首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
再论地震数据偏移成像   总被引:1,自引:1,他引:0       下载免费PDF全文
利用地震波正向传播方程对属于波形线性反演问题近似求解方法的地震数据偏移成像进行重新推导,得到了适合散射地震数据的散射偏移成像方法和适合反射地震数据的反射偏移成像方法.以地震波传播的散射理论为出发点,首先根据描述一次散射波正向传播的线性方程研究建立散射地震数据的偏移成像方法理论;利用高频近似对产生散射波场的地下速度扰动函数的空间变化进行近似,推导出地下反射率函数,再由散射波传播方程推导出基于反射率函数的反射波传播方程,然后根据描述一次反射波正向传播的线性方程研究建立反射地震数据的偏移成像方法理论.本文指出和修正了Claerbout偏移成像方法中的不足,提出的地震数据偏移成像方法是对当前偏移成像方法理论的完善,使反射地震数据偏移成像具有了更坚实的数学物理理论基础,得到的偏移成像结果相位正确、位置准确、分辨率提高.  相似文献   

2.
Coherent noise in land seismic data primarily consists in source‐generated surface‐wave modes. The component that is traditionally considered most relevant is the so‐called ground roll, consisting in surface‐wave modes propagating directly from sources to receivers. In many geological situations, near?surface heterogeneities and discontinuities, as well as topography irregularities, diffract the surface waves and generate secondary events, which can heavily contaminate records. The diffracted and converted surface waves are often called scattered noise and can be a severe problem particularly in areas with shallow or outcropping hard lithological formations. Conventional noise attenuation techniques are not effective with scattering: they can usually address the tails but not the apices of the scattered events. Large source and receiver arrays can attenuate scattering but only in exchange for a compromise to signal fidelity and resolution. We present a model?based technique for the scattering attenuation, based on the estimation of surface‐wave properties and on the prediction of surface waves with a complex path involving diffractions. The properties are estimated first, to produce surface?consistent volumes of the propagation properties. Then, for all gathers to filter, we integrate the contributions of all possible diffractors, building a scattering model. The estimated scattered wavefield is then subtracted from the data. The method can work in different domains and copes with aliased surface waves. The benefits of the method are demonstrated with synthetic and real data.  相似文献   

3.
The paper is intended to summarize the most important instrumental data of direct relevance for engineering activities, obtained in connection with the strong Vrancea earthquakes of 4 March 1977, 30 August 1986, 30 May 1990, and 31 May 1990, and to point out some significant consequences and conclusions derived on this basis. Two main objectives of this analysis may be emphasized: (a) in-depth analysis of the radiation pattern; and (b) analysis of the spectral contents of ground motion in connection with the features of local conditions, and with the intention of assessing the relative importance of two main factors: source mechanism and long-distance wave propagation, versus features of local geological conditions. Some specific methodological developments used in this context may be mentioned: (a) use of a new approach to the quantification of ground motion intensity on the basis of instrumental (accelerographic) information; (b) analysis of radiation pattern in spectral and directivity terms; (c) parametric analysis of site-specific transfer functions for the local sequences of geological layers; and (d) a critical view on the outcome of post-earthquake survey techniques, keeping in view the implications of the spectral features of ground motion. The main results obtained are related to: (a) ground motion radiation features that have to be taken into account in connection with the data on the source mechanisms of the successive events dealt with; (b) expected spectral features of future strong ground motion at different sites; (c) methodological developments proposed for the assessment of local transfer functions; and (d) implications for microzonation activities.  相似文献   

4.
矢量波场弹性波Kirchhoff偏移   总被引:2,自引:0,他引:2  
Based on Kuo and Dai's vectorial wave-field extrapolation equations, we derive new Kirchhoff migration equations by introducing unit vectors which represent the ray directions at the imaging points of the reflected P- and PS converted-waves. Furthermore, using the slope of the events on shot records and a ray racing procedure, mirror-image reflection points are found and the reflection data are smeared along the Fresnel zone. The migration method proposed in this paper solves two troublesome imaging problems caused by limited receiving aperture and migration artifacts resulting from wave propagation at the velocities of non original wave type. The migration method is applied successfully with model data, demonstrating that the new method is effective and correct.  相似文献   

