented in this study indicate high temporal as well as spatial variations in the flux of oxygen and DIN, and nitrogen transformations in the tidal salt marshes of the Venice lagoon during the growth season. The results identify the salt marshes of the Venice lagoon as being metabolically very active ecosystems with a high capacity to process nitrogen.  相似文献   

5.
Abstract

Nitrogen fixing potential was measured in summer 1975 by acetylene reduction in situ at 5 stations on the intertidal flats of the Waimea Inlet, Nelson, New Zealand, which receive nutrients from several sources. Highest values (644 μmol?m?2.d?1) were obtained on sediments near an apple cannery effluent discharge and were linear through at least two tidal cycles. The cannery waste had the highest carbon to nitrogen ratio (10.3 : 1.0) of all the effluents examined and exhibited the highest rate of acetylene reduction (14.0 μmol?l?1.d?1). Sizeable populations of the nitrogen fixing bacteria Klebsiella pneumoniae were isolated from the cannery effluent (2 × 104 per millilitre) and also from the mud adjacent to the discharge pipe (5 × 105 per millilitrc). The stimulatory effect of the cannery effluent on nitrogen fixation in the sediment was shown to be restricted to close to the discharge point. Sediments in areas affected by slaughterhouse and sewage effluents exhibited the second and third highest rates of acetylene reduction, (130 &; 28 μmol?m?2.d?1 respectively). In both places, the activities were not restricted to the immediate vicinity of the effluent channels. Nitrogen fixation was lowest in sediments fronting a catchment of grazed pasture. Fixation was low also in sediments affected by effluents from the hydraulic debarker of a woodchip mill.  相似文献   

6.
Direct measurements of CO2 fluxes were made in salt, brackish and freshwater marshes and parallel adjacent open water areas in Barataria Basin, Louisiana. Vertical flux density was determined by monitoring the accumulation of CO2 in aluminum chambers placed over the water or sediment surfaces. Annual CO2 fluxes were 418, 180 and 618 g Cm?2 from the salt, brackish and freshwater marsh, respectively. Water bodies adjacent to the marsh evolved 103, 54 and 242 g CO2-Cm?2yr?1 to the atmosphere from saline, brackish and freshwater lakes, respectively. The role these marshes play in serving as a major carbon sink was determined from the carbon content of the sediment, vertical accretion rates and the bulk density of the sediment. Accretion rates were calculated from the depth in the sediment of the 1963 horizon, the year of peak 137Cs fallout. Net carbon accumulation was essentially the same in all three marshes; 183, 296 and 224 g Cm?2yr?1 from the salt, brackish and fresh marsh, respectively. Data presented suggest a limited net export of carbon from these coastal marshes. A large percentage of fixed carbon remained on the marsh, being immobilized in accretionary processes or lost to the atmosphere as CO2.  相似文献   

7.
The effect of self‐shading and competition for light in the seagrass Enhalus acoroides were investigated with a density reduction experiment in Haad Chao Mai National Park, Trang Province, Thailand. The study was carried out in a monospecific meadow with a natural density of 141.0 ± 8.7 shoots·m?2. The intent was to determine the response of E. acoroides beds to loss of shoots and thinning, which often occur during typhoons and severe storm activity. Permanent quadrats were manipulated by clipping the seagrass shoots to 140, 72, 36 and 16 shoots·m?2, to yield natural, 50%, 25% and 10% densities, respectively. Reducing shoot density in E. acoroides increased underwater light intensity below the canopy, generating increased leaf surface area and shoot weight. Seagrass leaf width, growth rate, and number of leaves per shoot also increased with greater light. The extent of flowering varied among treatments with no consistent trend. Our results demonstrate that increasing the available light to E. acoroides produces an increasing leaf size response as self‐shading in the bed is reduced.  相似文献   

