首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable isotopic composition of hydrogen and oxygen (δ2H and δ18O) and tritium activity (3H) were monitored in monthly precipitation at two continental stations (Ljubljana, Zagreb) and six stations along the eastern Adriatic coasts of Slovenia and Croatia in the period 2001–2003. Mean air temperatures and amount of precipitation were also recorded.

Distinct differences in both meteorological and isotopic data between the continental and maritime stations were observed. Seasonal variations in δ18O are smaller at the maritime stations than at the continental ones due to smaller seasonal temperature variations. A good correlation between δ18O and δ2H was obtained for each station, and the local meteoric water lines are close to the Global Meteoric Water Line, with a decreasing trend of slope for the south-Adriatic stations. Good correlations between δ18O in monthly precipitation and mean monthly air temperature were observed at all stations. The slope of δ18O vs. T varied between 0.37‰ °C−1 and 0.15‰ °C−1. Mean 3H activity and seasonal variation of 3H activity are smaller at maritime stations than at continental ones. Additionally, 3H activity decreases in the NW–SE direction of the Adriatic coast.

The study of spatial variations over this relatively small area rich in geographical and climatic diversities showed the complexity of the isotopic composition of precipitation and the isotopic data obtained for eight stations, most of them in the karstic area along the Adriatic coast, and gave valuable information for regional hydrological investigations and modelling of isotope variability over the Mediterranean basin.  相似文献   


2.
The response of a climate proxy against measured temperature, rainfall and atmospheric circulation patterns at sub-annual resolution is the ultimate test of proxy fidelity but very few data exist showing the level of correspondence between speleothem climate proxies and the instrumental climate record. Cave sites on the Gibraltar peninsula provide a unique opportunity to calibrate speleothem climate proxies with the longest known available precipitation isotopes and instrumental records. An actively growing speleothem sampled from New St. Michaels Cave in 2004 is composed of paired laminae consisting of light columnar calcite and a darker microsparitic calcite. Stable isotope analysis of samples micromilled in 100 μm steps at the equivalent of bi-monthly intervals reveals fabric-correlated annual cycles in carbon isotopes, oxygen isotopes and trace elements responding to seasonal changes in cave microclimate, hydrology and ventilation patterns. Calcite δ13C values reach a minimum in the light columnar fabric and evidence from trace element behaviour and cave monitoring indicates that this grows under cave ‘winter’ conditions of highest pCO2, whereas the dark microsparitic calcite, characterised by elevated δ13C and δ18O values grows under low ‘summer’ pCO2 conditions. Drip water δ13CDIC reaches a minimum in March–April, at which time the attenuated δ18O signal becomes most representative of winter precipitation. An age model based on cycle counting and the position of the 14C bomb carbon spike yields a precisely dated winter oxygen isotope proxy of cave seepage water for comparison with the GNIP and instrumental climate record for Gibraltar. The δ18O characteristics of calcite deposited from drip water representing winter precipitation for each year can be derived from the seasonally resolved record and allows reconstruction of the δ18O drip water representing winter precipitation for each year from 1951–2004. These data show an encouraging level of correspondence (r2 = 0.47) with the δ18O of rainfall falling each year between October and March and on a decadal scale the δ18O of reconstructed winter drip water mirrors secular change in mean winter temperatures.  相似文献   

3.
Isotopic variations in melting snow are poorly understood. We made weekly measurements at the Central Sierra Snow Laboratory, California, of snow temperature, density, water equivalent and liquid water volume to examine how physical changes within the snowpack govern meltwater δ18O. Snowpack samples were extracted at 0.1 m intervals from ground level to the top of the snowpack profile between December 1991 and April 1992. Approximately 800 mm of precipitation fell during the study period with δ18O values between −21.35 and −4.25‰. Corresponding snowpack δ18O ranged from −22.25 to −6.25‰. The coefficient of variation of δ18O in snowpack levels decreased from −0.37 to −0.07 from winter to spring, indicating isotopic snowpack homogenization. Meltwater δ18O ranged from −15.30 to −8.05‰, with variations of up to 2.95‰ observed within a single snowmelt episode, highlighting the need for frequent sampling. Early snowmelt originated in the lower snowpack with higher δ18O through ground heat flux and rainfall. After the snowpack became isothermal, infiltrating snowmelt displaced the higher δ18O liquid in the lower snowpack through a piston flow process. Fractionation analysis using a two-component mixing model on the isothermal snowpack indicated that δ18O in the initial and final half of major snowmelt was 1.30‰ lower and 1.45‰ higher, respectively, than the value from simple mixing. Mean snowpack δ18O on individual profiling days showed a steady increase from −15.15 to −12.05‰ due to removal of lower δ18O snowmelt and addition of higher δ18O rainfall. Results suggest that direct sampling of snowmelt and snow cores should be undertaken to quantify tracer input compositions adequately. The snowmelt sequence also suggests that regimes of early lower δ18O and later higher δ18O melt may be modeled and used in catchment tracing studies.  相似文献   

