首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
关于夷平面的科学问题——兼论青藏高原夷平面   总被引:42,自引:5,他引:37  
长期地貌演化研究表明,夷平面的形成有4种基本方式:准平原、山麓剥蚀平原、双层水平面和冻融剥夷平原。它们的形成都需要上千万年至数亿年的构造相对稳定时期。青藏高原上的层状地貌面可以划分为两级夷平面和一级剥蚀面。山顶面形成于渐新世至中新世早期;主夷平面是以双层水平面或山麓剥蚀平原形式发育的,大致形成于20-3.6Ma B.P.期间,完成时的高度低于1000m;剥蚀面形成于3.6-1.7MaB.P.期间。  相似文献   

2.
Residual upland planation surfaces serve as strong evidence of peneplains during long intervals of base-level stability in the peneplanation process. Multi-stage planation surfaces could aid the calculation of uplift rates and the reconstruction of upland plateau evolution. However, most planation surfaces have been damaged by crustal uplift, tectonic deformation, and surface erosion, thus increasing the difficulty in automatically identifying residual planation surfaces. This study proposes a peak-cluster assessment method for the automatic identification of potential upland planation surfaces. It consists of two steps: peak extraction and peak-cluster characterization. Three critical parameters, namely, landform planation index (LPI), peak elevation standard deviation, and peak density, are employed to assess peak clusters. The proposed method is applied and validated in five case areas in the Tibetan Plateau using a Shuttle Radar Topography Mission digital elevation model (SRTM DEM) with 3 arc-second resolution. Results show that the proposed method can effectively extract potential planation surfaces, which are found to be stable with different resolutions of DEM data. A significant planation characteristic can be obtained in the relatively flat areas of the Gangdise–Nyainqentanglha Mountains and Qaidam Basin. Several vestiges of potential former planation areas are also extracted in the hilly-gully areas of the western part of the Himalaya Mountains, the northern part of the Tangula–Hengduan Mountains, and the northeastern part of the Kunlun–Qinling Mountains despite the absence of significant topographical features characterized by low slope angles or low terrain reliefs. Vestiges of planation surfaces are also identified in these hilly-gully upland areas. Hence, the proposed method can be effectively used to extract potential upland planation surfaces not only in flat areas but also in hilly-gully areas.  相似文献   

3.
Present granite landform characteristics and distribution are the integrated result of climate, tectonics and lithology. Various types of granite landforms in China signify climate zonality and differential vertical movement of earth surface, while published research results on Chinese granite landforms are very rare, especially in international journals. Based on the process analysis of chemical weathering and physical disintegration, four granite landform regions in China are classified according to the present climate regime. On the Tibetan Plateau, the cold and freezing climate induced periglacial landscapes; the northeast region is characterized by physical disintegration and low round mounds are widespread; in the northwest region controlled by arid climate, wind-carved minor landscapes are extremely prominent. The most spectacular granite landscapes in China are presented in southeast as a result of longtime chemical weathering under humid and warm conditions, as well as the differential uplift after Neogene. Correlating the weathering crust in southern China, Tibetan Plateau and India, a possible unified planation surface in Neogene is proposed. With corestones as indicators of original weathering front, the differential uplift extent of dissected planation surfaces can be estimated. At least three landforms implying uplift can be identified in southeastern China, with elevations of 300–400 m, 2000 m and 3600 m above the sea level respectively.  相似文献   

4.
Present granite landform characteristics and distribution are the integrated result of climate, tectonics and lithology. Various types of granite landforms in China signify climate zonality and differential vertical movement of earth surface, while published research results on Chinese granite landforms are very rare, especially in international journals. Based on the process analysis of chemical weathering and physical disintegration, four granite landform regions in China are classified according to the present climate regime. On the Tibetan Plateau, the cold and freezing climate induced periglacial landscapes; the northeast region is characterized by physical disintegration and low round mounds are widespread; in the northwest region controlled by arid climate, wind-carved minor landscapes are extremely prominent. The most spectacular granite landscapes in China are presented in southeast as a result of longtime chemical weathering under humid and warm conditions, as well as the differential uplift after Neogene. Correlating the weathering crust in southern China, Tibetan Plateau and India, a possible unified planation surface in Neogene is proposed. With corestones as indicators of original weathering front, the differential uplift extent of dissected planation surfaces can be estimated. At least three landforms implying uplift can be identified in southeastern China, with elevations of 300–400 m, 2000 m and 3600 m above the sea level respectively.  相似文献   

