首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synoptic charts of the filaments and active regions near the solar limb are given for the eclipse of November 3, 1994, along with the positions of the prominences. A table helps to associate coronal and chromospheric structures.  相似文献   

2.
Richard Woo 《Solar physics》2007,241(2):251-261
In the absence of magnetic field measurements of the solar corona, the density structure of white-light images has provided important insight into the coronal magnetic field. Recent work sparked by highly sensitive radio occultation measurements of path-integrated density has elucidated the density structure of unprocessed solar eclipse pictures. This paper does the same for processed images that reveal low-contrast small-scale structures, specifically Koutchmy’s edge-enhanced white-light image of the 11 August 1999 solar eclipse. This processed image provides visual evidence for two important results deduced from radio occultation measurements of small-scale density variations. First, in addition to the closed loops readily seen at the base of the corona in high-resolution EUV and soft X-ray images, open filamentary structures permeate the corona including active regions generally thought to be magnetically closed. Observed at the image resolution, the filamentary structures are 1° wide in latitude and an order of magnitude smaller than polar plumes. Second, although inhomogeneities that are convected along with the solar wind are also present, filamentary structures dominate the image because of their steeper density gradients. The quantitative profile of polarized brightness (pB) at the base of the corona shows that the filamentary structures have transverse density gradients that are proportional to their density. This explains why edge-enhanced images, limited in sensitivity to density gradients, tend to detect filamentary structures more readily in high-density regions (e.g., active regions, streamer stalks, and prominences) than in low-density polar coronal holes, and why filamentary structures seem more prevalent in solar eclipse pictures during solar maximum. The pB profile at the base of the corona also fills the gap in Doppler measurements there, reinforcing that open ultra-fine-scale filamentary structures observed by the radio measurements are predominantly radial and that they are an integral part of the radial expansion of the solar wind.  相似文献   

3.
Arch systems lying above quiescent prominences in the solar corona have long drawn the attention of eclipse observers, and such formations have been investigated since the end of the last century. Almost every eclipse photograph shows one or more arches, and in most cases the arch system is accompanied by a quiescent prominence below it and a helmet streamer above it. Also, in some cases there is a dark cavity between the arch system and the prominence.On large-scale photographs obtained at the November 12, 1966 eclipse, detailed photometry has been carried out on a formation in the corona composed of a helmet streamer straddling two multiple-arch systems each with a dark cavity and a quiescent prominence. The excess of electrons in the arches and the deficiency in the cavities are evaluated. We find that the formation of a prominence requires much more material than available in the cavity before depletion. Consequently the condensation theory of coronal matter into prominences seems to have difficulties explaining the necessary amount of matter in the cases where coronal arches - delineating magnetic field lines above the cavity - may exclude inflow of material from the corona. We comment on the low velocity of solar wind in the helmet streamer.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
SWAP images from PROBA2 taken at 174 Å in the Fe ix/x lines are compared with simultaneous slitless flash spectra obtained during the solar total eclipse of 11 July 2010. Myriad faint low-excitation emission lines together with the He i and He ii Paschen α chromospheric lines are recorded on eclipse spectra where regions of limb prominences are obtained with space-borne imagers. We analyzed a deep flash spectrum obtained by summing 80 individual spectra to evaluate the intensity modulations of the continuum. Intensity deficits are observed and measured at the prominences boundaries in both eclipse and SWAP images. The prominence cavities interpreted as a relative depression of plasma density, produced inside the corona surrounding the prominences, and some intense heating occurring in these regions, are discussed. Photometric measurements are shown at different scales and different, spectrally narrow, intervals for both the prominences and the coronal background.  相似文献   

5.
Large-scale coronal structures (helmet streamers) observed in the white-light corona during total solar eclipses and/or with ground-based coronagraphs are mostly located only above quiescent types of prominences. These helmet streamers are maintained due to the magnetic fields of the Sun. Time–latitudinal distribution of prominences during a solar cycle, however, shows both the poleward and equatorward migrations, similar to the 530.3 nm emission corona (the green corona) intensities. Distribution of observed coronal helmet streamers during total solar eclipses, enlarged with the helmet streamers as were obtained by the ground-based coronagraph observations, are compared with the heliographic distribution of prominences and the green corona intensities for the first time. It is shown that the distribution of above-mentioned helmet streamers, reflects – roughly – the time–latitudinal distribution of prominences and emission corona branches, and migrates together with them over a solar cycle.  相似文献   