8.
Although grazing is considered an essential process controlling epiphyte biomass on seagrass leaves, there is still a lack of fundamental knowledge about the species‐specific consumption rates of the most common grazers in Mediterranean meadows. This study experimentally assessed the effect of Posidonia oceanica‐associated gastropod grazing on early successional biofilm and the species‐specific relationship between biofilm consumption rates and biofilm biomass. Two biofilms on artificial substrata, both developed in situ (in a P. oceanica meadow), one under ambient conditions and the other under nutrient‐enriched conditions, were offered in aquaria assays to nine species of grazers found in P. oceanica meadows. Biofilm consumption rates and their association with biofilm biomass were assessed. It was found that: (i) there was a positive association between biofilm consumption and biofilm biomass up to 20 mg Chl a·m?2 for Bittium reticulatum, Gibbula ardens, Jujubinus exasperatus and Tricolia pullus; (ii) Alvania montagui, B. reticulatum and Jujubinus striatus showed the highest consumption rates and are thus expected to be amongst the leading consumers in early‐successional epiphytic communities; (iii) there was not an increase of consumption rate when a substratum colonized under nutrient‐enriched conditions was offered to any of the nine studied species. This study provides species‐specific consumption rates knowledge that is useful for the assessment of the strength of grazer–epiphyte interactions and trophic fluxes in P. oceanica meadows.  相似文献   

9.
During a research cruise carried out in April 2010, aimed at updating the knowledge on the biodiversity of the Santa Maria di Leuca (SML) cold‐water coral province (Mediterranean Sea), a facies of the sea pen Kophobelemnon stelliferum (Muller, 1776) was found on mud‐dominated bottoms. This finding represents a new species and a new habitat record from the SML coral province as well as a new bathyal facies in the whole Central Mediterranean Sea. The colonies were collected using an epi‐benthic sledge, at depths between 400 and 470 m. A significant positive relationship between polyp number and colony length was detected. Density of the colonies ranged from 0.003 to 0.038 N·m?2. Differences and affinities between Mediterranean and Atlantic occurrences of K. stelliferum are discussed.  相似文献   

10.
We evaluated the effectiveness of chemical tagging with the fluorescent marker calcein for two key species of herbivorous sea urchins, Diadema africanum and Paracentrotus lividus, to facilitate medium‐ and long‐term ecological experiments. In total, 98 juveniles of Dafricanum and 98 Plividus were tagged with this fluorescent marker, with 12 combinations of different tagging techniques (chemical bath or injection), concentrations of calcein (2, 10 and 20 mg · l?1), and soaking times (2, 4 and 24 h). Respective control treatments were conducted by means of seawater injection and bathing. The success of tagging was assessed after a month of feeding individuals ad libitum with the algae Dictyota sp. Sea urchins were dissected and their Aristotle's lanterns cleaned with 10% sodium hypochlorite to examine these structures under UV light using a binocular microscope. Each species was evaluated in terms of survival, percentage of tagged individuals and intensity of the resulting tag. The results showed that the method of soaking individuals of both species for 24 h in concentrations of calcein of 10 and 20 mg · l?1 gave the highest percentage survival (100%) and the resulting tags were clearly visible.  相似文献   

11.
By transforming fixed nitrogen (N) into nitrogen gas, the biochemical processes that support denitrification provide a function critical to maintaining the integrity of ecosystems subjected to increased loading of N from anthropogenic sources. The Louisiana coastal region receives high nitrate (NO3?) concentrations (> 100 µM) from the Mississippi–Ohio–Missouri River Basin and is also an area undergoing high rates of wetland loss. Ongoing and anticipated changes in the Louisiana coastal region promise to alter biogeochemical cycles including the net rate of denitrification by ecosystems. Projecting what these changes could mean for coastal water quality and natural resources requires an understanding of the magnitude and patterns of variation in denitrification rates and their connection to estuarine water quality at large temporal and spatial scales under current conditions. We compile and review denitrification rates reported in 32 studies conducted in a variety of habitats across coastal Louisiana during the period 1981– 2008. The acetylene inhibition and 15N flux were the preferred techniques (95%); most of the studies used sediment slurries rather than intact sediment cores. There are no estimates of denitrification rates using the N2/Ar ratio and isotope pairing techniques, which address some of the problems and limitations of the acetylene inhibition and 15N flux techniques. These studies have shown that sediments from estuaries, lakes, marshes, forested wetlands, and the coastal shelf region are capable of high potential denitrification rates when exposed to high NO3? concentrations (> 100 µM). Maximum potential denitrification rates in experimental and natural settings can reach values > 2500 µmol m2 h? 1. The lack of contemporary studies to understand the interactions among critical nitrogen transformations (e.g., organic matter mineralization, immobilization, aquatic plant assimilation, nitrification, nitrogen fixation, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (annamox) limits our understanding of nitrogen cycling in coastal Louisiana, particularly the role of respiratory and chemolithoautotrophic denitrification in areas undergoing wetland restoration.  相似文献   