4.
High-precision in-situ ion microprobe (SIMS) oxygen isotope analysis of zircons from two diorite intrusions associated with the late Caledonian Lochnagar pluton in Scotland has revealed large differences in the degree of heterogeneity in zircon δ18O between the diorites. Zircon crystals from the Cul nan Gad diorite (CnG) show a unimodal distribution of oxygen isotope values (δ18O = 6.0 ± 0.6‰ (2σ)) and no or only minor grain-scale variation. Those from the Allt Darrarie diorite (AD1) show a large range in δ18O and an apparent bimodal distribution with modes of 6.6 ± 0.4‰ and 7.3 ± 0.4‰. Variations of up to 1.2‰ occur between and within grains; both an increase and decrease in δ18O with zircon growth has been observed. The δ18O composition of growing zircon can only change if open-system processes affect the magma composition, i.e. if material of contrasting δ18O composition is added to the magma. The variability in AD1 is interpreted to represent a cryptic record of magma mixing. A ‘deep crustal hot zone’ is a likely site for generation of the dioritic magmas which developed by mixing of residual melts and crustal partial melts or by melting of mafic lower crustal rocks. The overall small number of zircons with mantle-like δ18O values (5.3 ± 0.6‰ (2σ)) in the Lochnagar diorites is largely the product of crustal differentiation rather than crustal growth.

The δ18O of quartz from the CnG and AD1 diorites shows only minor variation (CnG: 10.9 ± 0.5‰ (2σ), AD1: 11.7 ± 0.6‰ (2σ)) within single populations, with no evidence of mixing. Quartz–zircon isotopic disequilibrium is consistent with later crystallisation of quartz from late magmatic fluids, and in case of the AD1 diorite after the inferred magma mixing from a homogenised, higher δ18O melt.

High-precision SIMS oxygen isotope analysis of zircon provides a new approach to identifying and resolving previously undetected early-stage magma mixing and constraining the compositions and origins of the component magmas. A combination of zircon, quartz and whole-rock data has proven to be a powerful tool in reconstructing the petrogenetic evolution of diorite from early crystallisation to late alteration.  相似文献   


5.
Groundwater flow-paths through shallow-perch and deep-regional basaltic aquifers at the Golan Heights, Israel, are reconstructed by using groundwater chemical and isotopic compositions. Groundwater chemical composition, which changes gradually along flow-paths due to mineral dissolution and water–rock interaction, is used to distinguish between shallow-perched and deep-regional aquifers. Groundwater replenishment areas of several springs are identified based on the regional depletion in rainwater δ18O values as a function of elevation (−0.25‰ per 100 m). Tritium concentrations assist in distinguishing between pre-bomb and post-bomb recharged rainwater.

It was found that waters emerging through the larger springs are lower in δ18O than surrounding meteoric water and poor in tritium; thus, they are inferred to originate in high-elevation regions up to 20 km away from their discharge points and at least several decades ago. These results verify the numerically simulated groundwater flow field proposed in a previous study, which considered the geological configuration, water mass balance and hydraulic head spatial distribution.  相似文献   