5.
青藏高原东缘水系的演化历史长期存在着重大争议,鉴于任一水系的形成演化都是通过主要河谷的发育及其不断延展与整合完成的,因此确定河谷发育的起始时代是研究水系演化的关键。本文针对渭河上游三阳川盆地最高级阶地形成时代的研究,发现李家小湾河流阶地砾石层的ESR年代为1.26±0.15 Ma和1.32±0.19 Ma,26Al/10Be埋藏年代为1.45±0.70 Ma和1.04±0.43 Ma,说明该段河谷形成于早更新世晚期。综合青藏高原东缘夷平面、剥蚀面与河流阶地的研究成果,推断该区现代河谷系列主要形成于1.2 Ma以后,河流平均下切速率较高,为0.1~0.32 m/ka,指示了中更新世以来该区快速的地表抬升与河谷发育过程;而其前少数地段的先成河谷下切速率介于0.04~0.29 m/ka之间,说明区域地势总体低平,地表过程以剥蚀夷平为主,即高原东缘的现今水系格局主要是第四纪期间构造和气候共同作用下河流侵蚀的产物。  相似文献   

6.
Seismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene–Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny. Seismic data, together with the subsidence analysis of deep wells, show that during rifting (~58–37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, β, in the range ~1.4–1.6. By ~37 Ma, the focus of rifting shifted to the present‐day continent–ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ~30 Ma. Intense rifting during the rift–drift transition (~37–30 Ma) may have induced a transient, small‐scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection. Oligocene uplift was followed by rapid, early post‐breakup subsidence (~30–18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ~30–21 Ma. This extension in the outer margin (β~1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ~21–12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ~12.5 Ma that rifting resumed, being especially active in the Tainan Basin (β~1.1). Rifting ceased at ~6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc. The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ~58–30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ~30–21 and ~12.5–6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen.  相似文献   

7.
湘桂黔滇藏一线覆盖型岩溶地貌特征与岩溶(双层)夷平面   总被引:19,自引:3,他引:16  
根据岩溶风化壳的发育条件及研究覆盖型岩溶特征,提出岩溶(双层)夷平面概念,认为研究区覆盖型岩溶是一个统一的岩溶(双层)夷平面的组成部分。其现阶段的存在形式如石林、岩墙等为后期不同程序风化-刻蚀作用的结果;其地貌形态多为土下成因,并随剥蚀程度、裸露时间环境的差异而叠加各种后期气下改造特征。  相似文献   

8.
Planation surfaces in Northern Ethiopia   总被引:3,自引:0,他引:3  
M. Coltorti  F. Dramis  C.D. Ollier   《Geomorphology》2007,89(3-4):287-296
Planation surfaces are an old-fashioned topic in geomorphology, but they are nevertheless important where they make up much of the landscape. Northern Ethiopia is largely a stepped topography, caused by differential erosion. Exhumation of old planation surfaces that were preserved under sedimentary or volcanic cover is an important process in landscape evolution. The oldest planation surface is of early Palaeozoic age (PS1); the second is Late Triassic (PS2); and the third is of Early Cretaceous age (PS3). The Oligocene Trap Volcanics buried a surface (PS4) of early Tertiary age, which is now widely exposed by erosion as a surface that, where flat enough, is an exhumed planation surface. The surfaces do not relate to the supposed Africa-wide pediplain sequence of King [King, L.C., 1975. Planation surfaces upon highlands. Z. Geomorph. NF 20 (2), 133–148.], either in mode of formation and age. Although the region is tropical, there is scarce evidence of deep weathering and few indications that the surfaces could be regarded as etchplains. These surfaces indicate that eastern Africa underwent long episodes of tectonic quiescence during which erosion processes were able to planate the surface at altitudes not too far from sea level. Only after the onset of rifting processes, uplift became active and transformed a vast lowland plain into the present Ethiopian highlands, largely exceeding 2500 m a.s.l. Some hypotheses and speculations on the genesis of these surfaces are considered here.  相似文献   