5.
Fractures are pervasive features within the Earth’s crust and have a significant influence on the multi-physical response of the subsurface. The presence of coherent fracture sets often leads to observable seismic scattering enabling seismic techniques to remotely locate and characterise fracture systems. In this study, we confirm the general scale-dependence of seismic scattering and provide new results specific to shear-wave propagation. We do this by generating full waveform synthetics using finite-difference wave simulation within an isotropic background model containing explicit fractures. By considering a suite of fracture models having variable fracture density and fracture size, we examine the widening effect of wavelets due to scattering within a fractured medium by using several different approaches, such as root-mean-square envelope analysis, shear-wave polarisation distortion, differential attenuation analysis and peak frequency shifting. The analysis allows us to assess the scattering behavior of parametrised models in which the propagation direction is either normal or parallel to the fracture surfaces. The quantitative measures show strong observable deviations for fractures size on the order of or greater than the dominant seismic wavelength within the Mie and geometric scattering regime for both propagation normal and parallel to fracture strike. The results suggest that strong scattering is symptomatic of fractures having size on the same order of the probing seismic wave.  相似文献   

6.
2.5D modelling approximates 3D wave propagation in the dip‐direction of a 2D geological model. Attention is restricted to raypaths for waves propagating in a plane. In this way, fast inversion or migration can be performed. For velocity analysis, this reduction of the problem is particularly useful. We review 2.5D modelling for Born volume scattering and Born–Helmholtz surface scattering. The amplitudes are corrected for 3D wave propagation, taking into account both in‐plane and out‐of‐plane geometrical spreading. We also derive some new inversion/migration results. An AVA‐compensated migration routine is presented that is simplified compared with earlier results. This formula can be used to create common‐image gathers for use in velocity analysis by studying the residual moveout. We also give a migration formula for the energy‐flux‐normalized plane‐wave reflection coefficient that models large contrast in the medium parameters not treated by the Born and the Born–Helmholtz equation results. All results are derived using the generalized Radon transform (GRT) directly in the natural coordinate system characterized by scattering angle and migration dip. Consequently, no Jacobians are needed in their calculation. Inversion and migration in an orthorhombic medium or a transversely isotropic (TI) medium with tilted symmetry axis are the lowest symmetries for practical purposes (symmetry axis is in the plane). We give an analysis, using derived methods, of the parameters for these two types of media used in velocity analysis, inversion and migration. The kinematics of the two media involve the same parameters, hence there is no distinction when carrying out velocity analysis. The in‐plane scattering coefficient, used in the inversion and migration, also depends on the same parameters for both media. The out‐of‐plane geometrical spreading, necessary for amplitude‐preserving computations, for the TI medium is dependent on the same parameters that govern in‐plane kinematics. For orthorhombic media, information on additional parameters is required that is not needed for in‐plane kinematics and the scattering coefficients. Resolution analysis of the scattering coefficient suggests that direct inversion by GRT yields unreliable parameter estimates. A more practical approach to inversion is amplitude‐preserving migration followed by AVA analysis. SYMBOLS AND NOTATION A list of symbols and notation is given in Appendix D .  相似文献   

7.
机载探地雷达数值模拟及逆时偏移成像   总被引:4,自引:4,他引:0       下载免费PDF全文
机载探地雷达可以用于人类无法到达的危险地区、植被严重覆盖的地下目标体探测,然而由于机载探地雷达的特殊性,影响机载探地雷达探测效果的因素包括天线的极化方向、天线的飞行高度以及地表粗糙度等.为了研究这些影响因素与探测效果之间的关系,用三维时间域有限差分模拟电磁波的传播过程,以沙漠地区地下空洞掩体的机载探地雷达探测为实例,分别模拟了不同天线极化方向、天线高度及地表粗糙度情况下的机载探地雷达剖面,分析了各因素对机载探地雷达探测地下空洞目标体的影响.天线极化方向与目标体走向垂直更有利于地下目标体探测;天线距离地表越近,可以获得更高分辨率的雷达剖面;沙漠地表起伏越大,雷达剖面中的散射杂波能量越强,浅部地下目标体信号容易被掩盖.为了消除起伏地形造成的散射杂波,提出用逆时偏移成像技术对共炮集机载探地雷达数据进行偏移成像,成像结果优于基尔霍夫偏移成像结果.  相似文献   

