首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
曾明剑  吴海英  王晓峰  蒋义芳 《气象》2016,42(3):280-293
利用逐日4次1°×1°FNL/NCEP分析资料及多普勒天气雷达、地面自动气象站等观测资料,在对近十年江苏梅雨期龙卷天气的环境特征进行合成分析并提炼对流参数特征值后,着重对2013年7月7日发生在安徽天长至江苏高邮一带导致龙卷的对流风暴的形成和结构特征演变进行了分析。结果表明:江淮梅雨期间,地面中尺度气旋的右侧附近(100 km)、对流层低层中尺度低涡右下方约200~300km处和低空急流左后侧之间区域是龙卷易发区;梅雨期大气环流背景为龙卷的发生提供了对流层低层充沛的水汽和有利的不稳定层结与动力条件,低层气旋性涡度在龙卷发生前强烈发展,边界层内强的垂直风切变促进了龙卷风暴内气旋性涡度的迅速增强,而对流层低层辐合的增强将有利于初始对流的触发;但梅雨期龙卷对对流不稳定能量蓄积条件要求低于冰雹和雷暴大风;龙卷对流参数特征值及其与气候平均值的差异性为龙卷天气的短期预报提供了参考依据。引发2013年7月7日龙卷的对流风暴起源于地面辐合线附近,地面辐合及中尺度锋区的增强有利于对流风暴的快速发展,此次系列龙卷是由一个生命史较长的超级单体风暴产生,该对流风暴具有典型超级单体的回波特征,风暴内的中气旋维持2h之久,中气旋相关参数的演变对龙卷的临近预警有较高的参考价值,当中气旋底高较低且中气旋切变值明显增强时,发生龙卷天气的可能性较大。  相似文献   

2.
利用ERA5 再分析资料、雷达资料以及北京VDRAS资料,对2021年7月1日发生在张家口的一次与超级单体伴随的龙卷天气特征进行分析。结果表明:①此次龙卷天气发生在高空冷涡的东南象限、低空切变线前侧暖区及地面辐合线附近。②雷达资料分析显示在超级单体的南侧产生了此次龙卷,龙卷过程中超过50 dBz的高度在6 km以下,强核中心在3 km以下,为低质心的对流系统,反演的风场上在低层1 km高度存在闭合的气旋性环流。③北京VDRAS资料分析表明低层强辐合与高层强辐散配置、中低层强的正风暴相对螺旋度为龙卷发生提供了有利的环境条件;垂直速度分布显示龙卷生成地存在强上升运动,其两侧均存在下沉运动;扰动温度的垂直分布表明4 km以下存在负中心,4 km以上存在正中心。  相似文献   

3.
综合应用高时空分辨率多源观测资料,分析了2019年7月3日下午辽宁开原EF4级强龙卷的天气形势、环境条件、对流触发、对流风暴演变特征和龙卷的形成与消亡机制。开原龙卷发生在东北冷涡西南侧500 hPa西北气流、850 hPa切变线、地面强西南暖湿气流中;除了对流层中下层相对湿度低、抬升凝结高度较高是开原龙卷的不利环境条件外,其他有利于强中气旋龙卷的环境条件都具备。但风廓线雷达观测和天气雷达观测的径向速度场显示0~1 km垂直风切变的增强具有中尺度特征,表明边界层强风与中层急流相耦合形成了非常有利于龙卷的垂直风切变条件。形成开原龙卷的直接系统是一孤立超级单体,具有典型的超级单体雷达回波特征、强中气旋和龙卷涡旋特征等;其由地面干线辐合线与东侧的阵风锋辐合线共同作用触发。该对流风暴前部产生的降水先使得开原及周边地区大气快速饱和、显著改善了大气低层湿度条件,当对流风暴后部钩状回波部分移动到该区域时,有利于其不太强的下沉气流产生强度适宜的冷池,加之边界层强暖湿气流入流、强低层和中层垂直风切变与强烈上升气流的共同作用,从而产生了该次开原龙卷。地面自动站观测温度分布表明,开原龙卷超级单体的冷池与环境大气温度差异在2~4℃时有利于龙卷形成,而当对流风暴的强下沉气流使冷池温差加大到7℃时,不利于近地面垂直涡度维持,导致龙卷消亡。  相似文献   