9.
中国花岗岩地貌的类型特征与演化   总被引:7,自引:1,他引:6  
在中国南方亚热带季风气候条件下, 自中、上新世以来的夷平面及其深厚的花岗岩风化壳在后期不同程度构造抬升-下切过程中, 造成许多中国特有的花岗岩地貌类型, 如黄山和三清山等处的花岗岩峰林、石林、造型石、风动石等。本文讨论了中国花岗岩风化壳和地貌的时空演化规律, 提出地貌发育年代与中、上新世广布的夷平面的密切关系, 以及在不同抬升背景下, 花岗岩地貌与风化壳的关系。并可据此推算不同山地的抬升幅度, 沿海仅抬升约200m, 向内地逐渐增大, 到南岭或大别山、伏牛山则达到约1600~2000 m。  相似文献   

10.
Some problems related to the evolution of relief with the formation of planed surfaces are considered. Target-oriented classifications of planed surfaces are suggested. The paper raises the question concerning tectonic planation of relief, and the relationship of the processes of planation and formation of weathering crusts. The distinctive features of equiplanation in the Earth's northern and southern hemispheres, and the importance of aeolian processes in them are discussed. Attention is drawn to the studies of the planation processes of the relief in the regions under the ice and of the bottom of the World Ocean. The article underlies the need for perfection of the conceptual-terminological body of the theory of planation surfaces.  相似文献   

11.
Johan M. Bonow   《Geomorphology》2005,72(1-4):106-127
Classifications of large-scale landscapes in Greenland have traditionally been based on type and intensity of glacial erosion, with the general idea that present landforms are mainly the result of erosion from ice sheets and glaciers. However, on southern Disko and in areas offshore in Disko Bugt, a basement surface has preserved remnants of weathered gneiss and pre-Paleocene landforms, recently exhumed from Paleocene basalt. Isolated hills and lineaments have been mapped in a digital terrain model and aerial photographs. Offshore have hills been mapped from seismic lines. The medium size bedrock forms on southern Disko as tors, clefts and roche moutonées have been studied in the field. Remnant saprolites were inventoried, sampled and analysed according to grain size and clay mineralogy. The basement surface retains saprolites up to 8 m thick in close relation to the cover rocks. The landforms in the basement rocks belong essentially to an etched surface only slightly remodelled by glacial erosion and, below the highest coastline, also by wave action. The outline of hills is governed by two lineament directions, ENE–WSW representing the schistocity of the gneiss and NW–SE fracture zones. These structures are thus interpreted to have been exploited by the deep weathering while the frequent N–S lineaments have not and thus might be younger. Main ice-flow has been from the NE and has resulted in plucking of SW facing lee sides, however the resulting bedrock forms are mainly controlled by structures and orientation of joints. The identification of re-exposed sub-Paleocene etch forms on Disko and the hills of similar size offshore, forming a hilly relief, have implications for identification of a hilly relief south of Disko Bugt, its relation to younger planation surfaces as well as for conclusions of uplift events.  相似文献   

12.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

13.
Mapping of lateritic bauxites over the West African rifted margin and analysis of the geomorphic properties of these bauxites, combined with available geological data lead to a discussion of the presence of either two Meso-Cenozoic planation surfaces or a single Eocene surface to account for the morphotectonic and paleoclimatic evolution of the Guinean landforms. At large scale, two stepped bauxitic levels are documented. Ongoing or episodic uplift following Gondwana breakup and Meso-Cenozoic climate change are proposed to have allowed the formation and abandonment of an Early mid-Cretaceous surface today preserved as the higher bauxitic level, and the setting of an Eocene planation surface bearing a second generation of bauxites, making the lower bauxitic level. The single Eocene surface hypothesis requires that Paleogene bauxitization preserved large pre-existing relief to explain two stepped bauxitic levels of the same age. The two-surface hypothesis is favored because it would explain rebauxitization of alluvial pebbles of bauxites under the lower lateritic level.  相似文献   

14.
云南东川地区层状地貌面的成因   总被引:1,自引:1,他引:1  
在东川地区的山地及小江河谷的两侧山麓上部,分布着不同高度和不同规模的层状地貌面,对其成因仍有不同的认识。分歧主要表现在两个方面:一是高原隆升之前的初始地貌面是否是准平原型夷平面;二是山顶面之下的梯级层状地貌面的成因。本文从以下几个方面对上述问题进行讨论:(1)层状地貌面的地貌特征及其与侵蚀河谷体系的关系;(2)层状地貌面上堆积物的性质;(3)层状地貌面与断裂构造水平展布的关系;(4)相邻层状地貌面的空间过渡关系;(5)区域构造演化背景。作者认为在云贵高原抬升过程中,东川地区以挤压穹起隆升变形为主。不同海拔高度的层状地貌面具有多成因特性。山顶面及局部高原面是高原隆升之前古夷平面的残留。并遭到后期强烈的侵蚀改造。目前,尚缺乏足够证据证明高原隆升之前的古夷平面为准平原型夷平面。小江河谷两侧的梯级层状地貌面是侵蚀或剥蚀面,它们形成于高原隆升及初始地貌面解体之后,其梯级空间分布特征与区域性的阶段隆升有关。  相似文献   

