首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Nd, O and Sr isotopic characteristics of Precambrian metasedimentary, metavolcanic and granitic rocks from the Black Hills of South Dakota are examined. Two late-Archean granites (2.5-2.6 Ga) have Tdm ages of 3.05 and 3.30 Ga, suggesting that at least one of the granites was derived through the melting of significantly older crust. Early-Proterozoic metasedimentary rocks have Tdm ages that range from 2.32 to 2.45 Ga. These model ages, in conjunction with probable stratigraphic ages ranging from 1.9 to 2.2 Ga, indicate that mantle-derived material was added to the continental crust of this region during the early-Proterozoic. Previous studies of the Harney Peak Granite complex have reported U-Pb and Rb-Sr ages of about 1.71 Ga and most granite samples examined in this study have Sr isotopic compositions consistent with that age. Two granite samples taken from the same sill, however, give two-point Rb-Sr and Sm-Nd ages of 2.08 ±0.08 and 2.20 ±0.20 Ga (∑2200Nd = −15.5), respectively. In addition, whole-rock and apatite samples of the spatially associated Tin Mountain pegmatite give a Sm-Nd isochron age of 2000 ±100 Ma (∑2200Nd = −5.8 ±1.8).

The Sm-Nd, O and Rb-Sr isotopic systematics of these granitic rocks have been complicated to some degree by both crystallization and post-crystallization processes, and the age of the pegmatite and parts of the Harney Peak Granite complex remain uncertain. Processes that probably complicated the isotopic systematics of these rocks include derivation from heterogeneous source material, assimilation, mixing of REE between granite and country rock during crystallization via a fluid phase and post-crystallization mobility of Sr. The Nd isotopic compositions of the pegmatite and the Harney Peak Granite indicate that they were not derived primarily from the exposed metasedimentary rocks.  相似文献   


2.
The Proterozoic terrane of the Black Hills, South Dakota, includes the composite Harney Peak leucogranite and associated pegmatites that were emplaced into metamorphosed pelites and graywackes. Available dates indicate that granite generation post-dated regional metamorphism and deformation that have been attributed to collision of the Wyoming and Superior cratons at 1760 Ma. Previous radiogenic and stable isotope work indicates that the exposed metasedimentary rocks are equivalent to sources of the leucogranites. In this study, whole rock and mineral compositions of the metasedimentary rocks were used to calculate the likely average residue mineralogies and melt fractions that would be generated by muscovite dehydration melting of the rocks. These were then used to model observed trace element compositions of the granites using published mineral/melt distribution coefficients. Model trace element melt compositions using pelitic and graywacke protoliths yield similar results.

The models reproduce well the observed depletion of transition metals and Ba in the granites relative to metasedimentary protoliths. The depletion is due mainly to high proportion of biotite with variable amounts of K-feldspar in the model residue. Sr is also depleted in the granites compared to source rocks, but to a lesser relative extent than Ba. This is because of the low biotite/melt distribution coefficient for Sr and because high proportion of plagioclase in the residue is compensated by high Sr concentrations in protoliths. Rubidium, Cs and Ta behaved as slightly compatible to incompatible elements, and therefore, were not strongly fractionated during melting. Of the considered elements, only B appears to have been highly incompatible relative to residue during melting. The protoliths had sufficient B to allow tourmaline crystallization in those parts of the Harney Peak Granite in which Ti concentration was sufficiently low not to enhance crystallization of biotite.

The reproducibility of observed trace element concentrations in the Harney Peak Granite by the models supports the often made proposition that metapelites and metagraywackes are common sources for leucogranites. This argues against mass input from the mantle into metagraywacke and metapelitic crustal sources or melting of amphibolites to generate the post-collisional Harney Peak and other similar peraluminous granite suites.  相似文献   


