首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
基于生态系统的渔业管理的理念已得到广泛认同,但其在海洋牧场建设中的应用仍非常少见。本研究根据2020-2021年在蜈支洲岛海域开展的渔业资源底拖网调查数据,构建了海洋牧场鱼类群落的质量谱模型(SSM),反映了海洋牧场中食物网的复杂结构以及种间相互作用,以评估捕捞对海洋牧场鱼类群落的影响。研究通过对两种管理策略(单物种管理和多物种管理)的模拟,分析特定种类的捕捞死亡系数变化对鱼类群落产生的影响,并利用群落总生物量、质量谱斜率、平均最大质量、平均质量和大型鱼类指数5种群落生态指标监测了鱼类群落的特征状态。单物种管理策略结果显示,蜈支洲岛海洋牧场生态系统呈现下行控制效应,肉食性鱼类对浮游生物食性鱼类存在着强烈的调控作用。捕捞死亡系数变化后,不同物种间竞争捕食等复杂的相互作用会产生营养级联效应。多物种管理策略结果显示,灰海鳗(Muraenesox cinereus)的捕捞死亡系数对群落质量谱斜率影响最大,大头狗母鱼(Trachiocephalus myops)和灰海鳗的捕捞死亡系数对鱼类群落生物量和群落结构及功能的影响最大。研究结果对于保护和维持鱼类群落稳定方面具有重要意义,能够帮助管理者更好...  相似文献   

2.
世界范围内,海洋渔业资源广泛面临着过度捕捞的压力.鱼类的不同生活史特征可表征不同的生活史对策,其变化可揭示鱼类种群对渔业捕捞压力的响应.台湾海峡及其邻近海域的主要渔场30多年来面临着过度捕捞的压力,导致了鱼类群落结构发生改变.本研究分析了该海域51种主要经济鱼类的生态参数,系统研究了其生活史特征及其变化.采用主成分分析法可将51种鱼类分成5个不同的生活史对策组,分组结果表明超过60%的鱼类被归纳入第5组,即近r对策组,且多为中上层鱼类.在此基础上收集相关历史数据,对其中25种经济鱼类进行生活史变化分析,讨论不同鱼类种群对渔业开发的响应.分析结果表明,在长期的渔业开发活动下多数鱼类表现出小型化、低龄化、早熟和生长率加快等趋势.此外,本研究计算了每种鱼类的开发率以进一步研究渔业捕捞压力对鱼类种群的影响,发现其中4种底层和近底层鱼类的生活史特征变化显著,提示某些物种可能对捕捞压力更敏感.本研究可为渔业管理和保护提供重要的科学依据.  相似文献   

3.
为查明黄河口及邻近水域鱼类个体长度的组成。采用2013年6月—2014年5月7个航次的渔业资源底拖网调查数据,分析了该海域鱼类群落的长度谱结构及其季节变化。调查显示:共捕获鱼类50种,在完全选择性长度范围内,全部鱼类群落、底层鱼类群落和暖温性鱼类群落的长度谱变化趋势相似,各长度组内的鱼类尾数随长度的增加呈下降趋势。在相同月份中,底层鱼类群落、暖温性鱼类群落的长度谱斜率和截距与全部鱼类群落的长度谱斜率和截距之间无显著性差异。在黄河口及邻近水域,底层鱼类和暖温性鱼类占优势,在全部鱼类群落结构中起主导作用。不同月份间,全部鱼类群落的长度谱斜率和截距有显著差异。7、8、10月(夏、秋季)的长度谱斜率的绝对值和截距值显著高于其它月份,这与夏、秋季当年生群体大量进入渔业有关,小个体鱼类数量的剧增使长度谱变陡峭、截距值变大。冬季(2月)全部鱼类群落的小个体组以安氏新银鱼为主。春季(5月)鱼类数量较低,长度谱结构简单。研究结果表明,黄河口及邻近水域全部鱼类群落的长度组成表现为小型物种和小个体多,大型物种和大个体少,鱼类种类组成有明显的季节变化,进而影响鱼类群落的长度谱结构。  相似文献   