15.
临夏盆地三千万年来沉积物粒度特征及其构造意义*   总被引:6,自引:0,他引:6  
本文通过对临夏盆地长达30m.y.的连续沉积(临夏群)共计779个样品的粒度特征分析,划分出七大完整的沉积旋回。粒度曲线明显地表示出青藏高原的强烈隆升始于距今3.4Ma前。该文还初步确定出青藏高原地区两次夷平过程最终结束的年代。  相似文献   

16.
夷平面研究评述   总被引:7,自引:1,他引:6  
全球构造与地球大尺度地形特征之间的关系研究重新成为一个地学研究热点。在国内,夷平面研究的“回春”是其一个主要的表现形式。但在研究中,一些基本的理论与问题有待明确、探讨和解决。在夷平面理论的研究中,地貌演化的历史研究和演化的机制研究仍是最基本的问题。“夷平面”定义的混乱严重阻碍了相关研究的发展。不同气候和构造环境下,夷平面的形成和演化过程仍需科学地概括和抽象。在研究实践中,时间和空间尺度的精确解释成为关键的问题。一方面,不同类型夷平面的地貌特征(海拔高度、地面坡度、相对高度和面积)仍待明确或半定量、定量表示;而另一方面,夷平面的定年仍是一个棘手的问题。在夷平面的确认过程中,一些地貌学原则和规律应当遵循,如齐一山顶面地貌学成因的不确定性;以及同一地貌单元内,准平原型夷平面的出露具有唯一性等。夷平面的相关堆积是夷平面定年和古地貌重建的基础,但是我们必须明确相关堆积与夷平面的关系,如夷平面的原地相关堆积——风化壳的年龄只能够对夷平面的形成时代给予约束,而不能指示其确切的形成时间。更为困难的是,在古地貌的重建过程中,起始时刻某一区域的地貌特征参数仍然无法精确的确定。  相似文献   

17.
ABSTRACT Apatite fission track ages of 20 samples collected from turbidite successions deposited in foreland basins adjacent to the Northern Apennines range between ∼3 and ∼10 Ma. The youngest fission track ages are concentrated in a NW–SE elongated belt, which approximately runs through the centre of the study area, while gradually increasing ages are distributed towards the south-western and north-eastern borders. Integration of apatite fission track data and published vitrinite reflectance values indicate this region of the Apennines experienced continuous but variable exhumation starting from ∼14 Ma. The extent of exhumation and uplift range between 5 and 6 km at the south-western and north-eastern borders of the study area, and ∼7 km in the central part. Exhumation was driven mainly by erosion, with minor faulting in response to structural readjustment related to differential exhumation. Regional exhumation and erosion are interpreted as the result of isostatic rebound following crustal thickening in the lower part of the orogen.  相似文献   