6.
Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys   总被引:3,自引:0,他引:3  
Many of the heaviest and lightest natural zinc (Zn) isotope ratios have been discovered in hydrothermal ore deposits. However, the processes responsible for fractionating Zn isotopes in hydrothermal systems are poorly understood. In order to better assess the total range of Zn isotopes in hydrothermal systems and to understand the factors which are responsible for this isotopic fractionation, we have measured Zn isotopes in seafloor hydrothermal fluids from numerous vents at 9–10°N and 21°N on the East Pacific Rise (EPR), the TAG hydrothermal field on the Mid-Atlantic Ridge, and in the Guaymas Basin. Fluid δ66Zn values measured at these sites range from + 0.00‰ to + 1.04‰. Of the many physical and chemical parameters examined, only temperature was found to correlate with fluid δ66Zn values. Lower temperature fluids (< 250 °C) had both heavier and more variable δ66Zn values compared to higher temperature fluids from the same hydrothermal fields. We suggest that subsurface cooling of hydrothermal fluids leads to precipitation of isotopically light sphalerite (Zn sulfide), and that this process is a primary cause of Zn isotope variation in hydrothermal fluids. Thermodynamic calculations carried out to determine saturation state of sphalerite in the vent fluids support this hypothesis with isotopically heaviest Zn found in fluids that were calculated to be saturated with respect to sphalerite. We have also measured Zn isotopes in chimney sulfides recovered from a high-temperature (383 °C) and a low-temperature (203 °C) vent at 9–10°N on the EPR and, in both cases, found that the δ66Zn of chimney minerals was lighter or similar to the fluid δ66Zn. The first measurements of Zn isotopes in hydrothermal fluids have revealed large variations in hydrothermal fluid δ66Zn, and suggest that subsurface Zn sulfide precipitation is a primary factor in causing variations in fluid δ66Zn. By understanding how chemical processes that occur beneath the seafloor affect hydrothermal fluid δ66Zn, Zn isotopes may be used as a tracer for studying hydrothermal processes.  相似文献   

7.
Benthic foraminiferal magnesium/calcium ratios were determined on one hundred and forty core-top samples from the Atlantic Ocean, the Norwegian Sea, the Indian Ocean, the Arabian Sea and the Pacific Ocean, mostly at sites with bottom water temperatures below 5 °C. Mg/Ca ratios are consistently lower, by  0.2 mmol/mol, in samples cleaned using oxidative and reductive steps than using oxidative cleaning. Differences between Cibicidoides species have been identified: Mg/Ca of Cibicidoides robertsonianus > Cibicidoides kullenbergi > Cibicidoides wuellerstorfi. Comparison with bottom water temperatures support observations of lowered Mg/Ca of C. wuellerstorfi at temperature below  3 °C compared with values predicted by published calibrations and from other Cibicidoides species. Hydrographic data shows that carbonate ion saturation (Δ[CO32−]) decreases rapidly below this temperature. An empirical sensitivity of Δ[CO32−] on Mg/Ca has been established for C. wuellerstorfi of 0.0086 ± 0.0006 mmol/mol/μmol/kg. A novel application using modern temperatures and Last Glacial Maximum temperatures derived via pore fluid modelling supports a carbonate ion saturation state effect on Mg incorporation. This may significantly affect calculated δ18Oseawater obtained from foraminiferal δ18O and Mg/Ca temperature.  相似文献   

8.
C3 and C4 grasses differ greatly in their responses to environmental controls and influences on biogeochemical processes (e.g. water, carbon, and nutrient cycling). Difficulties in distinguishing between these two functional groups of grasses have hindered paleoecological studies of grass-dominated ecosystems. Stable carbon isotopic analysis of individual grains of grass pollen using a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer holds promise for improving C3 and C4 grass reconstructions. This technique, SPIRAL (Single Pollen Isotope Ratio AnaLysis), has only been evaluated using pollen of known C3 and C4 grasses. To test the ability of SPIRAL to reproduce the abundance of C3 and C4 grasses on the landscape, we measured δ13C values of > 1500 individual grains of grass pollen isolated from the surface sediments of ten lakes in areas that span a large gradient of C3- and C4-grass abundance, as determined from vegetation surveys. Results indicate a strong positive correlation between the δ13C-based estimates of % C4-grass pollen and the abundance of C4 grasses on the landscape. The % C4-grass pollen slightly underestimates the actual abundance of C4 grasses at sites with high proportions of C4 grasses, which can be corrected using regression analysis. Comparison of the % C4-grass pollen with C/N and δ13C measurements of bulk organic matter illustrates the distinct advantages of grass-pollen δ13C as a proxy for distinguishing C3 and C4 shifts within the grass family. Thus SPIRAL promises to advance our understanding of grassland ecology and evolution.  相似文献   

