首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The tectonic evolution features in the western South China Sea (SCS) are directly related to the Tethys tectonic province. The Red River fault zone (RRFZ) comprises a large part of the Tethys tectonic province and is the boundary between the Europe Block and the India-Asia Block[1]. It serves as the contact between the uplift of the Qinghai-Tibet Plateau and the SCSopening. The RRFZ, which is an important dividing line in the geology of the SE Asia, is about 1000 km long in the co…  相似文献   

2.
南沙地块内破裂不整合与碰撞不整合的构造分析   总被引:2,自引:2,他引:0       下载免费PDF全文
廷贾断裂以东的南沙地块与南海北部陆缘共轭,因此其构造过程研究对认识整个南海的构造演化具有重要意义.地震资料和区域构造背景分析揭示,破裂不整合面(BU)和碰撞不整合面(CU)是控制南沙地块内盆地演化的骨架界面;为了揭示南沙地块内的主要构造过程,本文利用地震剖面分析和数值模拟的方法,侧重对两个重要界面开展构造分析.结果显示...  相似文献   

3.
丁巍伟  李家彪 《地球物理学报》2011,54(12):3038-3056
973项目“南海大陆边缘动力学与油气资源潜力”在南海南部陆缘采集了两条多道地震剖面,其中NH973-1测线始于南海西南次海盆,横跨了整个南沙地区,至于婆罗洲西北侧,NH973-2测线位于礼乐滩东侧.对地震剖面的解释共划分出7个层序界面,地层可以划分为5个构造沉积单元.根据地震解释对不同时期断层的水平断距进行了测量及分析...  相似文献   

4.
Opening of the Japan Sea back arc basin was accompanied by extensional tectonics in the drifting southwest Japan arc. Various trends of Early Miocene grabens in the arc suggest multi-directional rifting, which necessarily involved strike-slip components of some of basin-margin faults. However, such components are not well understood. In this work we conducted a field survey in the Early Miocene Ichishi basin on the northern side of the Median Tectonic Line, central southwest Japan. We found that the basin was a compound of grabens that were formed along normal and sinistral strike-slip faults, the latter of which had northeast–southwest trends. The block faulting in this phase produced basement highs between sub-basins, which were filled with the lower part of the Ichishi Group. We found a low-angle angular unconformity at a middle horizon in the group, with which we define the upper and lower part of the group. The upper part onlapped both the basement highs and the lower part. It means that the transtensional basin formation ceased sometime between 18 and 17.5 Ma in the Ichishi area. The Ichishi basin turned subsequently into a sag basin subsided due to normal faulting probably along the Nunobiki-sanchi-toen fault zone. The transtension and the basin sag were driven by ENE–WSW extensional stress. This arc-parallel extension produced grabens various areas including Ichishi in the Early Miocene. The extensional deformation was eventually localized to the deep rift along the Fossa Magna to make the lithosphere under southwest Japan decoupled from that under northeast Japan. The decoupling allowed the rapid rotation of southwest Japan from ~17.5 Ma. The cluster of those grabens around the Ise bay probably determined the southeastern margin of the Kinki triangle.  相似文献   

5.
云南地区地壳速度结构的层析成像研究   总被引:18,自引:11,他引:7       下载免费PDF全文
利用地震波到时和体波层析成像方法反演了云南地区的P波速度结构,根据不同深度的速度异常分析了主要断裂和区域动力作用的深部效应,揭示出壳内低速层的分布范围以及与下地壳流动的联系.研究结果表明,哀牢山-红河断裂两侧的地壳速度结构存在明显的差异,滇中地区的速度异常分布与小江断裂、元谋断裂、程海断裂等南北走向的断裂一致,反映了青藏东部地壳块体顺时针旋转产生的构造效应;滇西南的速度异常分布与哀牢山-红河断裂、无量山断裂、澜沧江等断裂的走向平行,显示了印支块体朝东南方向挤出产生的影响;沿着南汀河断裂分布的低速异常则与印缅块体侧向挤压引起的构造活动有关.壳内低速异常具有分层和分区特征:在哀牢山-红河断裂西侧和澜沧江之间主要分布在地壳中上部,在小江断裂和元谋断裂附近分布在地壳中下部,在滇中地区则广泛分布于地壳底部至莫霍面附近,东、西两侧分别受到小江断裂和哀牢山-红河断裂的限制.其中攀西地区的低速异常与小江断裂和元谋断裂在此附近交汇形成的热流传输通道以及张裂时期强烈的壳幔热交换有关;在哀牢山-红河和澜沧江地区,除了印支块体向东南方向的挤出之外,印缅块体的侧向挤压和向东俯冲也对地壳深部的构造变形产生了一定的影响,由此引发的地幔上涌将导致热流物质沿着断裂通道进入地壳形成低速层.因此,哀牢山-红河断裂不仅在地壳浅部是分隔印支块体和华南块体的地质界限,也是控制两侧区域深部构造变形和壳内韧性流动的分界.  相似文献   