3.
An initial phase of an extensive geochemical study of pegmatites from the Black Hills, South Dakota, indicates potassium feldspar composition is useful in interpreting petrogenetic relationships among pegmatites and among pegmatite zones within a single pegmatite. The KRb and RbSr ratios and Li and Cs contents of the feldspars within each zoned pegmatite, to a first approximation, are consistent with the simple fractional crystallization of the potassium feldspar from a silicate melt from the wall zone to the core of the pegmatites. Some trace element characteristics (i.e. Cs) have been modified by subsolidus reequilibration of the feldspars with late-stage residual fluid.KRb ratios of the potassium feldspar appear to be diagnostic of the pegmatite mineral assemblage. The relationship between KRb and mineralogy is as follows: Harney Peak Granite (barren pegmatites) > 180; Li-Fe-Mn phosphate-bearing pegmatites = 90?50; spodumene-bearing pegmatites = 60?40; pollucitebearing pegmatites < 30. Although the KRb ratios suggest that the pegmatites studied are genetically related by fractional crystallization to each other and the Harney Peak Granite, overlapping RbSr ratios and the general increase in Sr and Ba with decreasing KRb indicate the genetic relationship is much more complex and may also be dependent upon slight variations in source (chemistry and mineralogy) material composition and degrees of partial melting.  相似文献   

4.
The Banke and Ririwai complexes have plutonic phases of igneous activity composed mainly of granitic rocks. These granitic ring complexes are associated with Sn-Nb mineralization and are characterized by high Li, F and Rb contents and Rb/Sr ratios, and low Ba and Sr contents and Ba/Rb ratios. — The altered and mineralized granites have variable Rb/Sr and Ba/Rb ratios differing significantly from those of fresh rocks. These ratios as well as the Li, F and Rb concentrations are good indicators of granitic rocks associated with postmagmatic alteration and mineralization providing valuable tools for Sn-Nb exploration within the Nigerian Younger Granite province.  相似文献   

5.
Trace element modelling of pelite-derived granites   总被引:25,自引:0,他引:25  
The presence or absence of a vapour phase during incongruent-melt reactions of muscovite and biotite together with the composition of the protolith determines the trace-element characteristics of the resulting melt, provided that equilibrium melting occurs for those phases that host the tracc elements of interest. For granitic melts, Rb, Sr and Ba provide critical constraints on the conditions that prevailed during melting, whereas REE are primarily controlled by accessory phase behaviour. Mass-balance constraints for eutectic granites that are formed by the incongruent melting of muscovite in pelites indicate that melting in the presence of a vapour phase will result in a large melt fraction, and deplete the restite in feldspar. Hence the melt will be characterized by low Rb/Sr and high Sr/Ba ratios. In contrast, vapour-absent melting will result in a smaller melt fraction, and an increase in the restitic feldspar. Consequently high Rb/Sr and low Sr/Ba ratios are predicted. Vapour-absent melting will also enhance the negative Eu anomaly in the melt. Granites that result from the incongruent melting of biotite in the source will be characterized by higher Rb concentrations than those that result from the incongruent melting of muscovite. The Himalayan leucogranites provide an example of unfractionated, crustally derived eutectic melts that are enriched in Rb but depleted in Sr and Ba relative to their metasedimentary protoliths. These compositions may be generated by the incongruent melting of muscovite as a low melt fraction (F0.1) from a pelitic source under vapour-absent conditions.  相似文献   

6.
The distribution of Ba, Rb and Sr during crystallization of a granitic melt is examined in a number of theoretical models. The modes of crystallization considered are perfect fractional crystallization, perfect equilibrium crystallization, and an intermediate mode, incremental equilibrium crystallization. The effect of the degree of separation of cumulus minerals from melt during crystallization is also considered. Perfect fractional and incremental equilibrium crystallization (with small increments) are broadly similar, but differ in the final stages of crystallization in that the latter mode defines a finite trace element composition for the last solid. The effect of intercumulus melt in both modes of crystallization imparts a ‘liquid’ character to the solids, and suppresses the degree of enrichment of Rb and depletion of Ba and Sr in late solids and melts.Examination of trace element data for the Acid Phase of the Bushveld Igneous Complex in the light of these models suggests that these granites represent a suite of cumulate rocks, containing relatively large amounts of intercumulus melt.  相似文献   

