首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gorgonians are important structuring species of the Mediterranean hard‐bottom communities that are threatened by disturbances such as increasing seawater temperature, mucilaginous events and destructive fishing, among others. In this study we assessed for the first time the population structure and conservation status of one of the most common gorgonians in the Eastern Adriatic Sea, the red gorgonian Paramuricea clavata. During late spring 2009, nine populations dwelling between 30 and 50 m depth were examined by SCUBA diving along 200 km of the Croatian coastline. The density ranged between 7 and 20 colonies·m?2. The mean and maximum colony heights were 31.2 ± 22.7 cm (±SD) and 138 cm, respectively. Two main patterns of P. clavata size frequency distributions were observed: the first one with a higher proportion of juveniles (~30%) observed mostly in the northernmost populations, and the second one with a higher proportion of larger colonies (>25% of colonies >40 cm in height). Regarding the disturbance impact level, the proportion of healthy colonies (with <10% of injured surface) was high in almost all of the studied populations (>60%) and the mean extent of injury (i.e. denuded axis or epibiosis) was 9.7 ± 4% (±SD), indicating low impacts. Contrasting population size structures with high recruitment in mature populations provides new insights into the demographic structure of the Mediterranean gorgonian forests dwelling in their upper bathymetric range (<50 m depth). Furthermore, these size structures and the low impact levels suggest a current favorable conservation status of the studied populations in the Eastern Adriatic Sea and provide a baseline for their monitoring in the future.  相似文献   

2.
The precious red coral Corallium rubrum (L., 1758) lives in the Mediterranean Sea and adjacent Eastern Atlantic Ocean on subtidal hard substrates. Corallium rubrum is a long‐lived gorgonian coral that has been commercially harvested since ancient times for its red axial calcitic skeleton and which, at present, is thought to be in decline because of overexploitation. The depth distribution of C. rubrum is known to range from c. 15 to 300 m. Recently, live red coral colonies have been observed in the Strait of Sicily at depths of c. 600–800 m. This record sheds new light on the ecology, biology, biogeography and dispersal mechanism of this species and calls for an evaluation of the genetic divergence occurring among highly fragmented populations. A genetic characterization of the deep‐sea red coral colonies has been done to investigate biological processes affecting dispersal and population resilience, as well as to define the level of isolation/differentiation between shallow‐ and deep‐water populations of the Mediterranean Sea. Deep‐water C. rubrum colonies were collected at two sites (south of Malta and off Linosa Island) during the cruise MARCOS of the R/V Urania. Collected colonies were genotyped using a set of molecular markers differing in their level of polymorphism. Microsatellites have been confirmed to be useful markers for individual genotyping of C. rubrum colonies. ITS‐1 and mtMSH sequences of deep‐water red coral colonies were found to be different from those found in shallow water colonies, suggesting the possible occurrence of genetic isolation among shallow‐ and deep‐water populations. These findings suggest that genetic diversity of red coral over its actual range of depth distribution is shaped by complex interactions among geological, historical, biological and ecological processes.  相似文献   

3.
During a research cruise carried out in April 2010, aimed at updating the knowledge on the biodiversity of the Santa Maria di Leuca (SML) cold‐water coral province (Mediterranean Sea), a facies of the sea pen Kophobelemnon stelliferum (Muller, 1776) was found on mud‐dominated bottoms. This finding represents a new species and a new habitat record from the SML coral province as well as a new bathyal facies in the whole Central Mediterranean Sea. The colonies were collected using an epi‐benthic sledge, at depths between 400 and 470 m. A significant positive relationship between polyp number and colony length was detected. Density of the colonies ranged from 0.003 to 0.038 N·m?2. Differences and affinities between Mediterranean and Atlantic occurrences of K. stelliferum are discussed.  相似文献   

