首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   5篇
地球物理   2篇
地质学   8篇
海洋学   1篇
自然地理   8篇
  2023年   1篇
  2019年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2002年   2篇
  2001年   2篇
  1994年   2篇
排序方式: 共有19条查询结果,搜索用时 18 毫秒
1.
元素硒是许多生物(包括土壤微生物,植物、动物和人类)机体必需的微量营养元素之一,而且对植物、动物和人具有双重生物效应。半个多世纪以来土壤—植物系统元素硒的迁移、转化和富集过程一直备受关注。土壤硒的存在形态包括可溶态硒、可交换态及碳酸盐结合态硒、铁锰氧化物结合态硒、有机物结合态硒和残渣态硒5种形态,其中可溶态硒和可交换态及碳酸盐结合态硒具生物有效性,有机物结合态硒随着有机质分解可转化为可溶态硒而成为土壤潜在有效硒源。不同植物硒含量水平取决于区域土壤有效硒含量和不同植物的硒吸收和富集水平。因此,土壤硒的生物有效性是决定食物链硒含量的关键,同时土壤有效硒通过调节根际环境和植物代谢过程提高植物抗逆性。土壤—植物系统元素硒的迁移和转化是一个复杂的生物地球化学过程,受地壳运动、母岩性质、气候、地貌、土壤环境(物理、化学和微生物活动)条件、土壤硒含量及其化学性质、植物种类及其生理习性、田间管理过程等因素的耦合作用影响。为充分合理利用土壤硒资源,将来应加强植物体内,尤其是主要粮食作物、蔬菜、果树和地道药材叶片、果实中硒迁移、转化和富集研究,为缺硒地区硒的生物强化、富硒地区农作物种植选择和居民食品选择及...  相似文献   
2.
增江颗粒有机碳同位素的AMS研究初报   总被引:3,自引:0,他引:3  
全球河流每年向海洋输送约1Gt(1015g)的碳,其中40%为有机碳。然而,在海洋沉积物中却难以寻找到足量的陆地碳的生物地球化学标记[1]。显然,陆地碳在河流搬运过程中经历了复杂的生物地球化学变化,乃至“踪迹全无”。河流有机碳可大体上划分为颗粒态(POC)和溶解态(DOC)两种基本类型。就全球范围讲,河流输送的POC和DOC在数量上相当或DOC略高些。但在一些高浑浊的河流,尤其是亚洲季风区的河流中,POC在有机碳中却占绝对优势。如珠江干流水体中POCDOC比值高达5.0左右[2]。因此,亚洲季风区河流中所搬运的POC对其注入水域的生物地球化学过程影响深远。河流有机质的来源复  相似文献   
3.
天然水体中存在同化二氧化碳(CO2)的光合作用,也存在释放CO2的微生物呼吸过程。地球表层水体与大气之间的CO2交换构成全球碳循环的一个重要环节。水-气之间CO2交换的方向和通量主要受大气圈和水体表层CO2分压(pCO2)的制约。水体pCO2值可以通过对近水面气体成分变化过程的现场仪器检测或者根据测定的水体化学参数运用经验公式计算求得。迄今对陆地水体,尤其河流筑坝形成的"蓄水河流"(下称水库)水体CO2动态研究中,由于水域及其近表层大气成分的时空多变,一般采用水化学参数计算方法求得水体的pCO2值。全球约70.97%的水库表层水体pCO2高于大气pCO2。全球尺度上水库表层水体pCO2自热带向寒温带逐渐递减;单个水库水体的pCO2一般呈现"出库>入库>库中"、pCO2随深度而增加的变化规律。水库表层水体pCO2的时间变化一般表现为"冬季>夏季、消融期>冰冻期、黑夜>白天"。水库水体的pCO2是其水化学平衡的结果,受水温、水体pH、水生生物活动以及外来水体的混合等多种因素影响,变化较为复杂。为精确量化水库水-气界面CO2交换通量,水文学、湖沼学、生态学和地球化学等领域的学者有必要合作,共同努力进行水库流域尺度的实地观测,完善水体溶解无机碳计算模型,深入探讨水库水体碳动力学机制,为全球碳循环研究和气候变化预测提供可靠的基础数据。  相似文献   
4.
陆地硅的生物地球化学循环研究进展   总被引:2,自引:0,他引:2  
地球表层硅(Si)的生物地球化学循环与大气CO2浓度变化、大洋生物泵作用以及海岸带富营养化等过程密切相关,因此成为全球环境变化研究的核心问题之一。在地质时间尺度上,硅酸盐矿物的化学风化是地球表层所有次生Si的来源。陆地生态系统各次生Si库具有不同的形成机制和驱动因子,这导致各Si库的贮存量和循环周期存在明显差异。土壤Si库中的黏土矿物Si、溶解硅(DSi)和淀积在其他矿物表面的无定形Si都源自硅酸盐矿物的化学风化过程;植物生长过程中吸收土壤中的DSi形成生物Si,然后经微生物分解过程返还给土壤;地表径流将流域陆源Si以悬移质Si和DSi的形式输入河流、海洋。迄今,陆地不同形态Si库的大小及其对全球Si循环的贡献仍不确定。因此,在研究陆地Si的生物地球化学循环过程中,综合考虑各种地表过程及其耦合作用是非常必要的。  相似文献   
5.