9.
Negative carbon-isotope excursions have been comprehensively studied in the stratigraphic record but the discussion of causal mechanisms has largely overlooked the potential role of biomass burning. The carbon-isotopic ratios (δ13C) of vegetation, soil organic matter and peat are significantly lower than atmospheric carbon dioxide (CO2), and thereby provide a source of low 13C CO2 when combusted. In this study, the potential role of biomass burning to generate negative carbon isotope excursions associated with greenhouse climates is modeled. Results indicate that major peat combustion sustained for 1000 yr increases atmospheric CO2 from 2.5× present atmospheric levels (PAL) to 4.6× PAL, and yields a pronounced negative δ13C excursion in the atmosphere ( 2.4‰), vegetation ( 2.4‰) and the surface ocean ( 1.2‰), but not for the deep ocean ( 0.9‰). Release of CO2 initiates a short-term warming of the atmosphere (up to 14.4 °C, with a duration of 1628 yr), which is consistent with the magnitude and length of an observed Toarcian excursion event. These results indicate that peat combustion is a plausible mechanism for driving negative δ13C excursions in the rock record, even during times of elevated pCO2.  相似文献   

10.
Oxygen and carbon data from eight stalagmites from northwest South Island are combined to produce composite records of δ18O and δ13C from 23.4 ka to the present. The chronology is anchored by 43 thermal ionization mass spectrometry (TIMS) uranium series ages. Delta 18O values are interpreted as having a first order positive relationship to temperature, but also to be influenced by precipitation in a complex manner. Delta 13C is interpreted as responding negatively to increases in atmospheric CO2 concentration, biological activity and precipitation amount.

Six climatic phases are recognized. After adjustment of 1.2‰ for the ice volume effect, the δ18O record between 23 and 18 ka varies around −3.72‰ compared to the Holocene average of −3.17‰. Late-glacial warming commenced between 18.2 and 17.8 ka and accelerated after 16.7 ka, culminating in a positive excursion between 14.70 and 13.53 ka. This was followed by a significant negative excursion between 13.53 and 11.14 ka of up to 0.55‰ depth that overlapped the Antarctic Cold Reversal (ACR) and spanned the Younger Dryas (YD). Positive δ18O excursions at 11.14 ka and 6.91–6.47 ka represent the warmest parts of the Holocene. The mid-Holocene from 6 to 2 ka was marked by negative excursions that coincide with increased glacial activity in the South Island. A short positive excursion from 0.71 to 0.57 ka was slightly later than the Medieval Warm Period of Europe.

Delta 13C values were high until 17.79 ka after which there was an abrupt decrease to 17.19 ka followed by a steady decline to a minimum at 10.97 ka. Then followed a general increase, suggesting a drying trend, to 3.23 ka followed by a further general decline. The abrupt decrease in δ-values after 17.79 ka probably corresponds to an increase in atmospheric CO2 concentration, biological activity and wetness at the end of the Last Glaciation, but the reversal identified in the δ18O record from 13.53 to 11.14 ka was not reflected in δ13C changes. The lowest δ13C values coincided with the early Holocene climatic suboptimum when conditions were relatively wet as well as mild.

Major trends in the δ18Oc record are similar to the Northern Hemisphere, but second order detail is often distinctly different. Consequently, at the millennial scale, a more convincing case can be made for asymmetric climatic response between the two hemispheres rather than synchronicity.  相似文献   