4.
A large amount of data on the precious coral Corallium rubrum has attested to a dramatic shift in the size structure of its over‐harvested Mediterranean populations in recent decades. One of the main problems for the conservation of this species is the substantial lack of data concerning the time span necessary for a population subjected to pluri‐decennial harvesting pressure to return to its pristine status. Here, we present a multi‐annual data set gathered from the Marine Protected Area (MPA) of Portofino, which hosts the most important shallow‐water coral populations in the Ligurian Sea and was subjected to strong harvesting pressure from the 1950s to the early 1970s. Quantitative comparison of the population structure data recorded in 1964, 1990 and 2012 indicated a strong size increase of the colonies (from 3 to 8 g mean weight), resulting in an increase in colony biomass from 300 to the current 1500 g·m?2. As a consequence, over the same span of time, the density of colonies has slightly decreased. The role of mass mortality phenomena, like that occurred in this area during 1999, as possible biological features triggering the switch of red coral populations from a ‘grass plain‐like’ towards a ‘forest‐like’ structure, is discussed. All these data indicate that the instigation of MPAs is a winning strategy in the conservation of this precious species and similar management plans should also be evaluated for the protection of the deep benthic communities thriving on off‐shore banks.  相似文献   

5.
We present the results of the first study to highlight the demography, morphometry and growth rates of Spinimuricea klavereni, a rare Mediterranean endemic gorgonian exceptionally common in shallow depths of the Northeast Marmara Sea. In the study area, this species forms vast populations on rocks, boulders and attached to pebbles/stones/shells on soft substrates between 20 and 45 m depth, with a total average density of 0.3 colonies·m?2 but comprising patches up to 3 colonies·m?2. Colonies, which are on average 42.9 (±20.1) cm in height, can reach up to 110 cm. Unlike other Mediterranean gorgonians, the colonies studied here showed fast growth rates that decreased with increasing colony height, between 1.5–11.1 and 4.96 ± 3.01 cm·year?1 on average. The low necrosis and high growth rates displayed by this species in the Northeast Marmara Sea confirm the previously hypothesized opportunistic behaviour of the species. The unique community consisting of S. klavereni and other rare gorgonian/soft corals has limited distribution in this area and should be considered to be a vulnerable marine ecosystem. Therefore we recommend that some conservation measures are taken, including the prohibition of all fisheries and anchoring over these assemblages.  相似文献   

6.
Today, living banks of the coral Cladocora caespitosa appear to be restricted to a few Mediterranean locations and are threatened by the escalating impacts affecting coastal areas. In this study the exceptional occurrence of the Mediterranean coral C. caespitosa in the Columbretes Islands Marine Reserve (NW Mediterranean, Spain) is characterised in terms of spatial distribution, cover area, colony size and growth rates. The coral colonies form beds and banks in rocky bottoms within a semi‐enclosed bay that offers both hydrodynamic protection and high water exchange. The spatial distribution of the C. caespitosa colonies, from 5 to 27 m depth, is highly aggregated, depending on sea‐floor morphology and showing up to 80% of substrate coverage. The annual corallite growth rates obtained through the alizarin red staining method and x‐ray image analysis are similar, and range between 2.55 ± 0.79 mm and 2.54 ± 0.81 mm, respectively. The exceptional nature of these bioconstructions is due to their cumulative cover area, which is comparable in size to the largest C. caespitosa bioconstructions described to date in Mljet National Park (Croatia, Adriatic Sea).  相似文献   

7.
This study investigates the size, age and growth of Corallium rubrum which is a key species of the only large reef-like structure in the Mediterranean Sea, the coralligéne. Two populations were studied in the Ligurian Sea at a depth between 36 and 42 m. Basal diameter, colony height and numbers of branches of 230 colonies were measured, and age and growth rates were assessed from 25 colonies. Mean growth rate was 0.2 mm yr−1 of basal diameter growth, corresponding to a mean annual total branch length increase of 5 mm. These results point to a coral growth much slower than assumed in many earlier studies. Additionally, age and size at first reproduction were analysed. Male colonies were shown to become sexually mature at a minimum age of six years (1.2 mm of basal diameter), while female colonies reached maturity when at least 10 years old (2 mm of basal diameter). We further discuss the implications of slow growth and early sexual maturity for red coral management and conservation.  相似文献   