12.
Magellania venosa, the largest recent brachiopod, occurs in clusters and banks in population densities of up to 416 ind m?2 in Comau Fjord, Northern Chilean fjord region. Below 15 m, it co‐occurs with the mytilid Aulacomya atra and it dominates the benthic community below 20 m. To determine the question of why M. venosa is a successful competitor, the in situ growth rate of the brachiopod was studied and its overall growth performance compared with that of other brachiopods and mussels. The growth in length was measured between February 2011 and March 2012 after mechanical tagging and calcein staining. Settlement and juvenile growth were determined from recruitment tiles installed in 2009 and from subsequent photocensus. Growth of M. venosa is best described by the general von Bertalanffy growth function, with a maximum shell length (L) of 71.53 mm and a Brody growth constant (K) of 0.336 year?1. The overall growth performance (OGP index = 5.1) is the highest recorded for a rynchonelliform brachiopod and in the range of that for Mytilus chilensis (4.8–5.27), but lower than that of A. atra (5.74). The maximal individual production (PInd) is 0.29 g AFDM ind?1 year?1 at 42 mm shell length and annual production ranges from 1.28 to 89.25 g AFDM year?1 m?2 (1–57% of that of A. atra in the respective fjords). The high shell growth rate of M. venosa, together with its high overall growth performance may explain the locally high population density of this brachiopod in Comau Fjord. However, the production per biomass of the population (‐ratio) is low (0.535) and M. venosa may play only a minor role in the food chain. Settling dynamics indicates that M. venosa is a pioneer species with low juvenile mortality. The coexistence of the brachiopod and bivalve suggests that brachiopod survival is affected by neither the presence of potential brachiopod predators nor that of space competitors (i.e. mytilids).  相似文献   

13.
We studied the population ecology of the snail Melampus bidentatus in relation to patch composition and landscape structure across several salt marsh systems in Connecticut, USA. These marshes have changed significantly over the past 40–50 years including loss of total area, increased areas of short Spartina alterniflora, and decreased areas and fragmentation of Spartina patens. These changes are consistent with tidal inundation patterns that indicate frequent flooding of high marsh areas. Melampus bidentatus densities were highly variable, both among different salt marsh systems and locations within specific marshes, but were generally similar among short Sp. alterniflora and Sp. patens patches within locations. Densities were lowest where the marsh was regularly inundated at high tide and only remnant Sp. patens patches remained. Almost no snails were found in bare patches. Areas that had large Sp. patens patches adjacent to short Sp. alterniflora supported the highest M. bidentatus densities. Population size‐structure varied significantly among patch types, with higher proportions of large individuals in short Sp. alterniflora and hummocked Sp. patens patches than in large and remnant Sp. patens patches. This was likely due to size‐selective predation and/or higher snail growth rates due to better food resource conditions in short Sp. alterniflora patches. Egg mass densities and the number of eggs per egg mass were highest in short Sp. alterniflora. Our results indicate that M. bidentatus is resilient to the level and patterns of salt marsh change evident at our study sites. Indeed, snail densities were significantly higher than reported in other field studies, suggesting that increased patch areas of short Sp. alterniflora and associated environmental conditions at our study sites may provide more favorable habitats than previously when marshes were dominated by extensive Sp. patens meadows. However, there may be threshold conditions that could overwhelm the ability of M. bidentatus to maintain itself within salt marsh systems where changes in hydrology, sedimentation and other factors lead to increased numbers of bare patches and ponds and loss of short Sp. alterniflora and Sp. patens. Studies of the responses of resident and transient fauna to salt marsh change are critically needed in order to better understand the implications for salt marsh ecosystem dynamics and services.  相似文献   