粤东五华河流域的化学风化与CO2吸收   总被引:1,自引:1,他引:0  
基于对粤东五华河干流和支流水体的物理、化学组成测试数据,应用质量平衡法和相关分析法探讨湿热山地丘陵地区岩石化学风化过程对大气CO2的吸收.结果表明:五华河水体的总溶解性固体含量(77.11 mg/L)接近于世界河流的平均值(65 mg/L);离子组成以Ca2+、Na+和HCO3-为主,可溶性Si次之.五华河流域化学径流组成主要源自硅酸盐矿物化学风化过程的贡献,碳酸盐矿物的贡献较少;大气和土壤CO2是流域内岩石化学风化的主要侵蚀介质.与同一气候带其他河流相比较,五华河流域岩石化学风化过程对大气CO2的吸收通量(2.14×105mol/(km2·a))较低,这主要是由于流域内缺乏碳酸盐岩所导致.  相似文献   
6.
高全洲  陶贞  董光荣 《中国沙漠》2001,21(4):374-379
查格勒布鲁剖面包含7种类型的沉积相,地层中微量元素的总质量分数大致按照“风成砂→湖相层→黄土→古土壤”的顺序递增。多数微量元素的质量分数在剖面中的演化趋势与沉积物的中值粒烃和硅酸系数的大小呈负相关。与洛川剖面的马兰黄土相比,查格勒布鲁剖面上更新统地层处于相对微弱的化学风化环境,表明,晚更新世期间,巴丹吉林沙漠一带的干湿变化取决于东亚夏季风的盛衰,西风气流带来的降水到达不了巴丹吉林沙漠附近地区。  相似文献   
7.
高寒草甸土壤有机碳储量及其垂直分布特征   总被引:24,自引:0,他引:24  
青藏高原是全球变化的敏感区。高寒草甸草原是青藏高原上最主要的放牧利用草地资源之一。选择青藏高原东北隅海北站内具有代表性的高寒草甸土壤进行高分辨率采样,测定土壤根系和有机碳含量。研究得出,青藏高原高寒草甸土壤贮存有巨大的根系生物量 (23544.60 kg ha-1~27947 kg ha-1) 和土壤有机碳 (21.52 GtC);自然土壤表层 (0~10 cm) 储存了整个剖面土壤有机碳总量的30%左右。比较发现,高寒草甸土壤的有机碳平均贮存量 (23.17×104 kgCha-1) (0~60 cm) 较相应深度的热带森林土壤、灌丛土壤和草地土壤的有机碳贮存量高约1~5倍多。在全球碳预算研究中,青藏高原高寒草甸土壤有机碳库不可忽视。随着全球变暖,表层土壤有机碳分解释放的CO2将增加。为了减少高寒草甸生态系统的碳排放,应加强高寒草甸土壤地表覆被的保护,合理种植深根系植物。这对减缓全球大气CO2浓度升高的速率以及可持续开发高寒草甸的生态服务功能都具有重要意义。  相似文献   
8.
流域化学风化过程的碳汇能力   总被引:3,自引:1,他引:2  
陶贞  高全洲  刘昆 《第四纪研究》2011,31(3):408-416
通过对已有工作较为全面的分析,综述了流域化学风化过程对大气CO<,2>的吸收能力.陆地岩石的化学风化过程是联接地球各大碳库的关键环节.在地质时间尺度上陆地岩石的化学风化,尤其是硅酸盐岩的化学风化构成全球生物地球化学循环的重要碳汇,是调节地球气候性质使之相对稳定的关键表生地质过程.河流在陆地向海洋的物质输送中担任着重要角...  相似文献   
9.
末次冰期以来贵南沙地土地沙漠化与气候变化的关系   总被引:3,自引:0,他引:3  
通过对青海贵南县凤凰山地层剖面的沉积相、磁化率曲线特征分析认为:(1)未次冰期以来,贵南沙地的土地沙漠化发展模式以正、逆过程相交替为基本特点;(2)贵南沙地的土地沙漠化正、逆过程与气候的干冷和暧湿变化所导致的水平生物气候带移动密切相关;(3)随着CO_2等温室效应气体的增多,全球气候变暖,我国季风雨区扩大,本区降水量可能增加,土地沙漠化的发展趋势将是,正过程有所抑制,逆过程有所发展。  相似文献   
10.
用等离子体原子发射光谱法(ICP-AES)分析了珠江马口站和三水站1997-1998年度3个典型水文时段径流悬移质中部分金属元素的含量,同时用元素分析仪测定了其中的有机碳、氮的含量,结果表明,在不同性质的水文动力条件下,流域侵蚀产出的河流悬移质的化学组成发生了变化,这主要缘于有机质在悬移质中所占质量分数的差别。汛期增强的水文动力主要表现为对流域土壤矿物的优先侵蚀,虽然有机质的总侵蚀量也同时增加,但在悬移质中的质量分数却相对减少,而在枯水期较弱的水文动力条件下,河流悬移质中有机质的质量分数增加,悬移质中的有机质对液相中的部分重金属元素产生较矿物更大的吸附作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号