4.
基于Ecopath模型的七连屿礁栖性生物的生态承载力分析   总被引:1,自引:0,他引:1  
生态承载力评估是开展生物资源增殖放流, 维持珊瑚礁生态系统健康的基础和前提。本文基于2019年渔业资源和生态环境的综合调查数据, 构建了七连屿珊瑚礁海域生态系统的生态通道(Ecopath)模型, 分析和探讨了相关功能组增殖放流的生态承载力。结果显示, 七连屿珊瑚礁海域生态系统各功能群营养级范围为1.00~3.81; 生态系统的总能量转化效率为13.45%; 生态系统以牧食食物链占据主导地位, 直接来源于初级生产者的能流占比为57%。系统总初级生产量/总呼吸量为2.54; 总初级生产量/总生物量为19.07; 系统连接指数和系统杂食性指数分别为0.36和0.22, 表明当前七连屿珊瑚礁海域生态系统的成熟度和稳定性偏低, 系统对于外界的干扰抵抗能力较弱。在未改变七连屿珊瑚礁生态系统结构和功能的前提下, 各功能组中珊瑚、双壳类和植食性鱼类的生态承载力分别为25.09~53.77t•km-2、2.55~39.95t•km-2和4.89~17.94t•km-2, 因此仍具有较大的增殖空间。珊瑚礁鱼类群落的最大生态承载力同珊瑚礁无脊椎动物群落的增殖密切相关, 在未来的珊瑚礁渔业管理中应从生态系统整体结构的角度综合考虑增殖放流的方法设计。  相似文献   

5.
生态模型在渔业管理中的应用   总被引:2,自引:1,他引:1  
随着人们对于海洋生态的认识逐渐深入,渔业等人类活动的影响受到了更多的关注,"基于生态系统的渔业管理"(EBFM)这一概念被越来越多的研究者和国际组织所接受。生态模型为EBFM的实践提供了科学的评估方法和技术工具。与单鱼种评估模型相比,生态模型更多地考虑了系统内的各种生态过程和作用机制,栖息地等环境条件的变化,以及生态系统整体的结构和功能等,依此来反映生态系统的动态变化。由于生态模型是多样化的,关注和涉及不同的目标对象、机制过程、模型结构和参数,本文按照生态模型所关注的生态层次和组分将其分为多物种模型、群落结构模型和生态系统模型3个类型,分析了各类模型的优劣点。本文进一步阐述了生态模型在渔业管理中的应用领域,以管理策略评估为中心的应用方式,以及实践中模型选择和构建所需要注意的问题,还探讨了生态模型中降低不确定性和提高预测能力的方法。  相似文献   

6.
美国当前的渔业管理强调地方的参与、管理与科学技术的紧密结合以及区域的机动性,这些都是可取的。然而,在过去的三十年由于过度捕捞和栖息地退化,对生态系统和鱼类群落有着很大的负面影响。为实现渔业长期的可持续发展,实现社会效益和经济效益的最大化,本着保证海洋生物资源为  相似文献   

7.
核电站冷却水系统对渔业资源影响评估的建模   总被引:4,自引:0,他引:4  
分析了核电站对周围环境中水生生物的影响,在卷吸率和死亡率的测算基础上,提出一种评价核电站对邻近水域渔业资源的影响模型,即把核电站卷吸作用对淦业资源的影响假设为捕捞作用。采用股群分析,由已知的捕捞死亡率和渔获量反求鱼类自然死亡率和群体中成鱼个体数目,进而评价核电站对渔业生态资源的影响。  相似文献   

8.
胃含物分析样本数量对生态系统指标估计的影响   总被引:1,自引:0,他引:1  
本研究应用在胶州湾构建的Ecopath生态系统模型,评估了在模型构建过程中,3种鱼类胃含物分析不同样本数量获得的食性数据对模型输出结果的影响。该模型的生态系统指标被分为3种类别:(1)直接指标,如物种营养级等被胃含物分析样本量直接影响的指标;(2)间接指标,如无脊椎生物生态效率(Ecology efficiency, EE)等受营养关系影响的指标;(3)系统指标,如系统总流量(TST)等用来描述整个生态系统的指标。本研究评估了不同的胃含物分析数量对这些指标的影响。结果表明生态系统模型的系统指标最为稳健,受胃含物分析样本数量的影响最低,而与物种直接相关的指标则在胃含物分析样本量较低时准确度较低。当更多的鱼类胃含物分析数量降低时,生态系统指标的不确定性会增加。本研究有助于理解食性信息的质量如何影响生态系统模型输出,同时可以指导为生态模型构建而进行的胃含物分析实验设计。  相似文献   