11.
Stable isotope values of Costa Rican surface waters   总被引:3,自引:0,他引:3  
Stable isotope data of surface waters from the humid tropics in general, and Costa Rica in particular, are scarce. To improve our understanding of the spatial distribution of stable isotopes in surface waters, we measured δ18O and δD in river and lake (n=63) and precipitation (n=3) samples from Costa Rica. We also present data from the IAEA/WMO isotopes in precipitation network as context for our study. Surface water isotope values do not strongly correlate with elevation, stream head elevation, stream length, distance from Caribbean Sea, or estimated mean annual precipitation for the country as a whole. However, the data show distinct regional trends. The δ18O and δD values downwind of mountain ranges are inversely related to the altitude of the ranges the air masses traverse. In the lee of the high Talamanca Range, δ18O values are 6–8‰ lower, while in the lee of the lower Tilarán Range δ18O values are 2–3‰ lower than upwind sites along the Caribbean Slope. An altitude effect of −1.4‰ δ18O/km is present on the Pacific slope of southern Costa Rica, equivalent to a temperature effect of −0.3‰/°C. The Nicoya and Osa Peninsulas have higher values than upwind sites, suggesting input of Pacific-sourced moisture, evaporative enrichment, or decreased condensation temperatures. Elevated and increasing d-excess values inland along the Nicaragua Trough suggest a recycled component may be an important contributor to the water budget. These data provide preliminary stable isotope information for Costa Rica, and will benefit paleoclimatic research in the region. More detailed studies would be beneficial to our understanding of the controls on stable isotope composition of tropical waters.  相似文献   

12.
58 samples of fossil mammoth and reindeer teeth and bones of various ages and coming from different locations were studied for the oxygen isotopic composition of their phosphate. Samples from Siberia have interstadial (Marine Isotope Stage 3), stadial (MIS 2), late-glacial and post-glacial ages. Russian and Ukrainian samples refer to the late-glacial and transitional (between the interstadial and glacial stages) time. The δ18O of palaeoenvironmental waters were calculated from the δ18Op obtained from fossil samples by means of the isotope equations calibrated on modern specimens of elephants and deer respectively. The δ18Ow obtained are generally lighter than those measured nowadays in the same areas and not far from those measured on ice cores of Holocene age, the isotopic differences being not greater than a few δ units. The calculated values are also in fairly good agreement with some isotopic values obtained from Siberian permafrost samples. According to the results obtained it seems that the elephant and deer equations can be reasonably used respectively in the case of fossil mammoth and deer skeletons to evaluate environmental palaeowaters.  相似文献   

13.
Computer aided multi-parameter signal correlation is used to develop a common high-precision age model for eight gravity cores from the subtropical and subantarctic South Atlantic. Since correlations between all pairs of multi-parameter sequences are used, and correlation errors between core pairs (A, B) and (B, C) are controlled by comparison with (A, C), the resulting age model is called a stratigraphic network. Precise inter-core correlation is achieved using high-resolution records of magnetic susceptibility κ, wet bulk density ρ and X-ray fluorescence scans of elemental composition. Additional δ18O records are available for two cores. The data indicate nearly undisturbed sediment series and the absence of significant hiatuses or turbidites. After establishing a high-precision common depth scale by synchronously correlating four densely measured parameters (Fe, Ca, κ, ρ), the final age model is obtained by simultaneously fitting the aligned δ18O and κ records of the stratigraphic network to orbitally tuned oxygen isotope [J. Imbrie, J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisias, W. L. Prell, N. J. Shackleton, The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in: A. Berger, J. Imbrie, J. Hays, G. Kukla, B. Saltzman (Eds.), Milankovitch and Climate: Understanding the Response to Orbital Forcing, Reidel Publishing, Dordrecht, 1984, pp. 269-305; D. Martinson, N. Pisias, J. Hays, J. Imbrie, T. C. Moore Jr., N. Shackleton, Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300.000-Year chronostratigraphy, Quat. Res. 27 (1987) 1-29.] or susceptibility stacks [T. von Dobeneck, F.Schmieder, Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super-and sub-Milankovitch Bands, in: G. Fischer, G. Wefer (Eds.), Use of proxies in paleoceanography: Examples from the South Atlantic, Springer-Verlag, Berlin (1999), pp. 601-633.]. Besides the detection and elimination of errors in single records, the stratigraphic network approach allows to check the intrinsic consistency of the final result by comparing it to the outcome of more restricted alignment procedures. The final South Atlantic stratigraphic network covers the last 400 kyr south and the last 1200 kyr north of the Subtropical Front (STF) and provides a highly precise age model across the STF representing extremely different sedimentary regimes. This allows to detect temporal shifts of the STF by mapping δMn / Fe. It turns out that the apparent STF movements by about 200 km are not directly related to marine oxygen isotope stages.  相似文献   

14.
In order to better constrain the Li isotope composition of the bulk solar system and Li isotope fractionation during accretion and parent body processes, Li isotope compositions and concentrations were determined on a number of meteorite falls and finds. This is the first comprehensive study that systematically investigates a representative set of samples from carbonaceous chondrites (CI, CM2, CO3, CV3, CK4 and one ungrouped member), enstatite chondrites (EH, EL), ordinary chondrites (H, L, LL), and achondrites (one eucrite, diogenites, one pallasite, and a silicate inclusion from a IAB iron).