7.
The geochemistry of K‐feldspar for K, P, Sr, Ba, Rb, Cs, Ga, and of muscovite for the same elements plus Nb and Ta, was used for proving the parental relationships of S‐type granites and LCT (Li, Cs, Ta) rare‐element pegmatites in the southernmost pegmatitic field of the Pampean pegmatite province in Argentina. The variation of K/Rb‐Cs, K/Cs‐Rb, K/Rb‐Rb/Sr, K/Rb‐Ba in K‐feldspar from the granites and pegmatites show that they form an association with the evolutional sequence: granites → barren‐ to transitional pegmatites → beryl type, beryl‐columbite‐phosphate pegmatites → complex type of spodumene subtype pegmatites → albite‐spodumene type → albite type pegmatites. This sequence reflects the regional distribution of the different magmatic units. The Ta‐Cs diagram for muscovite reveals that none of the studied pegmatites exceed the threshold established in previous studies for being considered with important tantalum oxide mineralization. The granites and pegmatites constitute a rare‐element pegmatitic field in which different magmatic units form a continuous fractionation trend, extended from the less evolved granitic facies to the most geochemically specialized pegmatites  相似文献   

8.
湖南仁里稀有金属矿田是中国近年来新发现的一处重要的花岗伟晶岩型铌、钽、锂等稀有金属矿产地,文章针对矿田含锂伟晶岩地球化学特征、成矿时代及其与花岗岩的关系,选取传梓源锂铌钽矿床内规模最大的206号锂辉石伟晶岩脉开展地球化学和白云母Ar-Ar定年工作,并与区内其他伟晶岩、花岗岩的地球化学特征、成岩时代对比分析.传梓源206号锂辉石伟晶岩属高分异稀有金属伟晶岩,形成时代为(135.4±1.4)Ma,岩石地球化学表现为高硅、高铝、低钙、相对富碱、钙碱性及过铝质特征;稀土元素总量很低,以轻稀土元素为主;微量元素富集Cs、Rb、U、Ta、Nb、Zr、Hf,相对亏损Ba、Ti,Zr/Hf、Nb/Ta比值低且集中.幕阜山地区稀有金属成矿可分为2期:第1期稀有金属成矿时代约145 Ma,与燕山早期岩浆活动有关;第2期稀有金属成矿时代135~125 Ma,为主成矿期,该期稀有金属伟晶岩与燕山晚期的二云母二长花岗岩存在成因联系,两者为同源岩浆连续结晶分异过程中不同阶段的产物.稀有金属富集成矿经历了岩浆-热液两阶段作用,Be、Nb、Ta、Li、Rb、Cs等稀有元素的富集多发生于岩浆结晶分异晚期,热液作用使Ta、Li、Rb、Cs再次富集.  相似文献   

9.
稀有金属矿产对现代工业和科技的发展极其重要,伟晶岩矿床作为稀有金属的主要来源,其成因与成矿作用有待深入研究,普遍争论的成因模式包括:花岗岩结晶分异、地壳部分熔融以及岩浆液态不混溶。研究表明地壳深熔过程中锂同位素不发生有意义的分馏,因此在解决花岗岩和伟晶岩的岩浆源区性质方面提供了强有力的证据。文章主要从花岗伟晶岩的成因、锂同位素分馏机制以及锂同位素在伟晶岩矿床中的应用三个方面系统综述了国内外近年来取得的一些研究进展。国内外学者以锂同位素分馏机制详细论述了花岗伟晶岩的Li同位素组成,认为伟晶岩矿床的成因主要为花岗岩结晶分异或地壳部分熔融。但是锂同位素应用于伟晶岩矿床成因方面的研究还不够成熟,需要开展更多的工作。  相似文献   