4.
2013年3月20日广东东莞罕见龙卷冰雹特征及成因分析   总被引:1,自引:0,他引:1  
利用常规观测、NCEP/NCAR再分析、多普勒天气雷达及自动气象站资料等,对2013年3月20日发生在东莞的一次罕见龙卷、冰雹等致灾性强对流天气过程进行分析。结果表明:1)龙卷过境时的单站气压、温度、风向风速与雷雨大风过境时明显不同,前者具有较典型的龙卷特征。2)华南地区高低空强的风随高度增大的垂直变化、上干下湿的位势不稳定层结以及低层高湿、增温为对流天气发展提供了有利的环境条件,冷空气南压和近地面边界层中小尺度辐合系统为其提供了触发机制。3)中等强度的对流有效位能(CAPE)、强的0-6 km深层垂直风切变以及较强的0-1 km低层垂直风切变为龙卷产生提供了可能性。4)龙卷、冰雹强对流风暴的发展加强与近地面边界层中小尺度辐合系统加强有密切关系。5)同时出现冰雹、大风、龙卷时,最强回波为72 dBz;龙卷出现在超级单体的钩状回波附近,更靠近后侧V形缺口;多时次观测到三体散射(TBSS)回波,与降雹对应;反射率垂直剖面图上可见明显的低层弱回波区、中高层回波悬垂,有界弱回波区(BWER)先于龙卷20多分钟出现。径向速度图上,龙卷出现时超级单体风暴同时具有龙卷涡旋特征(TVS)和中气旋特征。  相似文献   

5.
2017年8月1日18:10—18:30受1710号台风"海棠"外围螺旋雨带影响,江苏省淮安市淮安区出现EF1级龙卷。利用常规观测资料、NCEP 1°×1°再分析资料、多普勒雷达资料等,对龙卷过程进行分析。结果显示:龙卷发生在"海棠"残留低压和副高边缘间的东南暖湿急流中,其发生前1h地面出现小尺度涡旋并沿着地面辐合线移动。龙卷影响时,相邻地面自动站观测到气压上升、气温和露点下降、风力明显增大。逐渐增大的对流有效位能、小的对流抑制能量、较大的0~1km垂直风切变、1km以下的抬升凝结高度、干侵入等环境场特征均有利于本次龙卷风暴的生成。淮安多普勒雷达探测到入流缺口、TVS特征、气旋性风场结构。通过垂直螺旋度分析和双多普勒雷达风场反演等方法,发现在龙卷发生前低层环境垂直风切变有利于小尺度涡旋生成,中低层水平风场以辐合为主。当出现龙卷时,气旋式辐合中心下降有利于涡旋触地,龙卷发生地位于低层涡旋移动方向左前侧与1km高度切变线附近。  相似文献   

6.
热带一次致灾龙卷形成物理过程研究   总被引:1,自引:0,他引:1  
王秀明  俞小鼎 《气象学报》2019,77(3):387-404
2016年6月5日海南出现了一个弱风垂直切变背景下的EF2级致灾龙卷。利用海口多普勒天气雷达观测资料、10 min间隔的地面自动气象站观测资料以及风廓线资料,研究了该龙卷风暴的结构、龙卷风暴与龙卷形成的可能物理过程。初始风暴在文昌附近向西传播,而同时海口风暴亦由海风锋触发并向东移动,两风暴下沉气流导致的出流相遇在海风锋辐合线上,触发了龙卷母云体。龙卷初始涡旋在低层两风暴出流相遇的切变辐合线上形成,当初始涡旋与其上方深厚且强烈的上升气流叠置时,拉伸作用加强了垂直涡度,使得龙卷形成。深厚的强上升气流有3个来源:对流风暴的出流边界相遇形成的辐合抬升,环境正浮力造成的对流单体内强上升气流,还可能与中高层强中气旋强迫的扰动低压有关。龙卷形成过程中,中高层强中气旋位于6—9 km高空并向上发展,龙卷初始涡旋先于龙卷母云体出现且比一般微气旋尺度大,伸展至更高的高度,属于非典型中气旋龙卷(或非典型超级单体龙卷)。此次热带强龙卷出现在弱的大尺度系统强迫的天气背景下,水平风垂直切变弱,海风锋、出流边界等边界层β中尺度辐合线边界在龙卷形成过程中可能起决定性作用。   相似文献   

7.
利用常规气象资料、NCEP FNL 1°×1°再分析资料以及卫星雷达资料,对2019年6月17日发生在张家口的一次与线状对流伴随的龙卷天气进行分析。结果表明:(1)龙卷天气发生在对流层中低层高能中心、强垂直风切变以及中层强风速区的环境中。(2)中低层强的正水平螺旋度、低层强辐合与高层强辐散配置为龙卷发生提供了有利的环境条件。(3)在对流不稳定区,边界层辐合线是对流的触发条件,弧状云线的发展加强和上冲云顶的识别分析有利于判断对流云团的发展趋势,对强对流的短临预警有重要参考意义。(4)通过雷达资料与风场反演分析,线状对流中的龙卷是由γ中尺度涡旋在低层强辐合与上升气流的拉伸下形成的。强辐合区主要位于3 km高度以下。  相似文献   