6.
Grechnev  V.V.  Lesovoi  S.V.  Smolkov  G. Ya.  Krissinel  B.B.  Zandanov  V.G.  Altyntsev  A.T.  Kardapolova  N.N.  Sergeev  R.Y.  Uralov  A.M.  Maksimov  V.P.  Lubyshev  B.I. 《Solar physics》2003,216(1-2):239-272
The Siberian Solar Radio Telescope (SSRT) is one of the world's largest solar radio heliographs. It commenced operation in 1983, and since then has undergone several upgrades. The operating frequency of the SSRT is 5.7 GHz. Since 1992 the instrument has had the capability to make one-dimensional scans with a high time resolution of 56 ms and an angular resolution of 15 arc sec. Making one of these scans now takes 14 ms. In 1996 the capability was added to make full, two-dimensional images of the solar disk. The SSRT is now capable of obtaining images with an angular resolution of 21 arc sec every 2 min. In this paper we describe the main features and operation of the instrument, particularly emphasizing issues pertaining to the imaging process and factors limiting data quality. Some of the data processing and analysis techniques are discussed. We present examples of full-disk solar images of the quiet Sun, recorded near solar activity minimum, and images of specific structures: plages, coronal bright points, filaments and prominences, and coronal holes. We also present some observations of dynamic phenomena, such as eruptive prominences and solar flares, which illustrate the high-time-resolution observations that can be done with this instrument. We compare SSRT observations at 5.7 GHz, including computed `light curves', both morphologically and quantatively, with observations made in other spectral domains, such as 17 GHz radio images, Hα filtergrams and magnetograms, extreme-ultraviolet and X-ray observations, and dynamic radio spectra.  相似文献   

7.
Imaging and spectroscopy of the solar corona, coupled with polarimetry, are the only tools available at present to capture signatures of physical processes responsible for coronal heating and solar wind acceleration within the first few solar radii above the solar limb. With the recent advent of improved detector technology and image processing techniques, broad-band white light and narrow-band multi-wavelength observations of coronal forbidden lines, made during total solar eclipses, have started to yield new views about the thermodynamic and magnetic properties of coronal structures. This paper outlines these unique capabilities, which until present, have been feasible primarily with observations during natural total solar eclipses. This work also draws attention to the exciting possibility of greatly increasing the frequency and duration of solar eclipse observations with Moon orbiting observatories utilizing lunar limb occultation of the solar disk for coronal measurements.  相似文献   

8.
The good quality of the observing sequence of about 60 photographs of the white-light corona taken during the total solar eclipse observations on 29 March 2006, in Al Sallum, Egypt, enable us to use a new method of image processing for enhancement of the fine structure of coronal phenomena. We present selected magnetic-field lines derived for different parameters of the extrapolation model. The coincidence of the observed coronal white-light fine structures and the computed field-line positions provides a 3D causal relationship between coronal structures and the coronal magnetic field.  相似文献   

9.
10.
It is now accepted that the solar activity has direct impact on the Earth climate, but is also responsible for the geomagnetic storms. It is thus fundamental to understand the mechanisms responsible for this activity. We present here first some aspects of the solar activity at the different atmospheric layers of the sun: active region at photospheric levels, filaments (prominences) and flares at chromospheric level and CME's at coronal level. A quick sum‐up of the principal characteristics of each is given as well as the key questions still under investigation. In the second part, two principal parameters are presented to describe these features: helicity and topology. Finally, we sum‐up the observational challenges for new solar telescopes.  相似文献   

11.
P. Ambrož 《Solar physics》2004,224(1-2):61-68
Large-scale magnetic field regions are evolving on a time scale of many weeks and months and are also modified during the solar activity cycle. The position of the regions are compared in a pair of consecutive synoptic charts and the horizontal velocity field responsible for their position changes, is inferred. Besides the axially symmetric zonal and meridional drifts, relating to differential rotation and meridional circulation, also non-axially symmetric velocity structures were observed during the last three solar activity cycles. Changes of the position and spatial distribution, as well as temporal variations of the field strength, closely relate to the occurrence and variations of other forms of solar activity such as sunspots, filaments and prominences and coronal structures. In combination with 11-yr cyclic changes of the large-scale velocity field, a new global dynamic regime of the convection zone is described.  相似文献   

12.
Badalyan  O. G.  Livshits  M. A.  SÝkora  J. 《Solar physics》1997,173(1):67-80
The results of the white-light polarization measurements performed during three solar eclipses (1973, 1980, 1991) are presented. The eclipse images were processed and analysed by the same technique and method and, consequently, the distributions of the polarization and coronal intensity around the Sun were obtained in unified form for all three solar eclipses. The mutual comparisons of our results, and their comparison with the distributions found by other authors, allowed the real accuracy of the current measurements of the white-light corona polarization, which is not worse than ±5%, to be estimated. We have investigated the behaviour of the polarization in dependence on heliocentric distance in helmet streamers and coronal holes. Simultaneous interpretation of the data on polarization and intensity in white-light helmet streamers is only possible if a considerable concentration of coronal matter (plasma) towards the plane of the sky is assumed. The values obtained for the coronal hole regions can be understood within the framework of a spherically symmetrical model of the low density solar atmosphere. A tendency towards increasing polarization in coronal holes, connected with the decrease of the hole's size and with the transition from the minimum to the maximum of the solar cycle, was noticed. The problem of how the peculiarities of the large-scale coronal structures are related to the orientation of the global (dipole) solar magnetic field and to the degree of the goffer character of the coronal and interplanetary current sheet is discussed briefly.  相似文献   