10.
本文综述了伟晶岩结晶动力学、热力学和伟晶岩熔体稀有金属元素实现超常富集成矿的机制。结晶动力学涉及成核动力学和晶体生长动力学两个方面。低成核速率和高晶体生长速率是伟晶岩结晶动力学的重要特征,在结晶过程受到水、助溶剂以及过冷条件三个因素共同制约。伟晶岩熔体的相态(超临界态)可能在伟晶岩形成和稀有金属元素超常富集中扮演重要角色。花岗伟晶岩稀有金属超常富集程度受到岩浆源区成分、岩浆结晶分异过程与熔体化学成分等因素的控制。花岗质岩浆高度分异结晶或者变质沉积岩部分熔融直接形成的成矿伟晶岩熔体均需要源岩中稀有金属元素预富集。深熔作用产生的低程度、小体积的伟晶岩熔体具有更高的稀有金属元素成矿潜力。在岩浆分异演化过程中,稀有金属元素的超常富集主要通过超临界熔体/流体、岩浆熔体作用、过冷作用实现。超临界熔体/流体发生熔体- 流体不混溶作用使稀有金属元素在熔体相和流体相间再分配和富集;岩浆熔离作用使稀有金属元素选择性分配到富挥发分的熔体中,导致稀有金属元素再次富集;过冷作用降低稀有金属矿物结晶的饱和浓度,促进稀有金属矿物结晶。熔体的化学成分(如挥发分)直接影响熔体的物理、化学性质。例如,挥发分的富集能够降低熔体黏度,促进岩浆分异结晶过程。挥发分和稀有金属元素的亲和性也控制稀有金属元素在不同相熔体中的分配和富集,显著增加稀有金属元素的溶解度和迁移富集能力,有助于伟晶岩中稀有金属超常富集和成矿。  相似文献   

11.
铜绿山Fe-Cu(Au)矿床是长江中下游铁铜成矿带最重要的矽卡岩型矿床之一,矿床的形成与铜绿山石英闪长岩岩株有关.矿区东南部发育有花岗伟晶岩,其形成时间介于石英闪长岩和矽卡岩之间.花岗伟晶岩主要由钾长石、斜长石和石英组成;由石英和钾长石组成的文象结构非常发育.激光阶段加热40Ar/39Ar定年表明,花岗伟晶岩的侵位时间为136.5±0.7 Ma(2σ),与石英闪长岩的侵位时代和铜绿山矿床的成矿时代完全一致. 铜绿山石英闪长岩与花岗伟晶岩的钾长石具有非常相似的主量元素,平均组成分别为Or81Ab18和Or78Ab21.根据岩相学观察和地球化学分析认为,花岗伟晶岩中的文象结构是在快速冷却体系条件下、钾长石晶体生长边界层的SiO2和Al2O3浓度因生长不平衡发生周期性变化而导致石英和钾长石交替生长形成的.铜绿山石英闪长岩和花岗伟晶岩中钾长石的大离子亲石元素(LILE)含量均较高,但与前者相比,花岗伟晶岩中钾长石的Rb、Pb含量明显增加,Ba、Sr含量显著降低,Li、Cs含量略微降低.大离子亲石元素图解(Rb-Ba、La-Ba、K/Ba-Ba、Rb/Sr-Ba)指示花岗伟晶岩是铜绿山石英闪长岩岩浆晚期高度结晶分异演化的结果.但花岗伟晶岩钾长石中Pb、Li、Ga等元素的变化却与岩浆结晶分异演化趋势相悖,表明流体作用在花岗伟晶岩的形成过程中扮演了重要角色.花岗伟晶岩中的石英发育大量熔融包裹体和高盐度流体包裹体,后者的均一温度为260~435 ℃,进一步证实花岗伟晶岩是从流体-熔体共存体系中结晶的.   相似文献   

12.
周晋捷  吕正航  刘堃  唐勇  张辉 《地质学报》2024,98(5):1507-1526
本文以新疆阿尔泰切木尔切克地区的混合岩和伟晶岩为例,开展区内混合岩、伟晶岩与周围的变沉积岩(二云母片岩)的野外地质、全岩地球化学以及云母类矿物化学组成研究,目的在于揭示深熔作用形成的熔体中稀有金属富集特征。研究结果显示,阿尔泰切木尔切克地区的伟晶岩与混合岩中浅色体有相似的矿物组合和主要化学组成,且伟晶岩与暗色体呈互补的微量元素组成,表明切木尔切克伟晶岩为变沉积岩深熔成因。从二云母片岩到混合岩中浅色体和伟晶岩,白云母中Li、Be、Nb、Ta、Rb、Cs显示增加趋势,表明深熔作用形成浅色体及其汇聚成伟晶岩脉过程中可促进稀有金属的富集,尤其是Be和Ta,富集程度达3倍以上。低温条件下白云母脱水熔融,导致黑云母作为残留相,明显制约Li、Rb、Cs等稀有金属在熔体中的富集,但对Be的影响非常有限。结合阿尔泰伟晶岩广泛的Be成矿作用,推断阿尔泰伟晶岩很可能是深熔成因的。  相似文献   