18.
Depth‐dependent stretching, in which whole‐crustal and whole‐lithosphere extension is significantly greater than upper‐crustal extension, has been observed at both non‐volcanic and volcanic rifted continental margins. A key question is whether depth‐dependent stretching occurs during pre‐breakup rifting or during sea‐floor spreading initiation and early sea‐floor spreading. Analysis of post‐breakup thermal subsidence and upper‐crustal faulting show that depth‐dependent lithosphere stretching occurs on the outer part of the Norwegian volcanic rifted margin. For the southern Lofoten margin, large breakup lithosphere β stretching factors approaching infinity are required within 100 km of the continent–ocean boundary to restore Lower Eocene sediments and flood basalt surfaces (~54 Ma) to interpreted sub‐aerial depositional environments at sea level as indicated by well data. For the same region, the upper crust shows no significant Palaeocene and Late Cretaceous faulting preceding breakup with upper‐crustal β stretching factors <1.05. Further north on the Lofoten margin, reverse modelling of post‐breakup subsidence with a β stretching factor of infinity predicts palaeo‐bathymetries of ~1500 m to the west of the Utrøst Ridge and fails to restore Lower Eocene sediments and flood basalt tops to sea level at ~54 Ma. If these horizons were deposited in a sub‐aerial depositional environment, as indicated by well data to the south, an additional subsidence event younger than 54 Ma is required compatible with lower‐crustal thinning during sea‐floor spreading initiation. For the northern Vøring margin, breakup lithosphere β stretching factors of ~2.5 are required to restore Lower Eocene sediments and basalts to sea level at deposition, while Palaeocene and Late Cretaceous upper‐crustal β stretching factors for the same region are < 1.1. The absence of significant Palaeocene and late Cretaceous extension on the southern Lofoten and northern Vøring margins prior to continental breakup supports the hypothesis that depth‐dependent stretching of rifted margin lithosphere occurs during sea‐floor spreading initiation or early sea‐floor spreading rather than during pre‐breakup rifting.  相似文献   

19.
青藏高原古岩溶的性质、发育时代和环境特征   总被引:7,自引:0,他引:7  
青藏高原目前多处所见岩溶地貌主要属第三纪古岩溶之地下部分经后期剥蚀而出露于地表的,风化壳红土和洞穴次生化学沉积等古岩溶相关沉积也多以残留形态出露在已经发生解体的高原主夷平面的南和东南缘,风化壳红土中所含粘粒部分的主要化学成分为SiO2,Al2O3和Fe2O3;粘土矿物多属“伊利石-高岭石”型组合,少数样品属“高岭石-伊利石”型组合,据硅酸系数和粘土矿物组合判断,古岩溶风化壳红土的发育阶段处在化学风化的初期,但由于目前所见红土仅反映当时风化壳剖面根部的化学风化状况,故其较弱的风化指数仍能间接指示古岩溶发育时期湿热的地表环境,扫描电镜观测结果亦表明,风化壳红土中石英砂的表面结构特征以化学溶蚀形成的为主,机械侵蚀形成的为辅,反映了高原风化壳红土垢长期残留特征,对应风化壳发育时期的湿热环境。  相似文献   

20.
The Qiongdongnan Basin is one of the largest Cenozoic rifted basins on the northern passive margin of the South China Sea. It is well known that since the Late Miocene, approximately 10 Ma after the end of the syn‐rift phase, this basin has exhibited rapid thermal subsidence. However, detailed analysis reveals a two‐stage anomalous subsidence feature of the syn‐rift subsidence deficit and the well‐known rapid post‐rift subsidence after 10.5 Ma. Heat‐flow data show that heat flow in the central depression zone is 70–105 mW m?2, considerably higher than the heat flow (<70 mW m?2) on the northern shelf. In particular, there is a NE‐trending high heat‐flow zone of >85 mW m?2 in the eastern basin. We used a numerical model of coupled geothermal processes, lithosphere thinning and depositional processes to analyse the origin of the anomalous subsidence pattern. Numerical analysis of different cases shows that the stretching factor βs based on syn‐rift sequences is less than the observed crustal stretching factor βc, and if the lithosphere is thinned with βc during the syn‐rift phase (before 21 Ma), the present basement depth can be predicted fairly accurately. Further analysis does not support crustal thinning after 21 Ma, which indicates that the syn‐rift subsidence is in deficit compared with the predicted subsidence with the crustal stretching factor βc. The observed high heat flow in the central depression zone is caused by the heating of magmatic injection equivalently at approximately 3–5 Ma, which affected the eastern basin more than the western basin, and the Neogene magmatism might be fed by the deep thermal anomaly. Our results suggest that the causes of the syn‐rift subsidence deficit and rapid post‐rift subsidence might be related. The syn‐rift subsidence deficit might be caused by the dynamic support of the influx of warmer asthenosphere material and a small‐scale thermal upwelling beneath the study area, which might have been persisting for about 10 Ma during the early post‐rift phase, and the post‐rift rapid subsidence might be the result of losing the dynamic support with the decaying or moving away of the deep thermal source, and the rapid cooling of the asthenosphere. We concluded that the excess post‐rift subsidence occurs to compensate for the syn‐rift subsidence deficit, and the deep thermal anomaly might have affected the eastern Qiongdongnan Basin since the Late Oligocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号