14.
We present the results of the first study to highlight the demography, morphometry and growth rates of Spinimuricea klavereni, a rare Mediterranean endemic gorgonian exceptionally common in shallow depths of the Northeast Marmara Sea. In the study area, this species forms vast populations on rocks, boulders and attached to pebbles/stones/shells on soft substrates between 20 and 45 m depth, with a total average density of 0.3 colonies·m?2 but comprising patches up to 3 colonies·m?2. Colonies, which are on average 42.9 (±20.1) cm in height, can reach up to 110 cm. Unlike other Mediterranean gorgonians, the colonies studied here showed fast growth rates that decreased with increasing colony height, between 1.5–11.1 and 4.96 ± 3.01 cm·year?1 on average. The low necrosis and high growth rates displayed by this species in the Northeast Marmara Sea confirm the previously hypothesized opportunistic behaviour of the species. The unique community consisting of S. klavereni and other rare gorgonian/soft corals has limited distribution in this area and should be considered to be a vulnerable marine ecosystem. Therefore we recommend that some conservation measures are taken, including the prohibition of all fisheries and anchoring over these assemblages.  相似文献   

15.
Halipteris finmarchica is one of the most common species of deep‐sea pennatulacean corals in the Northwest Atlantic; it was recently determined to act as a biogenic substrate for other species and as a nursery for fish larvae. Its reproductive cycle was investigated in colonies sampled in 2006 and 2007 along the continental slope of Newfoundland and Labrador (Canada). Halipteris finmarchica exhibits large oocytes (maximum diameter of 1000 μm), which are consistent with lecithotrophic larval development. Female potential fecundity based on mature oocytes just before spawning was ~6 oocytes · polyp?1 (500–6300 oocytes · colony?1); male potential fecundity was 16 spermatocysts · polyp?1 (5500–57,400 spermatocysts · colony?1). Based on statistical analysis of size‐probability frequency distributions, males harboured one cohort of spermatocysts that matured inside 8–11 months, whereas females harboured two distinct cohorts of oocytes; a persistent pool of small ones (≤400 μm) and a small number (~20%) of larger ones that grew from ~400 to >800 μm over a year. Despite this difference in the tempo of oogenesis and spermatogenesis, a synchronic annual spawning was detected. A latitudinal shift in the spawning period occurred from south (April in the Laurentian Channel) to north (May in Grand Banks and July–August in Labrador/Lower Arctic), following the development of the phytoplankton bloom (i.e. sinking of phytodetritus). Prolonged oogenesis with the simultaneous presence of different oocyte classes in a given polyp is likely not uncommon in deep‐sea octocorals and could hamper the detection of annual/seasonal reproduction when sample sizes are low and/or time series discontinued or brief.  相似文献   

16.
Sponges are inhabited by a wide variety of organisms and have been regarded as one of the richest biotopes in tropical seas. The aim of this study was to assess the influence of the host morphology and selected environmental conditions on macrofaunal assemblages associated with the sponge Halichondria melanadocia in an estuarine system of the southern Gulf of Mexico. This sponge exhibits different growth forms when it inhabits mangrove prop roots of Rhizophora mangle (thickly encrusting form) and adjacent seagrass beds (massive, amorphous or ramose form). From a total of 50 sponge specimens collected in each habitat, a total of eight taxa (of epi‐ and endobionts) was found associated with this sponge, with polychaetes, echinoderms and crustaceans the most abundant groups. In both morphotypes (thickly‐encrusting and massive‐ramose forms), taxon richness was positively related to sponge volume and oscular diameter. The overall mean abundance of associated fauna was also positively related to sponge volume in both morphotypes and with the oscular diameter (in the seagrass morphotype only). These findings suggest that H. melanadocia constitutes an important microhabitat for a wide variety of fauna, independent of its morphology and habitat type. However, when comparing the two morphotypes, the mangrove individuals, despite having smaller sizes, smaller oscular diameter and less structural complexity, displayed an overall mean abundance of fauna 17 times higher [0.36 ± 0.18 individuals (ind.)·ml·sponge?1] than that recorded in the seagrass individuals (0.021 ± 0.01 ind.·ml·sponge?1). There were also marked differences in the proportions of the major taxonomic groups; in fact, some of them were found exclusively in one morphotype. The variability recorded in the composition and abundance of associated fauna between the morphotypes seems to be influenced by differences in sponge morphology, environmental conditions (e.g. sedimentation rate and light intensity), substrate orientation and the fauna inhabiting the surrounding area.  相似文献   