Carbonaceous chondrites have an average isotope composition of δ7Li = + 3.2‰ ± 1.9 (2σ) which agrees with the average composition of relatively pristine olivines (representative for the bulk composition) from the Earth primitive upper mantle (PUM). This is lighter than the average δ7Li of the basaltic differentiates of the Earth, Moon and Mars and the achondrites. It is an important observation, however, that the lighter end of the isotopic range of the differentiates always coincides with the averages of the mantle olivines and the carbonaceous chondrites. From this we conclude that the bulk of the inner solar system consists mostly of material from carbonaceous chondrites and that the variation seen in the differentiates is due to planetary body processes. Ordinary chondrites are significantly lighter than carbonaceous chondrites. No significant differences in δ7Li exist between enstatite chondrites (n = 3) and carbonaceous or ordinary chondrites. The difference between carbonaceous and ordinary chondrites and the variability within the chondrites could indicate the existence of distinct Li isotope reservoirs in the early solar nebula.  相似文献   


15.
We present an overview of the problems relating to the development of sedimentary chronologies for Antarctic margin sediments, and review the recent application of compound-specific radiocarbon dating methods for resolving them. Radiocarbon dating of solvent-extractable, short-chain (C14, C16, and C18) fatty acids isolated from surface sediments of the Ross Sea, Antarctica, revealed their ages to be consistent with that of the modern dissolved inorganic carbon (DIC) reservoir age (pre-bomb, Δ14C≈−150‰; post-bomb, Δ14C≈−100‰) in this region. This contrasts sharply with the radiocarbon ages of bulk organic matter in the corresponding sediments are substantially older (Δ14C=−298‰ to −712‰). Furthermore, the radiocarbon ages of these fatty acids progressively increase with the core depth. These results clearly show a utility of the compound-specific radiocarbon dating for developing sediment chronologies in the Antarctic margin sediments. This approach is potentially applicable to Arctic Ocean, as well as other areas of Southern Ocean where similar interferences by fossil or pre-aged carbon inputs have hindered the progress in the development of late Quaternary paleoceanographic records.  相似文献   

16.
High resolution time series data of hydrogen (δD) and oxygen (δ18O) isotope values of precipitation have been generated for the first time at Kolkata, eastern India where the summer monsoon clouds from Bay of Bengal (BOB) commence their journey over India. Use of a Rayleigh cum two component mixing model and comparison of Kolkata data with the International Atomic Energy Agency (IAEA)–Global Network of Isotopes in Precipitation (GNIP) data base of New Delhi suggest that the precipitation at New Delhi cannot be explained by simple continental effect of a BOB vapour source alone, traveling and raining successively along Kolkata–New Delhi route. It is necessary to invoke an admixture of  20% vapour originating from the Arabian sea with the vapour coming from BOB and finally causing summer monsoon rains at New Delhi. The findings have major implications to the regional water vapour budget over India.  相似文献   

17.
The recent 1997 Umbria-Marche, Central Italy, earthquake sequence allowed us to model recorded ground motions using a method developed by Beresnev and Atkinson [Bull Seism Soc Am 87 (1997) 67–84; Seism Res Lett, 69 (1998) 27–32; Bull Seism Soc Am 88 (1998) 1392–1401]. The method generalizes the stochastic ground-motion simulation technique, developed for point sources, to the case of finite faults. It subdivides the fault plane into subfaults and assumes each subfault to be a point source with a ω2 spectrum. Geometric spreading and regional anelastic attenuation are included in the model. The data include horizontal acceleration recordings from the SSN and ENEL databases of the 1997 Umbria-Marche events on 26 September, at 00:33 GMT, with Mw=5.7, and at 09:40 GMT, with Mw=6.0; and on 14 October at 15:23 GMT, with Mw=5.6. The strong motion simulations are performed using model parameters based on the results of previous studies, and adjusting the subfault size to calibrate the simulation model against recorded ground motions. Local site response is considered to account for observed amplification effects at specific recording sites (e.g. Nocera Umbra). A good agreement is found between the simulated response spectra and the recorded data, concluding that this method reproduces the salient ground-motion characteristics at different distances and azimuths.  相似文献   

