首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   2篇
地质学   4篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2005年   2篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The rheological properties of upper mantle rocks play an important role in controlling the dynamics of the lithosphere and mantle convection. Experimental studies and microstructures in naturally deformed mantle rocks usually imply that olivine controls the upper mantle rheology. Here we show for the first time evidence from the geometry of folded compositional layers in mantle rocks from Western Norway that garnet-rich rocks can have lower solid-state viscosities than olivine-rich rocks. Modeling of melt-free and dry rheology of garnet and olivine confirms that the reversed viscosity contrast between garnet-rich and olivine-rich layers for this folding event can be achieved over a relatively wide range of temperatures at low stress conditions when the fine-grained garnet deforms by diffusion creep while the coarse-grained olivine deforms by dislocation creep and/or diffusion creep.In general, modeling of the fold viscosity contrast shows that in the stable subcontinental lithospheric mantle or convecting mantle such a reversed viscosity contrast can be formed due to diffusion creep processes in fine-grained garnets in a dry mantle environment or at conditions where the garnet-pyroxene layer is partially molten, i.e. close to solidus–liquidus conditions in the upper mantle. Alternatively in cold plate tectonic settings, e.g. in subduction zones, some water-weakening is a feasible mechanism to create the reversed viscosity contrast between garnet and olivine.  相似文献   
2.
We report the field, petrographic and mineral chemical characteristics of relict super‐silicic (=majoritic) garnet microstructures from the Otrøy peridotites in the Western Gneiss Region, Norway. The evidence for the former existence of super‐silicic garnet consists of two‐pyroxene exsolution microstructures from garnet. Estimates of the initial composition of the super‐silicic garnet imply pressures of 6–6.5 GPa, indicating that the Otrøy garnet peridotites were derived from depths >185 km. The garnet peridotites consist of inter‐banded variable compositions with c. 50% garnet peridotite and 50% garnet‐free peridotite. Two distinct garnet types were identified: (a) normal matrix garnet, grain‐size ≤4 mm, and (b) large isolated single garnet crystals and/or (polycrystalline) garnet nodules up to 10 cm in size. Large garnet nodules occur only within limited bands within the garnet peridotites. The relicts of super‐silicic garnet were exclusively found in some (not all) of the larger garnet nodules. Petrographic observations revealed that the microstructure of nodular garnet consists of the following four characteristic elements. (1) Individual garnet nodules are polycrystalline, with grain sizes of 2–8 mm. Garnet grain boundaries are straight with well‐defined triple junctions. (2) Some garnet triple junctions and garnet grain boundaries are decorated by interstitial orthopyroxene. (3) Cores of larger polycrystalline garnet contain two‐pyroxene exsolution microstructures. (4) Precipitation‐free rims (2 mm thick) surround garnet cores containing the exsolved pyroxene microstructure. Pyroxene exsolution from super‐silicic garnet was subsequently followed by brittle–ductile deformation of garnet. Both exsolved pyroxene needles and laths become undulous or truncated by fractures. Simultaneous garnet plasticity is indicated by the occurrence of high densities of naturally decorated dislocations. Transmission electron microscopy observations indicate that decoration is due to Ti‐oxide precipitation. Estimates of the P–T conditions for mineral chemical equilibration were obtained from geothermobarometry. The mineral compositions equilibrated at mantle conditions around 805±40 °C and 3.2±0.2 GPa. These P–T estimates correspond to cold continental lithosphere conditions at depths of around 105 km. From a combination of both depth estimates it can be concluded that the microstructural memory of the rock extends backwards to twice as great a depth range as obtained by thermobarometric methods. Available geochronological and geochemical data of Norwegian garnet peridotites suggest a multi‐stage, multi‐orogenic exhumation history.  相似文献   
3.
As a pilot study of the role of water in the attenuation ofseismic waves in the Earth's upper mantle, we have performeda series of seismic-frequency torsional forced-oscillation experimentson a natural (Anita Bay) dunite containing accessory hydrousphases, at high temperatures to 1300°C and confining pressure(Pc) of 200 MPa, within a gas-medium high-pressure apparatus.Both oven-dried and pre-fired specimens wrapped in Ni–Fefoil within the (poorly) vented assembly were recovered essentiallydry after 50–100 h of annealing at 1300°C followedby slow staged cooling. The results for those specimens indicatebroadly similar absorption-band viscoelastic behaviour, butwith systematic differences in the frequency dependence of strain-energydissipation Q–1, attributed to differences in the smallvolume fraction of silicate melt and its spatial distribution.In contrast, it has been demonstrated that a new assembly involvinga welded Pt capsule retains aqueous fluid during prolonged exposureto high temperatures—allowing the first high-temperaturetorsional forced-oscillation measurements under high aqueousfluid pore pressure Pf. At temperatures >1000°C, a markedreduction in shear modulus, without concomitant increase inQ–1, is attributed to the widespread wetting of grainboundaries resulting from grain-scale hydrofracturing and themaintenance of conditions of low differential pressure Pd =Pc – Pf . Staged cooling from 1000°C is accompaniedby decreasing Pf and progressive restoration of significantlypositive differential pressure resulting in a microstructuralregime in which the fluid on grain boundaries is increasinglyrestricted to arrays of pores. The more pronounced viscoelasticbehaviour observed within this regime for the Pt-encapsulatedspecimen compared with the essentially dry specimens may reflectboth water-enhanced solid-state relaxation and the direct influenceof the fluid phase. The scenario of overpressurized fluids andhydrofracturing in the Pt-encapsulated dunite specimen may havesome relevance to the high Q–1 and low-velocity zonesobserved in subduction-zone environments. The outcomes of thisexploratory study indicate that the presence of water can havea significant effect on the seismic wave attenuation in theupper mantle and provide the foundation for more detailed studieson the role of water. KEY WORDS: seismic wave attenuation; water; dunite; hydrous mineral; shear modulus; viscoelasticity; olivine; grain-scale hydrofracturing  相似文献   
4.