13.
Prosperous granite (Rb-Sr 2520±25 Ma) occurs as several plutons (1–380 km2 outcrop area) in a thick succession of metamorphosed greywacke-mudstone of the Yellowknife Supergroup. The average mineral content of the Sparrow pluton (in vol.%) is quartz (32), plagioclase (31), K-feldspar (24), muscovite (9), biotite (3), and apatite (<1). Average trace-element concentrations (in ppm) are Li (140), Be (4), B (28), Zn (47), Rb (250), Sr (76), Zr (75) and Ba (360). The central portion of the pluton is slightly richer in K, Sr, and Ba than the margin. Li is concentrated in mica (Li in biotite/Li in muscovite=4.7), and Be and B in muscovite and plagioclase. Countless pegmatite dikes occur in the Sparrow pluton and in schist-hornfels to the east; the outer limit is marked by the cordierite isograd, 9 km from the granite contact. Dikes vary greatly in size (1 km to a few cm in length), in mineral content (quartz, albite, K-feldspar, muscovite, tourmaline, beryl, spodumene), in major element composition (especially the NaK ratio), and in trace-element content (Li 18–5000 ppm, Be 5–260 ppm, B 20–150 ppm). Compared with Prosperous granite, the pegmatite bodies are richer in P and Rb, and poorer in Ti, Fe, Mg, Zr, and Ba. Dikes rich in tourmaline, beryl, and spodumene occur in overlapping zones situated progressively farther from the centre of the Sparrow pluton. The composition of tourmaline is related to host rock; the highest concentrations of Fe and Zn occur in crystals from pegmetite and the highest concentrations of Mg and V occur in crystals from tourmalinized schist, while those from granite and quartz veins occupy on intermediate position. Complex compositional zoning is present in some tourmaline crystals in pegmatite. Estimates of temperature (500°–600° C) and pressure (2–4 kb) of granite emplacement, based on the distribution of andalusite and sillimanite in the contact rocks, suggest that the final stage of granite emplacement occurred at sub-solidus conditions. A vaportransport model is proposed to explain the widespread distribution of the pegmatite dikes and their extreme compositional variability. Some of the pegmatite constituents, including Li, Be, and B, were possibly derived from Yellowknife graywacke and mudstone.  相似文献   

14.
A change in the liquidus mineralogy from plagioclase-quartz-biotite to plagioclase-quartz-K feldspar-biotite during the in situ fractional crystallization of a granitic magma has a marked effect on the abundance of and interrelationships between Ba, Rb, Sr, K2O and Na2O. During plagioclase fractionation, Ba and Rb enrich in successive solids and melt, while Sr is depleted. The K2O content of the solid phase (around 1%) is very different from that of the melt (greater than about 3%) while Na2O contents are similar (about 4–5%) so that variations in the amount of intercumulus melt result in wide variation in the Na2O/K2O ratio (from about 5 in cumulus-rich to about 1 in intercumulus-rich samples). The incoming of K feldspar as a cumulus phase causes Ba to be depleted along with Sr in successively formed solids, while Rb continues to be enriched. A pronounced compositional hiatus with respect to trace elements therefore results. The K2O and Na2O contents of melt and cumulate are now similar (around 5% K2O and 4% Na2O), so that little scatter in Na2O/K2O ratio (around 1) occurs as a result of variation in the amount of intercumulus melt. In general, trace element data from a natural example in the Barberton Mountain Land, South Africa, fit the models well, although the observed scatter of the data is somewhat greater than predicted by simple variation in cumulus-intercumulus proportions—possibly the result of the non-uniform distribution of biotite in the samples.  相似文献   