6.
南海西南海盆构造演化的热模拟研究   总被引:17,自引:6,他引:11       下载免费PDF全文
南海西南海盆的张裂和海底扩张是白垩纪末至中始新世南海形成过程中最重要的构造事件.本文采用三维有限单元法对该区的热演化过程进行了模拟计算.通过对变形、温度结构的计算,研究了西南海盆张裂变形、海底扩张持续时间、地幔物质上升、地壳岩墙沿扩张中心的挤入扩张活力、岩浆活动等.计算结果表明:由于其深部动力学条件不足,海盆一次扩张持续时间在10~15Ma之间,其后地幔物质的上升活动逐渐停止,地壳失去扩张动力,使得扩张中心成为残留扩张中心的死亡裂谷,而未构成中脊或中隆带.虽然该处地幔物质上升的潜力不足,但伴随局部的断裂,尤其是盆、缘边界的拆离拉张,仍能产生相当强烈的岩浆喷溢活动,导致此区海盆成型之后的海山崛起.  相似文献   

7.
南海地球物理场特征及基底断裂体系研究   总被引:7,自引:3,他引:7  
南海海域主体可划分为南海北缘、中西沙、南沙南海海盆四块,各块具有明显不同的重磁场特征。反演得到的莫霍面总体趋势由陆向洋抬升,反映陆壳、拉伸陆壳、过渡壳、洋壳的分布。东沙高磁异常含一定的高频成份,与新生代玄武岩及中生代岩浆岩有关,而其低频成份可能反映了发育的下地壳高速层,南海海域断裂极为发育,可分为北东向断裂组、东西向断裂组、北西向断裂组和南北向断裂组,南海北缘、南缘均以北东向张性断裂与北西向张剪性、剪性断裂为主要格架,形成了、南北分带、东西分块”构造格局。  相似文献   

8.
渤海位于渤海湾盆地的东部,是我国华北地区新构造活动最强烈的地区之一,盆地内的沉积盖层(N-Q)中断裂极为发育。许多研究者从不同角度对渤海新构造进行过研究,但认识不一。笔者基于以往的工作,对该区新构造作了较深入的分析,确定渤海新构造运动起始于中新世晚期(12~10Ma BP)。从三维空间分析盖层断裂,并按其与盆地基底断裂的成因关系,将新构造活动的断裂分为继续活动断裂和新生断裂,并划分出3条主要的新构造活动断裂带:北东(偏北)向营口-潍坊断裂带北段是继续活动构造带,右旋逆平移活动,活动性弱;北西西向北京-蓬莱断裂带亦为继续活动构造带,左旋正平移活动,活动性较强;北东向庙西北-黄河口断裂带为新生构造带,右旋平移活动,活动性强。后两者组成一对以庙西北-黄河口断裂带为主的偏共轭活动构造带,该区域地震活动与之关系密切。最后探讨了渤海地区新构造期北东东-南西西至近东西向水平挤压的构造应力场及其与新构造活动断裂带发育的关系。提出新构造应力场与古近纪盆地裂陷阶段的应力场截然不同,新构造为地壳共轭剪切破裂系统,古近纪盆地构造是发育于地壳上部的伸展构造系统,这是两期不同体制的构造系统。  相似文献   

9.
Abstract Multi- and single-channel seismic profiles are used to investigate the structural evolution of back-arc rifting in the intra-oceanic Izu-Bonin Arc. Hachijo and Aoga Shima Rifts, located west of the Izu-Bonin frontal arc, are bounded along-strike by structural and volcanic highs west of Kurose Hole, North Aoga Shima Caldera and Myojin Sho arc volcanoes. Zig-zag and curvilinear faults subdivide the rifts longitudinally into an arc margin (AM), inner rift, outer rift and proto-remnant arc margin (PRA). Hachijo Rift is 65 km long and 20–40 km wide. Aoga Shima Rift is 70 km long and up to 45 km wide. Large-offset border fault zones, with convex and concave dip slopes and uplifted rift flanks, occur along the east (AM) side of the Hachijo Rift and along the west (PRA) side of the Aoga Shima Rift. No cross-rift structures are observed at the transfer zone between these two regions; differential strain may be accommodated by interdigitating rift-parallel faults rather than by strike- or oblique-slip faults. In the Aoga Shima Rift, a 12 km long flank uplift, facing the flank uplift of the PRA, extends northeast from beneath the Myojin Knoll Caldera. Fore-arc sedimentary sequences onlap this uplift creating an unconformity that constrains rift onset to ~1-2Ma. Estimates of extension (~3km) and inferred age suggest that these rifts are in the early syn-rift stage of back-arc formation. A two-stage evolution of early back-arc structural evolution is proposed: initially, half-graben form with synthetically faulted, structural rollovers (ramping side of the half-graben) dipping towards zig-zagging large-offset border fault zones. The half-graben asymmetry alternates sides along-strike. The present ‘full-graben’ stage is dominated by rift-parallel hanging wall collapse and by antithetic faulting that concentrates subsidence in an inner rift. Structurally controlled back-arc magmatism occurs within the rift and PRA during both stages. Significant complications to this simple model occur in the Aoga Shima Rift where the east-dipping half-graben dips away from the flank uplift along the PRA. A linear zone of weakness caused by the greater temperatures and crustal thickness along the arc volcanic line controls the initial locus of rifting. Rifts are better developed between the arc edifices; intrusions may be accommodating extensional strain adjacent to the arc volcanoes. Pre-existing structures have little influence on rift evolution; the rifts cut across large structural and volcanic highs west of the North Aoga Shima Caldera and Aoga Shima. Large, rift-elongate volcanic ridges, usually extruded within the most extended inner rift between arc volcanoes, may be the precursors of sea floor spreading. As extension continues, the fissure ridges may become spreading cells and propagate toward the ends of the rifts (adjacent to the arc volcanoes), eventually coalescing with those in adjacent rift basins to form a continuous spreading centre. Analysis of the rift fault patterns suggests an extension direction of N80°E ± 10° that is orthogonal to the trend of the active volcanic arc (N10°W). The zig-zag pattern of border faults may indicate orthorhombic fault formation in response to this extension. Elongation of arc volcanic constructs may also be developed along one set of the possible orthorhombic orientations. Border fault formation may modify the regional stress field locally within the rift basin resulting in the formation of rift-parallel faults and emplacement of rift-parallel volcanic ridges. The border faults dip 45–55° near the surface and the majority of the basin subsidence is accommodated by only a few of these faults. Distinct border fault reflections decreases dips to only 30° at 2.5 km below the sea floor (possibly flattening to near horizontal at 2.8 km although the overlying rollover geometry shows a deeper detachment) suggesting that these rifting structures may be detached at extremely shallow crustal levels.  相似文献   