8.
The Mediterranean endemic Cladocora caespitosa (Linnaeus, 1767) is a colonial scleractinian coral belonging to the family Faviidae and the only zooxanthellate coral from Mediterranean whose colonies may fuse in reef‐like structures (hermatypic). Recent surveys are focused on three locations where banks occur in the Adriatic Sea (Croatia): near Prvi? Island in the northern Adriatic, near Pag Island in the central Adriatic and in Veliko jezero (Mljet National Park) in the southern Adriatic. The C. caespitosa bank in Veliko jezero covers an area more than 650 m2 and is thus the largest bank of C. caespitosa found to date. The strong sea currents, which occur as a result of tidal exchange in the channel, appear to favour the growth of the bank. The goal of the study was to present the influence of major environmental factors upon the build‐up process of the coral bank. Biometrical parameters in the C. caespitosa colonies like diameter of the calyces, polyp ash free dry weight (AFDW), corallite linear growth rate and index of sphericity were investigated and compared from these three locations. The morphology of coral banks from the Adriatic Sea and the disposition of the biometrical values are affected by the sea currents, temperature and sedimentation.  相似文献   

9.
The tropical seagrass Halophila stipulacea is dominant in most regions of the Indo‐Pacific and the Red Sea and was introduced into the Mediterranean Sea after the opening of the Suez canal. The species is considered invasive in the Mediterranean Sea and has been progressively colonizing new areas westward. Growth and photosynthetic responses of H. stipulacea have been described but no information is yet available on the nitrogen nutrition of the species. Here we simultaneously investigated the uptake kinetics of ammonium and nitrate and the internal translocation of incorporated nitrogen in H. stipulacea using 15N‐labelled substrates across a range of Ni levels (5, 25, 50 and 100 μm ). The ammonium uptake rates exceeded the nitrate uptake rates 100‐fold, revealing a limited capacity of H. stipulacea to use nitrate as an alternative nitrogen source. The uptake rates of ammonium by leaves and roots were comparable up to 100 μm 15NH4Cl. At this concentration, the leaf uptake rate was 1.4‐fold higher (6.22 ± 0.70 μmol·g?1 DW h?1) than the root uptake rate (4.54 ± 0.28 μmol·g?1 DW h?1). The uptake of ammonium followed Michaelis–Menten kinetics, whereas nitrate uptake rates were relatively constant at all nutrient concentrations. The maximum ammonium uptake rate (Vmax) and the half‐saturation constant (Km) of leaves (9.79 μmol·g?1 DW h?1 and 57.95 μm , respectively) were slightly higher than that of roots (6.09 μmol·g?1DW h?1 and 30.85 μm , respectively), whereas the affinity coefficients (α = Vmax/Km) for ammonium of leaves (0.17) and roots (0.20) were comparable, a characteristic that is unique among seagrass species. No substantial translocation (<2.5%) of 15N incorporated as ammonium was detected between plant parts, whereas the translocation of 15N incorporated as nitrate was higher (40–100%). We conclude that the Ni acquisition strategy of H. stipulacea, characterized by a similar uptake capacity and efficiency of leaves and roots, favors the geographical expansion potential of the species into areas with variable water‐sediment N levels throughout the Mediterranean.  相似文献   

10.
Porites panamensis is a hermatypic coral present in the eastern Pacific Ocean. Skeletal growth parameters have been reported, but studies of the relationship between annual calcification rates and environmental controls are scarce. In this study, we investigated three aspects of the annual calcification rates of P. panamensis: growth parameters among three P. panamensis populations; the sea surface temperature as a calcification rate control spanning a latitudinal gradient; and calcium carbonate production among three sites. Growth parameters varied among the sites due to the colony growth form. Massive colonies in the north showed a higher calcification rate than encrusting colonies in the south (mean: 1.22–0.49 g CaCO3 · cm?2 · yr?1), where variations in calcification rates were related to growth rate (0.91–0.38 cm · yr?1) rather than to skeletal density differences (overall mean ± SD, 1.31 ± 0.04 g CaCO3 · cm?3). Our results showed a positive linear relationship between annual calcification rates and sea surface temperatures within these P. panamensis populations. Differences were related to distinct oceanographic environments (within and at the entrance of the Gulf of California) with different sea surface temperature regimes and other chemical properties. Different populations calcified under different environmental conditions. Calcium carbonate production was dependent upon the calcification rate and coral cover and so carbonate production was higher in the north (coral cover 12%) than in the south (coral cover 3.5). Thus, the studied sites showed low calcium carbonate production (0.25–0.43 kg CaCO3 · m?2 · yr?1). Our results showed reduced calcification rates, regional temperature regime control over calcification rates, different growth forms, low coral cover and low calcium carbonate production rates in P. panamensis.  相似文献   