17.
Measurements of nitrogen fixation (acetylene reduction) showed greatest rates in the saltmarsh pans with a benthic layer of cyanobacteria present. The smallest amount of nitrogen fixation occurred on the marsh surface where a Puccinellia maritima/Halimione portulacoides plant association shaded the underlying sediment. Phototrophic nitrogen fixation was always greater than dark, chemotrophic, bacterial fixation.Only a small proportion of the total amount of ammonium, which was formed during detrital breakdown, was nitrified to nitrate. Although there is a high capacity for bacterial nitrate reduction in these sediments, the process is limited by low nitrate availability and most nitrate upon reduction is converted to ammonium rather than being denitrified to gaseous products. Denitrification does not, therefore, result in any great loss of nitrogen from the saltmarsh.There was little net import or export of nitrogen on an annual basis, although nitrate and organic-N in small particulate material was removed from tidal water by the marsh, and there was net annual export of ammonium, dissolved organic-N and organic-N in large particulate material. Losses of nitrogen by the small net tidal export and by denitrification were approximately balanced by nitrogen fixation. It was concluded that the nitrogen cycle of the Colne Point saltmarsh was balanced on an annual basis, with most nitrogen being recycled within the marsh. The saltmarsh did not apparently act as a net source of nitrogen for the adjacent estuary, although it may act as an important processor of nitrogen, removing some forms of nitrogen such as nitrate from tidal water while exporting other forms of nitrogen such as dissolved organic-N.  相似文献   

18.
Leaf growth, biomass and production of Cymodocea nodosa were measured from October 2006 to September 2007 in Monastir Bay (Tunisia). Shoot density showed a clear seasonal pattern, increasing during spring and summer and decreasing during fall and winter. Monthly mean shoot density ranged between 633 ± 48 and 704 ± 48 shoots?m?2. The monthly average total biomass ranged between 560 ± 37 and 646 ± 32 g dry weight (DW)?m?2. Total biomass varied significantly among stations and sampling times but did not show seasonal variation. Leaf plastochrone intervals varied seasonally, with an annual average of 28–30 days. Leaf productivity was highest in August (2.61 g DW?m?2?day?1) and lowest in February (0.35 g DW?m?2?day?1). Annual belowground primary production varied from 263 to 311 g DW?m?2?year?1. Annual leaf production was approximately equal for all the stations (from 264 to 289 g DW?m?2?year?1). Variability in water temperature, air temperature and salinity explained the annual variability in biological characteristics. Changes in belowground and total biomass were not correlated with seasonal variability in the environmental parameters monitored. Additionally, a literature review was conducted of C. nodosa features at other Mediterranean sites, encompassing 30 studies from 1985 to 2014.  相似文献   

19.
Commercially harvested since ancient times, the highly valuable red coral Corallium rubrum (Linnaeus, 1758) is an octocoral endemic to the Mediterranean Sea and adjacent Eastern Atlantic Ocean, where it occurs on rocky bottoms over a wide bathymetric range. Current knowledge is restricted to its shallow populations (15–50 m depth), with comparably little attention given to the deeper populations (50–200 m) that are nowadays the main target of exploitation. In this study, red coral distribution and population structure were assessed in three historically exploited areas (Amalfi, Ischia Island and Elba Island) in the Tyrrhenian Sea (Western Mediterranean Sea) between 50 and 130 m depth by means of ROV during a cruise carried out in the summer of 2010. Red coral populations showed a maximum patch frequency of 0.20 ± 0.04 SD patches·m?1 and a density ranging between 28 and 204 colonies·m?2, with a fairly continuous bathymetric distribution. The highest red coral densities in the investigated areas were found on cliffs and boulders mainly exposed to the east, at the greatest depth, and characterized by medium percentage sediment cover. The study populations contained a high percentage (46% on average) of harvestable colonies (>7 mm basal diameter). Moreover, some colonies with fifth‐order branches were also observed, highlighting the probable older age of some components of these populations. The Ischia population showed the highest colony occupancy, density and size, suggesting a better conservation status than the populations at the other study locations. These results indicate that deep dwelling red coral populations in non‐stressed or less‐harvested areas may diverge from the inverse size‐density relationship previously observed in red coral populations with increasing depth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号