8.
Multiple scattering is usually ignored in migration algorithms, although it is a genuine part of the physical reflection response. When properly included, multiples can add to the illumination of the subsurface, although their crosstalk effects are removed. Therefore, we introduce full‐wavefield migration. It includes all multiples and transmission effects in deriving an image via an inversion approach. Since it tries to minimize the misfit between modeled and observed data, it may be considered a full waveform inversion process. However, full‐wavefield migration involves a forward modelling process that uses the estimated seismic image (i.e., the reflectivities) to generate the modelled full wavefield response, whereas a smooth migration velocity model can be used to describe the propagation effects. This separation of modelling in terms of scattering and propagation is not easily achievable when finite‐difference or finite‐element modelling is used. By this separation, a more linear inversion problem is obtained. Moreover, during the forward modelling, the wavefields are computed separately in the incident and scattered directions, which allows the implementation of various imaging conditions, such as imaging reflectors from below, and avoids low‐frequency image artefacts, such as typically observed during reverse‐time migration. The full wavefield modelling process also has the flexibility to image directly the total data (i.e., primaries and multiples together) or the primaries and the multiples separately. Based on various numerical data examples for the 2D and 3D cases, the advantages of this methodology are demonstrated.  相似文献   

9.
地表不规则地形的存在往往会引起地震波的散射,进而产生局部地震动放大或衰减的现象.虽然地形效应最早在异常地震记录中被发现,然而利用地形影响台阵记录到的地震动数据却少之又少.基于1992年在我国台湾翡翠河谷上观测到的六条地形影响台阵记录,利用线源SH波入射下非对称V形河谷地震波传播解析理论,模拟得到了河谷台阵各点的地震动,...  相似文献   

10.
近断层效应使得沉积盆地对地震动放大效应更为复杂。本文针对逆断层发震下三维层状沉积盆地地震反应,基于波动谱元法,采用有限断层动力学模型,模拟断层动力破裂、地壳层地震波传播和层状沉积盆地对地震波散射全过程。在此基础上,对比分析了层状和均质沉积盆地对近断层地震动放大效应的影响,讨论了不同断层倾角下层状沉积盆地地震动加速度特性。结果表明:层状沉积盆地PGA空间分布与均质沉积盆地存在较大差异,由于近断层效应和盆地效应,层状沉积盆地地表局部范围竖向PGA大于水平向PGA;90°断层倾角下层状沉积盆地地表地震动放大范围与60°断层倾角结果明显不同,主要集中在盆地中心区域和断层附近,且幅值远小于60°断层倾角下结果;沿断层走向,盆地内地表地震动加速度峰值对应时刻较盆地外延后。  相似文献   

11.
Numerical wavefield extrapolation represents the backbone of any algorithm for depth migration pre- or post-stack. For such depth imaging techniques to yield reliable and interpretable results, the underlying wavefield extrapolation algorithm must propagate the waves through inhomogeneous media with a minimum of numerically induced distortion, over a range of frequencies and angles of propagation. A review of finite-difference (FD) approximations to the acoustic one-way wave equation in the space-frequency domain is presented. A straightforward generalization of the conventional FD formulation leads to an algorithm where the wavefield is continued downwards with space-variant symmetric convolutional operators. The operators can be precomputed and made accessible in tables such that the ratio between the temporal frequency and the local velocity is used to determine the correct operator at each grid point during the downward continuation. Convolutional operators are designed to fit the desired dispersion relation over a range of frequencies and angles of propagation such that the resulting numerical distortion is minimized. The optimization is constrained to ensure that evanescent energy and waves propagating at angles higher than the maximum design angle are attenuated in each extrapolation step. The resulting operators may be viewed as optimally truncated and bandlimited spatial versions of the familiar phase shift operator. They are unconditionally stable and can be applied explicitly. This results in a simple wave propagation algorithm, eminently suited for implementation on pipelined computers and on large parallel computing systems.  相似文献   