9.
鱼类群落是水域生态系统内生产力动态的重要输出成分,也是当今以生态系统多样性为核心的生物多样性研究的主要内容。分析鱼类群落结构,通常采用描述自然群落多样性综合指数,如物种数、生态密度和群落多样性结构指数(朱鑫华等,1994a, Washington,1984),或通过多元统计分析的方法,比较群落内生物因素的时空格局动态特征及其与非生物环境参数的相关性(朱鑫华等,1994b; Ardisson et al.,1990)、优势种代表站区和主成分鱼种空间分布特征(周建魁,1984;徐青,1988)。本文运用多元统计分析中的因子分析法,解析渤海鱼类群落指标——全部鱼种个体数生态密度(NED)时空分布格局特征,旨在探讨鱼类群落时空格局易变性和稳定性,以解释増殖水域群落结构特征、多鱼种种间关系及其鱼种生态栖息地利用间的相互关系(Ulanowicz and Platt,1985),这一问题已成为当前生物群落动力学研究的热点问题(Diamond and Case,1986, Morris,1987)。  相似文献   

10.
捕捞压力在改变南海鱼类种类演替和生物量波动方面所起的作用大于气候和环境因素是一个普遍的、有争议的假设。根据1959~2010年南海北部北部湾口底拖网的调查数据,报告了该海域鱼类种类组成、优势类群的丰度比例、生物量的季节和年际变化。建立了鱼类生物量与捕捞压力和气候变化外部因素之间的广义加性模型。结果表明,捕捞压力驱动底层渔业资源急剧下降的主要因素,并随着时间的推移,高值鱼类被低值鱼类所取代。1993年和1998年期间鱼类生物量的突然减少与同期厄尔尼诺事件相对应,气候变化可能是渔业拖网捕捞中中上层鱼类比例变化的主要驱动因素。为了更好地了解鱼类群落动态,需要区分捕捞压力和环境驱动因素对不同生活史策略鱼类物种的影响。  相似文献   

11.
The size-spectrum model has been considered a useful tool for understanding the structures of marine ecosystems and examining management implications for fisheries. Based on Chinese tuna longline observer data from the central and eastern tropical Pacific Ocean and published data, we developed and calibrated a multispecies size-spectrum model of twenty common and commercially important species in this area. We then use the model to project the status of the species from 2016 to 2050 under five c...  相似文献   

12.
Seasonal fishing closures are often used in fisheries management to conserve overfished stocks.As one of the unintended consequences,fishermen often contend for maximizing catches immediately after reopening fisheries.The resultant large catch landings in a short time period(i.e.,pulse fishing)may undermine the benefit of closure.We implemented an end-to-end model OSMOSE-JZB(Object-oriented Simulator of Marine ec OSystem Exploitation OSMOSE)modelling ecosystem in the Jiaozhou Bay located in China to evaluate the impact of pulse fishing on the effectiveness of seasonal closure at levels of fish community,population,and individual.Our study demonstrated that the three-month closure was successful in conserving fish stocks.There were small variations on ecological indicators(i.e.,total biomass of the community,mean trophic level of the community,mean trophic level of the catch,and Shannon-Wiener biodiversity index)when pulse fishing occurred.Pulse fishing seemed not to result in a great shift in community structure.Compared to other species,the biomass of two large predatory fishes were more susceptible to pulse fishing.Pulse fishing could change the pressure of predators to fish stocks via food webs,especially for young individuals.Our simulations indicate that we can improve the effectiveness of seasonal closure by managing pulse fishing.Although the results derived in this study may be specific to the target ecosystem,the general approach is applicable to other ecosystems when evaluating fishing impacts.  相似文献   