15.
西昆仑大红柳滩地区相继发现了众多伟晶岩型锂铍矿床,已成为我国新的锂资源基地。目前关于这些锂铍花岗伟晶岩的成因多强调其源于地壳深熔形成的二云母二长花岗岩的结晶分异,但研究区出露的同时代的黑云母花岗岩与成矿的关系没有被讨论和关注。为了探讨黑云母花岗岩与成矿的关系,作者对龙门山矿区黑云母花岗岩、二云母二长花岗岩、花岗伟晶岩以及与成矿相关的细晶花岗岩开展了详细的地球化学及年代学研究。结果显示:1)黑云母花岗岩与二云母二长花岗岩具相似的地球化学特征,富集Rb、La和Nd,亏损Ba、Nb、Sr、P和Ti元素,均表现出S型花岗岩的特征;2)从黑云母花岗岩→二云母二长花岗岩→细晶花岗岩,表现出连续分异演化的特征;3)黑云母花岗岩的锆石LA-ICP-MS U-Pb年龄为216.8±0.85Ma,二云母二长花岗岩的锆石SIMS U-Pb年龄为216.0±1.5Ma,细晶花岗岩的锆石LA-ICP-MS U-Pb年龄为209.5±1.2Ma,花岗伟晶岩的锡石LA-MC-ICP-MS U-Pb年龄为211.3±5.0Ma,这意味着从黑云母花岗岩到二云母二长花岗岩与细晶花岗岩的形成时间是连续的并且是接近的。基于此...  相似文献   

16.
The extent of fractionation of Rb and Sr is routinely used in petrogenetic modelling of igneous processes, including internal fractionation of individual pegmatites as well as large-scale evolution of pegmatite groups and fields. However, highly evolved granitic pegmatites may contain as much as 14000 ppm Rb and less than 150 ppm Sr. The total Sr in K-feldspar and micas from geologically old and Rb-rich pegmatites may consist predominantly of radiogenic 87Sr, which obscures the original relationship of Rb to common Sr at the time of crystallization. A subtraction of radiogenic 87Sr calculated from the Rb content and age of emplacement is possible, but it commonly results in negative concentrations of Sr. The relative immobility of Rb, analytically determined isotopic composition of Sr, apparent ages of the Rb, Sr-bearing minerals, high concentration of 87Sr in coexisting Rb-poor phases, and experimental evidence indicate that post-crystallization migration of radiogenic 87Sr is significant. Where isotopic data are not available, RbSr trends in geologically old and highly fractionated pegmatites are misleading and cannot be used for geochemical interpretation of pegmatite derivation or evolution.  相似文献   

17.
The South Mountain Batholith (SMB) of southwestern Nova Scotia (Canada) is a Late Devonian (~375 Ma) composite intrusion, which crops over an area of about 7,300 km2. This peraluminous granitoid body consists of rocks ranging from granodiorite through monzogranite and leucomonzogranite to leucogranite that locally host greisen tin-base metal mineralization. K-feldspar displays large compositional variations of trace elements and Pb isotopic ratios, particularly in the highly fractionated rocks. Many variations are consistent with processes of fractional crystallization, but a distinct enrichment of Rb, Li and Cs accompanied by low K/Rb, Ba/Rb, Eu/Eu* and K/Cs ratios point to the role of fluids during the late stages of magmatic evolution. The correlation of Pb isotopic ratios with the enriched elements and their ratios implies that the isotopic variations are an integral part of the evolution of the SMB. Together with well-defined isochronal relationships of Pb systems in the feldspars, the correlation suggests that fractional crystallization accompanied in the late stages by fluid fractionation led to the formation of Li–F-rich leucogranites. Internally derived U-rich fluids fractionated U/Pb ratios, which in turn produced distinct variations of 206Pb/204Pb and 238U/204Pb ratios in K-feldspars. This implies that the Pb isotopic values of K-feldspar, which have traditionally been used for tectonic reconstructions, might have been modified in many granitic rocks. Thus, only early magmatic K-feldspars, which show no discernible effects of fluid fractionation yield the initial Pb isotopic compositions of the parental granitic magmas and their sources. The data also show that the geochemical characteristics of the leucogranites are the results of magmatic evolution rather than a distinctive source.  相似文献   