12.
A method is presented for developing and/or evaluating 2D filters applied to seismic data. The approach used is to express linear 2D filtering operations in the space-frequency (x–ω) domain. Correction filters are then determined using plane-wave constraints. For example, requiring a vertically propagating plane wave to be unaffected by migration necessitates application of a half-derivative correction in Kirchhoff migration. The same approach allows determination of the region of time-offset space where half-derivative corrections are correct in x–t domain dip moveout. Finally, an x–ω domain dip filter is derived using the constraint that a plane wave be attenuated as its dip increases. This filter has the advantage that it is significantly faster than f–k domain dip filtering and can be used on irregularly spaced data. This latter property also allows the filter to be used for interpolation of irregular data onto a regular grid.  相似文献   

13.
The seismic K-Horizon is the key to gaining understanding on the deep supercritical geothermal rocks in Southern Tuscany. The K-Horizon is hosted in metamorphic rocks, which cause strong seismic wavefield scattering resulting in a poor signal-to-noise ratio. Our study aims to reveal high-resolution seismic images of the K-Horizon below a geothermal field in Southern Tuscany, using an advanced three-dimensional seismic depth imaging approach. The key seismic pre-processing steps in the time domain include muting a large amount of persistent noise based on the statistical analysis of the seismic amplitudes, and tomostatics technique to correct for static effects. We carried out seismic depth imaging using Kirchhoff Pre-Stack Depth Migration and Fresnel Volume Migration techniques. Each migration technique was tested with constant and heterogeneous three-dimensional velocity models. Due to the difficulties in determining emergent angles for this low signal-to-noise ratio data set, the migration results with the heterogeneous three-dimensional velocity model show less coherent reflections compared to the migration results using the constant velocity model. Both velocity models however lead to relatively the same structure and depth of the K-Horizon, indicating the similarity of the average velocities along the wave propagation paths in both velocity models. With both velocity models Fresnel Volume Migration yields the K-Horizon with better reflection coherency and higher signal-to-noise ratio than standard Kirchhoff Pre-Stack Depth Migration. Nevertheless, both migration techniques have been able to reveal the K-Horizon with relatively high resolution and provide a reliable basis for geothermal rock characterization as well as steering of the first geothermal well penetrating the K-Horizon.  相似文献   

14.
Ground vibrations generated by construction activities can adversely affect the structural health of adjacent buildings and foundations supporting them. Therefore propagation and rate of attenuation of construction induced ground vibrations is important during construction activities, particularly in urban areas where constructions are carried out in the vicinity of existing structures. In practice wave barriers are installed in the ground to mitigate the ground vibration propagation and hence to minimise the effect of ground vibrations on surrounding structures. Different types of fill materials such as bentonite, EPS geofoam and concrete are used in constructing wave barriers. In this study, a three-dimensional finite element model is developed to study the efficiency of different fill materials in attenuating ground vibrations. The model is first verified using data from full scale field experiments, where EPS geofoam has been used as a fill material in wave barriers. Then the same model has been used to evaluate the efficiency of open trenches, water filled wave barriers and EPS geofoam filled wave barriers on attenuation of ground vibrations. EPS geofoam is found to be the most efficient fill material, providing attenuation efficiency closer to open trenches. The efficiency of EPS geofoam and water filled wave barriers can be significantly increased by increasing the depth of the wave barrier.  相似文献   