13.
Implementing ecosystem based fisheries management (EBFM) will require a suite of ecological indices to track the state of an ecosystem, in addition to monitoring species-abundance for both economically important species, as well as species that are not targeted for harvest. However, EBFM implementation requires an examination of current methods and applications of ecological indices that are being used. This paper identifies four key uses for ecosystem indices in the context of EBFM and discusses the implications of each: (1) motivation for socio-political action, (2) information for individual users to modify their behavior, (3) implementation of decision rules for management evaluation, and (4) discovery of ecosystem functions to advance scientific knowledge. In a fisheries management context, ecological indicators will be linked to decision rules based on the definitions of both “ecosystem overfishing” and the current single-species definitions of overfishing. Two components of common ecological indicators are species weightings (i.e. catch or abundance data by species) and the species-specific ecological attributes (e.g. mortality rates, body size, trophic level). We discuss statistical issues that arise from estimating the parameters in ecological index calculations from both fishery-dependent and independent data and the potential biases introduced by using catch-per-unit-effort (CPUE) data, catch data, and abundance estimates. Given the range of biases that arise, often the best estimates of species weightings (abundances) are those derived from fish stock assessments. This implies that progress in EBFM may be best served by increasing the number of species for which single-species assessments are done and to expand the list of species to include species which may not be economically important. The policy framework exists to carry out EBFM; however, future works needs to focus on empirical management strategy simulations, as well as theoretical works to identify management criteria based on those indicators.  相似文献   

14.
Fisheries management in European waters is gradually moving from a single-species perspective towards a more holistic ecosystem approach to management (EAM), acknowledging the need to take all ecosystem components into account. Prerequisite within an EAM is the need for management processes that directly influence the ecological effects of fishing, such as the mortality of target and non-target species. Up until recently, placing limits on the quantities of fish that can be landed, through the imposition of annual total allowable catches (TACs) for the target species, has been the principal management mechanism employed. However, pressure on non-target components of marine ecosystems is more closely linked to prevailing levels of fishing activity, so only if TACs are closely related to subsequent fishing effort will TAC management serve to control the broader ecosystem impacts of fishing. We show that in the mixed fisheries that characterise the North Sea, the linkage between variation in TAC and the resulting fishing effort is in fact generally weak. Reliance solely on TACs to regulate fishing activity is therefore unlikely to mitigate the impacts of fishing on non-target species. Consequently, we conclude that the relationship between TACs and effort is insufficient for TACs to be used as the principal management tool within an EAM. The implications, and some alternatives, for fisheries management are discussed.  相似文献   

15.
厦门海域渔业资源评估   总被引:7,自引:0,他引:7  
以初级生产力和渔业统计资料为材 ,分别应用Tait沿岸海域生态系能流分析法、营养动态法和Cushing等 3种模式 ,估算厦门沿岸海域的渔业资源自然生产量。同时 ,分别应用Schaefer和Fox两种剩余产量模式估算最大持续产量和最大持续捕捞力量。前 3种模式估算该海域的资源生产量分别为 2 0 1 0 5t,1 8463t和 1 7489t,平均 1 8686t。后两种模式估算最大持续产量平均值分别为 9639t和 91 0 4t。估算的最大持续捕捞力量 :5种作业综合总功率为 1 5976kW ;以厦门机定置渔船单位功率渔捞效率为标准估算的总功率为 2 7351kW ;以厦门机刺网渔船单位功率渔捞效率为标准估算的总功率为 432 1 3kW。 1 997年实际渔获量和捕捞力量均超过了估算的最大持续产量和最大持续捕捞力量。文中还讨论了捕捞力量的调整问题。  相似文献   

16.
This paper presents an original size-structured mathematical model of the energy flow through marine ecosystems, based on established ecological and physiological processes and mass conservation principles. The model is based on a nonlocal partial differential equation which represents the transfer of energy in both time and body weight (size) in marine ecosystems. The processes taken into account include size-based opportunistic trophic interactions, competition for food, allocation of energy between growth and reproduction, somatic and maturity maintenance, predatory and starvation mortality. All the physiological rates are temperature-dependent. The physiological bases of the model are derived from the dynamic energy budget theory. The model outputs the dynamic size-spectrum of marine ecosystems in term of energy content per weight class as well as many other size-dependent diagnostic variables such as growth rate, egg production or predation mortality.In stable environmental conditions and using a reference set of parameters derived from empirical studies, the model converges toward a stationary linear log–log size-spectrum with a slope equal to −1.06, which is consistent with the values reported in empirical studies. In some cases, the distribution of the largest sizes departs from the stationary linear solution and is slightly curved downward. A sensitivity analysis to the parameters is conducted systematically. It shows that the stationary size-spectrum is not very sensitive to the parameters of the model. Numerical simulations of the effects of temperature and primary production variability on marine ecosystems size-spectra are provided in a companion paper [Maury, O., Shin, Y.-J., Faugeras, B., Ben Ari, T., Marsac, F., 2007. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: simulations. Progress in Oceanography, doi:10.1016/j.pocean.2007.05.001].  相似文献   