13.
The damping of MHD waves in solar coronal magnetic field is studied taking into account thermal conduction and compressive viscosity as dissipative mechanisms. We consider viscous homogeneous unbounded solar coronal plasma permeated by a uniform magnetic field. A general fifth-order dispersion relation for MHD waves has been derived and solved numerically for different solar coronal regimes. The dispersion relation results three wave modes: slow, fast, and thermal modes. Damping time and damping per periods for slow- and fast-mode waves determined from dispersion relation show that the slow-mode waves are heavily damped in comparison with fast-mode waves in prominences, prominence–corona transition regions (PCTR), and corona. In PCTRs and coronal active regions, wave instabilities appear for considered heating mechanisms. For same heating mechanisms in different prominences the behavior of damping time and damping per period changes significantly from small to large wavenumbers. In all PCTRs and corona, damping time always decreases linearly with increase in wavenumber indicate sharp damping of slow- and fast-mode waves.  相似文献   

14.
Daily measurements of the intensity distribution of the Sun's white-light corona over the height range 1.1–2.7. R? show that the global structure became quite stable (constant over periods of several months) in late 1973 and throughout 1974, as flares, ascending prominences and other transient activity became less frequent with the decline of the solar activity cycle. A highly persistent pattern of geomagnetic activity prevailed for much of this time. Bright coronal structures in the ecliptic plane were associated with geomagnetically quiet conditions, and faint coronal regions (“holes”) with geomagnetic disturbance, after a delay of about three days. These results confirm the “cone-of-avoidance” model for M-regions and reinforce the postulate that high-speed streams in the solar wind originate from coronal holes. Identification of coronal holes from ground-based K-coronal observations corresponds well with those made from spacecraft EUV and X-ray experiments on OSO-7 and Skylab.  相似文献   

15.
Li  K.J.  Liu  X.H.  Xiong  S.Y.  Liang  H.F.  Zhan  L.S.  Zhao  H.J. 《Solar physics》2002,211(1-2):165-177
In the present work, the phase relation between activities of solar active prominences respectively at low and high latitudes in the period 1957–1998 has been studied. We found that from the solar equator to the solar poles, the activity of the solar active prominences occurs earlier at higher latitudes, and that the cycle of the solar active prominences at high latitudes (larger than 50°) leads by 4 years both the sunspot cycle and the corresponding cycle of the solar active prominences at low latitudes (less than 40°).  相似文献   

16.
A direct transfer of energy from photospheric activity to the solar wind by means of electric currents is discussed. Currents are assumed to flow in quiescent prominences which occasionally erupt and give rise to expanding loop-like structures in the corona, as observed from Skylab. Due to expansion, the legs of the loops are transformed into coronal rays which carry currents from the photosphere to the outer parts of the corona or interplanetary medium and then back again to the photosphere. It is proposed that energy is transferred from photospheric activity to the solar wind in the following ways: (1) as kinetic energy of the ejected loop matter; (2) as electric power directly fed into the extended loops; and (3) as torsional waves produced by fluctuations in the loop currents.  相似文献   

17.
利用简单的视频图像采集系统 ,对 1 997年 3月 9日用PanasonicNV -S880EN型摄像机拍摄的黑龙江漠河日全食黄光 (加GG1 1滤光片 )和白光日冕观测资料进行计算处理 ,得到大于 1 .5R⊙ 的太阳活动低年外日冕结构及其相对强度分布。  相似文献   

18.
19.
Coronal holes     
Coronal holes are extensive regions of extremely low density in the solar corona within 60° of latitude from the equator. (They are not to be confused with the well-known coronal cavities which surround quiescent prominences beneath helmet streamers.) We have superposed maps of the calculated current-free (potential) coronal magnetic field with maps of the coronal electron density for the period of November 1966, and find that coronal holes are generally characterized by weak and diverging magnetic field lines. The chromosphere underlying the holes is extremely quiet, being free of weak plages and filaments. The existence of coronal holes clearly has important implications for the energy balance in the transition region and the solar wind.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
In order to study the solar corona during eclipses, a new telescope was constructed. Three coronal images were obtained simultaneously through a single objective of the telescope as the coronal radiation passed through three polarizers (whose transmission directions were turned 0°, 60°, and 120° in the chosen direction); one image was obtained without a polarizer. The telescope was used to observe the solar corona during the eclipse of 1 August 2008. We obtained the distributions of polarization brightness, K-corona brightness, the degree of K-corona polarization and the total polarization degree; the polarization direction, depending on the latitude and radius in the plane of the sky, was also obtained. We calculated the radial distributions of electron density depending on the latitude. The properties of all these distributions were compared for different coronal structures. We determined the temperature of the coronal plasma in different coronal structures assuming hydrostatic equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号