15.
稳定的保幅高阶广义屏地震偏移成像方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以先进的波动理论为基础的波动方程保幅地震偏移成像是在给出正确位置的同时也给出真实振幅的一种特殊完善.作者从保幅单程波动方程的非稳态相移公式出发,基于反问题求解中常用的摄动理论,利用单平方根算子的渐进展开,从而推导出保幅叠前深度偏移方程的高阶广义屏形式;针对散射波场计算项对于横向变速介质的不稳定性,通过数学近似提出一个有效提高稳定性的策略,应用到波场递归外推过程中,从而得到一种稳定的保幅高阶广义屏叠前深度偏移算子.理论模型试算和实际资料处理表明,该方法不但可以更精确地使散射能量聚焦、归位,提高成像精度;而且可以输出正确反映地下反射系数的振幅信息,使AVO响应更加清晰,提高了AVO资料的分析精度.  相似文献   

16.
Helmholtz's equation with a variable wavenumber is solved for a point force through use of a first-order differential equation system approach. Since the system matrix in this formulation is non-constant, an eigensolution is no longer valid and recourse has to be made to approximate techniques such as series expansions and Picard iterations. These techniques can accommodate in principle any variation of the wavenumber with position and are applicable to scalar wave propagation in one, two and three dimensions, with the latter two cases requiring radial symmetry. As shown in the examples, good solution accuracy can be achieved in the near field region, irrespective of frequency, for the particular case examined, namely a wavenumber which increases (or decreases) as the square root of the radial distance from source to receiver. Finally, the resulting Green's functions can be used as kernels within the context of boundary element type solutions to study scalar wave scattering in inhomogeneous media.  相似文献   

17.
各向异性研究对地下介质精确成像有着重要的意义,在当前计算机硬件迅速发展及宽方位地震数据采集日益普遍的情况下,成像必须考虑介质的各向异性.逆时偏移是基于双程波动方程的较为精确的数值解的成像方法,所以相对于其他地震成像方法,它具有很大的优势,譬如不受反射界面的倾角限制、偏移速度结构合适时能够使回转波及多次波正确成像.在各向同性介质中,可使用标量波方程来模拟波场.而在各向异性介质中,P波和SV波是相互耦合的,即不存在单纯的标量波传播,通常利用能代表耦合波场中P波分量运动学特征的拟声波(qP波)进行偏移成像.本文中,我们推导出了TTI介质下qP波控制方程.该方程可采用显式有限差分格式进行求解.通过声学近似,若沿对称轴方向的剪切波速度为零,对于对称轴方向不变且ε≥δ的模型来说,可得到稳定的数值解.但对于TTI介质来说,由于沿对称轴方向各向异性参数是变化的,声学近似会引起波场传播及数值计算的不稳定.因此,我们提出了正则化有限横波的方法,很好地解决了这一问题.最后,给出了Foothill模型的测试结果及某探区实际资料试算结果,展示了采用这个方程进行复杂TTI模型正演和高质量逆时偏移成像结果,证实了该方法的正确性和实际资料应用中的有效性.  相似文献   

18.
针对地下工程领域隧道超前预报地震波波场传播与成像中存在的问题,通过数值模拟,构建二维含低速异常的隧道介质模型,研究隧道弹性波场传播规律和异常体边界成像准确性.首先,利用一阶速度-应力波动方程和高阶交错网格有限差分计算方法,导出隧道超前预报数值模拟的稳定性条件和边界条件,对上述隧道模型进行数值模拟,识别波场特征;其次,利用叠前逆时偏移成像方法,对压制噪音干扰后的波场在互相关成像条件下,对隧道模型中的异常体边界进行逆时偏移成像.研究结果表明:采用高阶交错网格有限差分正演获得异常体边界清晰的反射波和角点产生的散射波;逆时偏移算法获得隧道内异常体准确成像结果,从而大大提高隧道超前预报的分辨率与准确性;靠近掌子面单一震源、多道接收观测系统对异常体成像效果最佳,为隧道内高效数据采集提供理论依据.  相似文献   

19.
20.
This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-D isotropic media. Here, we use second-order, temporal-and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-D elastic wave equations of motion. The set of absorbing boundary conditions based on paraxial approximations of 3-D elastic wave equations are applied to the numerical boundaries. The trial resuits for the salt model show that the numerical dispersion is decreased to a minimum extent, the accuracy high and diffracted waves abundant. It also shows that this method can be used for modeling wave propagation in complex media with the lateral variation of velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号