8.
2021年9月8日午后分别有两个EF1级龙卷对内蒙古通辽市科尔沁区左翼中旗、科尔沁区造成严重影响。为深入认识东北冷涡背景下内蒙古东南部平原地带龙卷的形成机理和特征,利用常规观测资料、ECMWF-ERA5的0.25°×0.25°再分析资料、多普勒雷达探测资料等对本次龙卷过程进行分析。结果表明:龙卷发生于东北冷涡底部、低空冷切南部的西南暖湿气流、地面辐合线南侧偏南气流中,龙卷发生前中低层有干空气入侵,增强大气对流不稳定度;较低的抬升凝结高度,低层位温随高度减小,0~3 km有较强的风垂直风切变、强的垂直上升运动,低层存在正垂直螺旋度大值中心,均是龙卷形成的有利条件;辐合线和干线相伴作用共同触发龙卷。通辽多普勒雷达探测出两龙卷钩状回波、入流缺口、有界弱回波区、气旋性风场辐合、中气旋特征;分析雷达数据反演的风场得出,龙卷发生在近地面辐合线附近的偏南气流中,位置在发展阶段钩状回波移向的东南侧、入流缺口附近;龙卷发生前中低层具有气旋性辐合,气旋性辐合中心逐渐下降,垂直方向上具有较强的垂直风切变,呈现低层辐合高层辐散特征;在低层和中低层的辐合中心接近时,龙卷形成并逐渐接地。  相似文献   

9.
单多普勒雷达对一次龙卷过程的观测和分析   总被引:1,自引:1,他引:0  
本文利用泰州S波段多普勒雷达观测资料和探空、地面资料对2013年7月7日发生在江苏高邮的一次龙卷过程进行分析讨论。此次龙卷过程由超级单体风暴引发,环境分析显示高邮地区低层位于急流辐合区,高层位于急流辐散区,有利于对流发展。龙卷发生前具有强对流不稳定度和中等风切变。雷达回波资料分析显示超级单体在成熟阶段出现明显的钩状回波,有界回波区以及悬垂回波的特征。旋转速度最强时,有龙卷产生,之后超级单体进入消亡过程。底层强垂直风切变和垂直速度不均匀分布,有利于激发龙卷天气的发生或者促进龙卷天气的维持发展。  相似文献   

10.
一次龙卷风天气的特征分析   总被引:5,自引:1,他引:4  
利用河南濮阳CINRDA/SB多普勒雷达探测资料,结合常规天气图资料、地面加密自动站资料等,对2009年7月16日发生在河南濮阳的龙卷天气过程进行诊断分析,结果表明:这次龙卷天气过程发生在副热带高压边缘西北侧、低空急流左前方的暖切变线附近;龙卷发生前大气环境具有较大的对流不稳定能量,低层存在大的风垂直切变和丰富的水汽;多普勒雷达反射率因子图上表现为移动的弓形回波北段强烈发展形成钩状回波,龙卷生成于钩状回波弱回波区附近。径向速度图上表现为在大范围入流风场中出现伴有辐合的γ中尺度气旋式涡旋,涡旋进一步发展加强导致其中央龙卷涡旋的产生,产生龙卷风天气。另外,强回波、低回波顶高、低层强垂直风切变都是这次龙卷过程中多普勒雷达产品特征。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

13.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

14.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

15.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

16.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

17.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

18.
正ERRATUM to: Atmospheric and Oceanic Science Letters, 4(2011), 124-130 On page 126 of the printed edition (Issue 2, Volume 4), Fig. 2 was a wrong figure because the contact author made mistake giving the wrong one. The corrected edition has been updated on our website. The editorial office is sincerely sorry for any  相似文献   

19.
20.
Index to Vol.31     
正AN Junling;see LI Ying et al.;(5),1221—1232AN Junling;see QU Yu et al.;(4),787-800AN Junling;see WANG Feng et al.;(6),1331-1342Ania POLOMSKA-HARLICK;see Jieshun ZHU et al.;(4),743-754Baek-Min KIM;see Seong-Joong KIM et al.;(4),863-878BAI Tao;see LI Gang et al.;(1),66-84BAO Qing;see YANG Jing et al.;(5),1147—1156BEI Naifang;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号