11.
Recurrent climate‐induced mass mortality episodes have been recorded in the Mediterranean Sea over the past 15 years, affecting rocky benthic communities. In this study, we provide for the first time a report on the annual mortality events of benthic sessile invertebrates occurring in the eastern part of the Adriatic Sea. Over the course of 14 consecutive years, we studied the sea temperature gradient to a depth of 40 m and found an abnormal summer warming trend and an increased frequency of above‐average temperatures. Mortality events were recorded in the summers of 10 observed years, in particular in 2009, when the highest mortality rates were recorded. Late in summer 2009, extensive mass mortality of sessile invertebrates was observed in the entire Eastern Adriatic Sea. We performed an analysis of selected target benthic species associated with mass mortality events with inter‐regional differences in hydrological and temperature conditions. We were able to characterize the mortality event by studying five areas covering the northern, central and southern regions of the Eastern Adriatic Sea. The degree of impact on each study area was quantified at 28 sites by estimating the proportion of affected target species. According to the obtained data, the northern sites (Cres area) were the least affected, whereas sites in the Central and Southern Adriatic [Tela??ica and Lastovo Nature Parks, Mljet National Park (NP)] displayed the highest impact. In summer 2009, sea surface temperatures reached values of 28 °C in the Cres area and 30 °C in Mljet NP. These thermal conditions were concomitant with moderate to severe mass mortalities of benthic populations. Mass mortality events reached depths of 45 m in most parts of the affected areas. Amongst studied species, the scleractinian coral and gorgonian populations suffered the most extensive damage during the mass mortality events.  相似文献   

12.
The genus Symbiodinium plays an essential role in the resistance and survival of reef‐building corals during temperature anomalies. Coral colonies inhabiting the Persian Gulf (PG) experience extended periods of different stresses. Kish Island is located in the harsh environment of the Northern PG with previously reported bleaching episodes. Samples of six coral species from Northwestern Kish Island were analysed by internal transcribed spacer 2 of ribosomal DNA to identify in hospite Symbiodinium populations. The results showed that lineage D of Symbiodinium was the most prevalent clade among different coral colonies, while clade C was only detected in symbiosis with a single coral species. However, the detected Symbiodinium subclades belonged to two host generalists. The predominance of the stress tolerant Symbiodinium trenchii and subclade C3 could suggest an acclimatization strategy to cope with the hostile environment of the PG.  相似文献   

13.
In this study we characterized the deep assemblages dwelling at 200–250 m depth on a large shoal off Capo St. Vito Promontory (Northwestern coast of Sicily, South Tyrrhenian Sea) by means of ROV‐imaging. Two assemblages of suspension feeders, dominated by the gorgonian Callogorgia verticillata and by the black coral Leiopathes glaberrima, together with a tanatocoenosis of the colonial yellow scleractinian coral Dendrophyllia cornigera, were examined. The three main species were significatively distributed into two areas corresponding to different habitat preferences: a more elevated hardground hosting black corals and a gently sloping, silted rocky bottom hosting the other coral species. The study area is subjected to a heavy pressure from the professional fishery, resulting in the mechanical damage of numerous colonies, some of which are then overgrown by various epibionts including a parasitic bioluminescent zoanthid, new for the Mediterranean fauna, and tentatively identified as Isozoanthus primoidus. In the Mediterranean Sea, these deep off‐shore rocky banks are widely known among recreational and professional fishermen due to their rich fish fauna. However, there has been still little effort into quantifying and characterizing the extent of the impact and its consequences on the benthic communities, which may represent, as in this case, only a partial picture of their original structure and extent.  相似文献   

14.
Abstract. Respiration in Holothuria tubulosa was investigated in individuals from the Posidonia oceanica meadow off Lacco Ameno (Ischia Island, Italy). Respiratory rates increase with increasing body weight and increasing sea water temperature. Oxygen consumption of an average individual (7g dw body wall) ranges from 0.409 (14 °C) to 1.300 (26 °C) mg O2· h-1. Data on population density, mean size of individuals, and annual sea water temperature variations allow an assessment of holothuroid production. Values of 45.65 and 13.75 kJ · m-2· y-1 were calculated for shallow (3 to 10 m) and deep (25 to 33 m) areas of the Posidonia meadow, respectively. Holothuroid production shows a bathymetric pattern similar to primary production of the Posidonia -epiphytes complex and the production of Posidonia litter.  相似文献   