18.
Deformation of synthetic calcite–anhydrite aggregates to large shear strains (up to γ = 12.4 at 600 °C, 300 MPa confining pressure and a constant angular displacement rate corresponding to a shear strain rate of 10− 3 s− 1) resulted in the first experimental observation of strain localisation from initially homogeneous rocks. In contrast to experiments on pure calcite and anhydrite, which deformed homogeneously to large strains (γ ≥ 5), all experiments on calcite–anhydrite mixtures resulted in heterogeneous deformation at γ > 1 and the formation of narrow localised bands in the microstructures at γ > 4. In these bands, the amount of strain is at least twice as large as in the rest of the sample and individual grains of the same phase cluster and align, thereby forming microstructural layering similar to planar fabrics in natural mylonites. A switch in deformation mechanism in anhydrite from dislocation creep to diffusion creep and/or grain boundary sliding occurs simultaneously with strain localisation. It is concluded that deformation-induced heterogeneous phase distributions cause local strength differences initiating strain localisation in the calcite–anhydrite mixtures. The study suggests that the presence of two phases in combination with a change in deformation mechanism may be responsible for strain localisation in natural poly-mineralic mylonites.  相似文献   

19.
Few methods exist for measuring rapidly changing fluid contents at the pore scale that simultaneously allow whole flow field visualization. We present a method for using real-time neutron radiography to measure rapidly changing moisture profiles in porous media. The imaging technique monitors the attenuation of a thermal neutron beam as it traverses a flow field and provides measurements every 30 ms with an image area >410 cm2 and a spatial resolution 0.05 cm. The technique is illustrated by measuring the variation in moisture content across a wetting front moving at constant velocity through SiO2 sand. The relative contributions of the hydraulic conductivity and diffusivity terms in Richards' equation to the total fluid flux within the wetting front region were also measured. The diffusivity was found to rise from zero to a peak value within the wetting front region before falling off while the conductivity was found to rise monotonically. The reliability of the technique was checked via mass balance.  相似文献   

20.
We investigated the distribution of naturally occurring geochemical tracers (222Rn, 223Ra, 224Ra, 226Ra, CH4, δ18O, and δ2H) in the water column and adjacent groundwater of Mangueira Lagoon as proxies of groundwater discharge. Mangueira Lagoon is a large (90 km long), shallow (4–5 m deep), fresh, and non-tidal coastal lagoon in southern Brazil surrounded by extensively irrigated rice plantations and numerous irrigation canals. We hypothesized that the annual, intense irrigation for rice agriculture creates extreme conditions that seasonally change groundwater discharge patterns in the adjacent lagoon. We further supposed that dredging of irrigation canals alters groundwater fluxes.

While the activities of 222Rn in shallow groundwater were 2–3 orders of magnitude higher than in surface water, CH4 and radium isotopes were only 1 order of magnitude higher. Therefore, 222Rn appears to be the preferred groundwater tracer in this system. Radon concentrations and conductivities were dramatically higher near the pump house of rice irrigation canals, consistent with a groundwater source. Modeling of radon inventories accounting for total inputs (groundwater advection, diffusion from sediments, and decay of 226Ra) and losses (atmospheric evasion, horizontal mixing and decay) indicated that groundwater advection rates in the irrigation canals (25 cm/d) are over 2 orders of magnitude higher than along the shoreline (0.1 cm/d). Nearly 75% of the total area of the canals is found in the southern half of the lagoon, where groundwater inputs seem to be higher as also indicated by methane and stable isotope trends. In spite of the relatively small area of the canals, we estimate that they contribute nearly 70% of the total (57,000 m3/d) groundwater input into the entire Mangueira Lagoon. We suggest that the dredging of these canals cut through aquitards which previously restricted upward advection from the underlying permeable strata. The irrigation channels may therefore represent an important but previously overlooked source of nutrients and other dissolved chemicals derived from agricultural practices into the lagoon.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号