Deformation of synthetic calcite–anhydrite aggregates to large shear strains (up to γ = 12.4 at 600 °C, 300 MPa confining pressure and a constant angular displacement rate corresponding to a shear strain rate of 10− 3 s− 1) resulted in the first experimental observation of strain localisation from initially homogeneous rocks. In contrast to experiments on pure calcite and anhydrite, which deformed homogeneously to large strains (γ ≥ 5), all experiments on calcite–anhydrite mixtures resulted in heterogeneous deformation at γ > 1 and the formation of narrow localised bands in the microstructures at γ > 4. In these bands, the amount of strain is at least twice as large as in the rest of the sample and individual grains of the same phase cluster and align, thereby forming microstructural layering similar to planar fabrics in natural mylonites. A switch in deformation mechanism in anhydrite from dislocation creep to diffusion creep and/or grain boundary sliding occurs simultaneously with strain localisation. It is concluded that deformation-induced heterogeneous phase distributions cause local strength differences initiating strain localisation in the calcite–anhydrite mixtures. The study suggests that the presence of two phases in combination with a change in deformation mechanism may be responsible for strain localisation in natural poly-mineralic mylonites.  相似文献   
5.
Post-deformational annealing of calcite rocks   总被引:3,自引:3,他引:3  
The evolution of microstructure and crystallographic preferred orientation (CPO) during post-deformational annealing was studied on three calcite rock types differing in purity and grain size: Carrara marble (98% calcite, mean grain size of 115 μm), Solnhofen limestone (96%, 5 μm) and synthetic calcite aggregates (99%, 7 μm). Samples were first deformed in torsion at 727 °C at a shear strain rate of 3 × 10 4 s 1 to a shear strain of 5 and subsequently heat-treated at 727 °C for various durations between 0 and 24 h. Microstructures and CPOs were analysed by optical microscopy, image analysis and electron backscatter diffraction (EBSD).All rock types deformed in the dislocation creep field at the same applied conditions, but their microstructures and CPOs after deformation and after annealing differed depending on starting grain size and material composition. In Carrara marble and in the synthetic calcite aggregate, a strong CPO developed during deformation accompanied by dynamic recrystallisation with significant changes in grain size. During annealing, widespread grain growth and subtle changes of CPO occurred, and equilibrated foam microstructures were approached after long annealing times. The CPO is the only feature in annealed samples indicating an earlier deformation phase, although it is not always identical to the CPO formed during deformation. In the more impure Solnhofen limestone, secondary phases on grain boundaries suppressed grain boundary mobility and prevented both the formation of a recrystallisation CPO during deformation and grain size modification during deformation and annealing.  相似文献   
6.
The rate of static dislocation recovery in Fo90 olivine has been studied under conditions of high temperature and controlled atmosphere in compressively deformed polycrystals hot-pressed from synthetic (sol–gel) and natural (San Carlos) precursor powders. The sol–gel olivine, containing a small fraction of orthopyroxene, was deformed to a final strain of 19% with a maximum differential stress of 266 MPa whereas the San Carlos specimen was deformed to 15% strain and 260 MPa differential stress. Small samples cut from these deformed materials were annealed under high-temperature, controlled atmosphere conditions, for different durations to allow partial recovery of the dislocation sub-structures. Oxidative-decoration of the microstructural features, followed by backscattered electron imaging at 5 kV and image analysis, was used to determine dislocation density. The variation of dislocation density ρ with time t at absolute temperature T was fitted to a second-order rate equation, in integral form, 1/ρ(t) − 1/ρ(0) = kt with k = k 0 exp(−E a/RT). The activation energy E a of the recovery process is 240 ± 43 and 355 ± 81 kJ mol−1 for sol–gel and San Carlos olivine polycrystals, respectively. The measured rates are one to two orders of magnitude lower than those reported in previous studies on natural single crystal olivine. The difference may be explained by several factors such as high dislocation densities measurable from large areas at high magnification for the SEM and the technique used to estimate dislocation densities. Comparison between fine-grained sol–gel olivine and the coarser-grained San Carlos olivine aggregate did not indicate that grain boundaries play an important role in dislocation recovery, but the absence of grain boundaries might also have contributed to the high dislocation recovery rates previously measured for single crystals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号