15.
An excavating sponge, which covers extensive areas of limestone rock, has been found at several locations of the Eastern Mediterranean Sea. This zooxanthellate clionaid, brown with yellow oscula, may have an extension of several square meters under the β-form, similar to what has been described in coral reef areas. It has been observed at 3–30 m depth, generally in clear water in the Ionian Sea, Crete, Cyprus and Lebanon. The gross morphology and the spicule characters are described from all the collected specimens. The spicule complement, with variable tylostyles and rare, sometimes absent, thin spirasters, is compared with that of Cliona parenzani Corriero & Scalera-Liaci 1997 from the Apulian coast (Ionian Sea, Mediterranean Sea), and of several Caribbean and Indo-Pacific clionaid species, which display the same morphology and rather similar spicule characters. The sponge is tentatively identified as C. parenzani , although there are some differences with the type specimens in the highly variable spiculation, suggesting that it may represent a species complex similar to what is known for other species in the Caribbean and Indo-Pacific areas. Although the sponge appears to be closely related to large brown spreading clionaids from tropical areas and was previously practically overlooked in the Eastern Mediterranean, it does not appear to be a recent introduction. It is suggested that it could be a survivor in the warmer area of the Mediterranean of an ancient thermophilous fauna, which did not survive in the colder Western Basin during glacial episodes of the Pleistocene.  相似文献   

16.
The Arabian Sea is characterized by a mid‐depth layer of reduced dissolved oxygen (DO) concentration or oxygen minimum zone (OMZ ‐DO concentration <0.5 ml·l?1) at ~150–1000 m depth. This OMZ results from the flux of labile organic matter coupled with limited intermediate depth water ventilation. Generally, benthic animals in the OMZ have morphological and physiological adaptations that maximize oxygen uptake in the limited oxygen availability. Characteristics of OMZ benthos have been described from only a few localities in the Arabian Sea. We measured the bottom water DO and studied the characteristics of infaunal macrobenthos of the Indian western continental shelf by collecting samples at 50, 100 and 200 m in depth from 7° to 22° N. The DO values observed at 200 m (0.0005–0.24 ml·l?1) indicated that this area is lying within an OMZ. Five major taxa, namely Platyhelminthes, Sipunculoidea, Echiuroidea, Echinodermata and Cephalochordata were absent from the samples collected from this OMZ. In general, declines in total macrobenthic density and biomass and polychaete species richness and diversity were observed in this OMZ compared with the shallower depths above it. Community analyses of polychaetes revealed the dominance of species belonging to families Spionidae, Cirratulidae and Paraonidae in this OMZ. Low oxygen condition was more pronounced in the northern continental shelf edge (≤0.03 ml·l?1), where the majority of spionids including Prionospio pinnata and cirratulids were absent; whereas amphipod, isopod and bivalve communities were not impacted.  相似文献   

17.
The platform and fringing reefs of Torres Strait are morphologically similar to reefs of the northern Great Barrier Reef to the south, except that several are elongated in the direction of the strong tidal currents between the Coral Sea and the Gulf of Carpentaria. Surface and subsurface investigations and radiocarbon dating on Yam, Warraber and Hammond Islands reveal that the initiation and mode of Holocene reef growth reflect antecedent topography and sea-level history. On the granitic Yam Island, fringing reefs have established in some places over a Pleistocene limestone at about 6 m depth around 7000 years BP. Emergent Holocene microatolls of Porites sp. indicate that the reefs have prograded seawards while sea level has fallen gradually from at least 0.8 m above present about 5800 years BP. On the Warraber Island reef platform drilling near the centre indicated a Pleistocene limestone foundation at a depth of about 6 m over which reefs established around 6700 years BP. Reef growth lagged behind that on Yam Island. Microatolls on the mature reef flat indicate that the reef reached sea level around 5300 years BP when the sea was around 0.8–1.0 m above present. On the reef flat on the western side of Hammond Island bedrock was encountered at 7–8 m depth, overlain by terrigenous mud. A progradational reef sequence of only 1–2 m thickness has built seaward over these muds, as sea level has fallen over the past 5800 years. Reef-flat progradation on these reefs is interpreted to have occurred by a series of stepwise buildouts marked by lines of microatolls parallel to the reef crest, marking individual coalescing coral heads. Detrital infill has occurred between these. This pattern of reef progradation is consistent with the radiocarbon dating results from these reefs, and with seismic investigations on the Torres Reefs.  相似文献   