17.
Management of tropical reef ecosystems under pressure from terrestrial and extractive marine activities is not straightforward, especially when the interests of extractive and non-extractive marine resource sectors compete. Before implementing management actions, potential outcomes of alternative management strategies can be evaluated in order to avoid adverse or unintended consequences. In tropical reef ecosystems the continued existence of the cultural and recreational fishing activities and the economically important dive-based tourism and recreation industry rest on sustainably managed marine resources. Through a case study of Guam, an ecosystem model was linked with human behavior models for participation in fishing and diving to evaluate future socio-ecological impacts of different management options. Ecosystem indices for reef status and resilience, and extraction potential were identified to evaluate the performance of alternative management scenarios. These marine ecosystem indices link the natural system to human uses (fishing and dive-based tourism and recreation). Evaluating management scenarios indicate that applying a single management tool, such as input controls or marine preserves, without also managing the watershed, is suboptimal. Combining different management tools has negative near-term costs, particularly for the fishing sector, but these are likely to be outweighed by the long-term benefits obtained from greater species abundance. Adopting watershed management measures in addition to fishery regulations distributes the burden for improving the reef status across multiple sectors that contribute to reef pressures.  相似文献   

18.
Tropical small-scale fisheries are highly heterogeneous with respect to a wide range of fisheries characteristics, but that heterogeneity has generally not been adequately studied or considered in management. This study investigated fisheries heterogeneity and the extent to which it is accounted for in management regulations in eight small-scale fishing communities located in floodplain ecosystems of the Amazon basin. Analyses of 29,844 fishery landing interview data revealed that fisheries heterogeneity with respect to gear, habitat, species composition, and total catch and fishing effort was high across all communities, but low over the years in the same communities, indicating that each community must be considered as a distinct management unit. Data analyses also revealed that many important community fisheries characteristics were not accounted for by government- and community-based management regulations. Total catch and fishing effort were largely unregulated; there were no size or closed season limits for one-third of the most important fishery species; and the nursery habitats used by most fishery species were not protected in any fashion. Clearly, increased attention to cross-community fisheries heterogeneity can improve the design and implementation of management regulations. The management problems created by the heterogeneity of small-scale fisheries are discussed, and the potential of the “barefoot ecologist” concept to address them is considered.  相似文献   

19.
In an ecosystem-based resource management context, it is crucial to assess the relationships between community structure and ecosystem function and how those relationships change with resource extraction. To elucidate how changes in resource use can affect community structure and ecosystem function, we executed a comparative analysis of two different ecosystems subjected to notable fishing pressure. We contrasted the Northern Adriatic Sea (NAS) and Southern New England (SNE) ecosystems by examining outputs from comparable steady-state models. Both ecosystems have relatively high fishing pressure and a high biomass of benthic invertebrates. The basic structure of the food webs shows differences both in the number and definition of the functional groups, as described in the models. Fisheries, on the contrary, show similarities both in terms of catches and discards. Almost all statistics summarizing the structure and flows showed values three times higher in the SNE than in the NAS ecosystem, but despite this difference the two ecosystems exhibited similar, overall properties. Biomass ratios and the Mixed Trophic Impact (MTI) analysis showed that both ecosystems are dominated by the benthic compartment. Removing the biomass effect, however, shows a clear top-down effect, with a high rank achieved by fishing activities. In general terms, the low mean trophic level of catches and the high primary production required (PPR) values result in a high overexploitation level of the ecosystem, as highlighted by the L index. We conclude by exploring how comparative studies will continue to be valuable as ecosystem-based management is further implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号