18.
The 345 ± 10 Ma old composite Ackley City Batholith of southeastern Newfoundland, consists largely of very felsic K-feldspar megacrystic granite and alaskite. Spatially related to the southeast contact of the alaskite are younger aplites and pegmatite, intrusive phases which are interpreted to be pan of a tilted, high level roof zone complex to the batholith. The compositions of the alaskite and roof zone complex define major and trace element gradients similar to those in voluminous high-silica eruptive suites; i.e., the alaskite is more chemically evolved (higher in Rb, lower in Ca, Fe, Mn, Ti, P, Sr, Ba and LREE) toward the roof. Apparently these chemical gradients in the batholith are restricted to the top 2 to 3 kms of the former magma chamber. Fractional crystallization is a plausible process for generating the chemical dispersion in the granites, although very high feldspar partition coefficients for Ba, Sr and Eu are required to generate the observed chemical gradients by a reasonable degree of fractional crystallization. Restriction of crystal fractionation to near the roof of the batholith may reflect a decreased viscosity which would facilitate crystal-liquid separation by processes such as filter pressing, flow differentiation or convective fractionation.The chemical gradients in these granites closely resemble those attributed in high-silica volcanics to the process of thermogravitational diffusion (TGD). Compositional gradients in the upper portion of a magma chamber are consistent with the TGD model. This model, although still poorly understood, is, like fractional crystallization, a plausible mechanism to generate the chemical features of the Ackley City granites.  相似文献   

19.
Experimental data allow modeling the behavior of the named elements during formation of fluorine- saturated leucocratic rocks of silicic and alkaline compositions. The distribution of alkaline and alkaliearth elements is discussed at equilibrium between the silica-alumina melt with fluoride phases (crystalline and liquid) and with feldspar. Cryolite crystals form during saturation of silica-alumina melt of normal alkalinity with fluorine. Continuous solid solution of sodium-potassium cryolite is stable at 800°C. The equilibrium between melt and crystals continues up to the maximum molar fraction of 0.1 lithium end member in cryolite, at which two fluoride phases (crystalline and liquid) coexist with the silica-alumina melt of fixed composition. Separation of salt melts during late differentiation stages of granite and alkaline rocks is a regular process continuing the natural evolution of ore-magmatic systems. At equilibrium of two liquid phases, the silica phase is relatively enriched in potassium, and the fluoride phase is substantially enriched in sodium. This detected effect is the only currently possible mechanism for the occurrence of the potassium differentiation trends of granite melts. All effects related to crystallization cause enrichment in sodium. In other cases (with Ca, Sr, Mg, Rb, and Cs), separation of the second liquid phase acts in the same direction and enhances the action of crystallization. Comparison between partition coefficients allows derivation of the following affinity rows of alkaline elements for fluoride melt: Li > Na > K > Rb≈Cs and Mg > Ca > Sr > Ba. Hence, the known rule for joining strong bases with strong acids and weak bases with weak acids is fulfilled.  相似文献   

20.
The Wadi Ibib area is situated in the northern part of the Neoproterozoic Hamisana Shear Zone (HSZ), which is a high strain zone evolved during the late stages of the Pan-African orogeny, likely as a tectonic escape structure. Amphibolite facies pelitic metasedimentary windows crop out in the axial parts of the HSZ and are noticeably associated with numerous N-trending pegmatite dikes. Whole-rock geochemistry of the pegmatites reveals a peraluminous (S-type) affinity, with low K/Rb ratios and elevated concentrations of U, Th, REE, Rb, Li, Cs, Y, Nb and Ta. Structurally, the pegmatite sets intrude along the shear plane of the HSZ, corresponding to the regional N-trending tectonic fabrics, such as axial planar foliation and dextral-shearing in the metasedimentary host rock. Field relationships, including structural context, coupled with geochemical characteristics of the Wadi Ibib pegmatites, do not support their formation as a complementary part of evolved granitic magmas. Space-localized decompression-induced partial melting of peraluminous garnet-bearing metapelites was alternatively the underlying process for formation of these pegmatites. Such decompression was associated with regional escape tectonics and stress axes permutations during the late deformation stage (D3) in the evolution of the south Eastern Desert terrane, due to end-orogeny system pressure-release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号