18.
The variation in mycosporine‐like amino acid (MAA) concentration in the soft coral Heteroxenia fuscescens in relation to changes in ultraviolet radiation (UVR) regimes was investigated at the Gulf of Eilat, northern Red Sea. Solar radiation (300–700 nm) was measured for different depths and seasons. The UVR irradiance was measured to a depth of 25 m on the reef. The mean attenuation coefficient for UV‐B measured in winter was twofold that of the summer value. Separation of H. fuscescens extracts by reverse‐phase isocratic high‐performance liquid chromatography revealed a single MAA compound, palythine (λmax = 320 nm). Possible seasonal changes in MAAs in colonies of H. fuscescens along a depth gradient were examined on different dates. Palythine concentrations in the colonies were significantly higher in summer than in the other seasons particularly in shallow water. Possible changes in MAA content in colonies of H. fuscescens as a result of UVR protection, were determined by experiments conducted for periods of 1 week, 1 month and 3 months, at a depth of 5 m. In these experiments colonies were removed from the natural substrate and placed underwater, protected from UVR by a PVC filter. Significant differences between UV‐exposed and protected colonies of H. fuscescens were found only in the 3‐month experiment conducted during the summer. These findings demonstrate that UVR is an important environmental factor regulating MAA biosynthesis in the soft coral H. fuscescens.  相似文献   

19.
Corals reefs and communities support a wide range of flora and fauna. The complete richness and abundance of faunal communities in either coral reefs or communities is not fully understood. This is especially true for high-latitude coral communities. In this work, we carried out an analysis of an Alveopora japonica associated mollusk assemblage, in Jeju Island, Korea. A. japonica is one of the major coral species present in high abundance (88–155 colonies m-2), with a high recruitment rate (7.8 juvenile corals m-2 yr-1) in Jeju Island, and may serve as a habitat for other benthic organisms. In 2012, a total number of 579 A. japonica colonies with sizes ranging between 15.1-346.7 cm2 in the surface area were collected from a 1m× 10m quadrat installed at a depth of 10 m at Keumneung, on the northwest coast of Jeju Island. Numerous benthic invertebrates were found to be associated with A. japonica colonies. Twenty-seven bivalves and gastropods were identified, including a boring mytilid, Lithophaga curta, and an arcid, Barbatia stearnsi. A zonalgeographical examination of the distribution ranges of these mollusks revealed a majority of warmer water species. Our observations also showed that A. japonica may be providing a habitat to grazing gastropod, Turbo cornutus, and encrusting Spondylidae and Chamidae bivalves. A. japonica forms a coral carpet with a distinct assemblage of bivalves. It is thought that the presence of these mollusks species in the coral indicates its use as a nursery for juvenile species, a ready food supply of organic detritus, and a refuge from predators.  相似文献   

20.
Strong environmental selection may give rise to complex species and/or camouflage the presence of sibling species in brackish waters. The prosobranch gastropod Nassarius corniculus (Olivi, 1792) is a common scavenger widely distributed in Mediterranean brackish and marine areas. We examined the morphological and molecular features of N. corniculus populations and related these features to the environmental complexity of brackish habitats. Morphological data revealed differences in radular features between specimens collected from two Mediterranean lagoons (Lake Faro, Messina, Sicily and Lake Fusaro, Gulf of Gaeta). Analysis of with the mitochondrial marker mt 16S rRNA revealed genetic variability within the Lake Faro population but did not show the different geographic structure between the two lagoons indicated by morphological data. We also predicted the gene flow of N. corniculus by comparing populations of two marine areas (Faro Sea and Ischia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号