10.
南海北部陆缘深水-超深水盆地成因机制分析   总被引:17,自引:0,他引:17       下载免费PDF全文
任建业  庞雄  于鹏  雷超  罗盼 《地球物理学报》2018,61(12):4901-4920
本文以海洋地质调查和油气勘探开发中积累的地质和地球物理资料的解释和分析为基础,描述和划分了南海北部被动陆缘地壳岩石圈结构构造单元,由陆向海划分出近端带、细颈化带、远端带和洋陆转换带(OCT,含边缘高地)四个构造单元.从细颈化带到OCT基本处于现今陆架坡折带之外的深水-超深水区的范围,以强烈的地壳薄化和发育大型拆离断层控制的拆离盆地为特征.这些深水-超深水盆地的同裂陷阶段均经历了早期均一断陷、中晚期拆离式断陷的演化过程,受控于南海北部大型拆离断层作用及其所导致的岩石圈临界破裂过程.新的深水-超深水盆地形成机理的认识为南海北部陆缘岩石圈的非瞬时伸展破裂过程的分析提供了新的视角,同时,陆缘深水-超深水盆地具有独特的构造-沉积体系配置和构造-热演化过程,将为科学评价南海北部陆缘深水-超深水盆地油气勘探潜力提供新的思路.  相似文献   

11.
潮汕坳陷MZ-1井揭示的中生界为深入分析南海北部晚中生代的构造演化提供了关键性的资料.基于MZ-1井的标定,开展了系统的地震剖面构造-地层解释,在中生代地层内识别出Tm30区域性不整合面,同位素定年确定该界面发育于早白垩世末至晚白垩世初,落实了潮汕坳陷上白垩统的分布.此外,在研究区西南部识别出大型的兴宁—东沙逆冲推覆带,主要由多条NW—SE向延伸、西倾的叠瓦状逆冲断层及其伴生的不对称褶皱组成,其明显控制了上白垩统厚度分布.由此可见,上白垩统构造层不具有张裂盆地的典型特征,因此南海北部主动陆缘向被动陆缘的转换不会早于晚白垩世末.研究认为,在南海地区特提斯残留洋盆关闭的总背景下,在约80 Ma时期,南海地块与华南陆块强烈碰撞挤压,在靠近碰撞带处的礼乐滩、潮汕坳陷西南部形成褶皱冲断构造体系,进而控制了潮汕坳陷晚白垩世周缘前陆盆地的发育.  相似文献   

12.
从板块构造观点论南海的成因   总被引:6,自引:1,他引:6       下载免费PDF全文
唐鑫 《地球物理学报》1981,24(4):427-437
南海是亚洲东部的一个边缘海。从板块构造观点看来,南海及其周围整个东南亚大陆边缘恰好位于欧亚板块、太平洋板块和印度洋-澳大利亚板块交汇处,即处于一板块“三叉点”上。 根据此区域内已有的地球物理及地质资料,作者认为南海海盆是新生的边缘海板块而不是沉没的古老地台。 南海的形成是由于新生代早期在其两侧存在一背离式的板块“三叉点”所致,此“三叉点”的位置在海南岛南侧和印支半岛东侧。“三叉点”以东的地壳因局部海底扩张而被推向东,至菲律宾群岛一线,导致南海深海盆(所谓“中国盆地”)的张开和上地幔物质的上涌。 根据资料分析,作者认为南海海底扩张轴是北东向平行于大陆边缘的,扩张的时代是从渐新世晚期至中新世。  相似文献   

13.
Recent tectonic stress field and major earthquakes of the Bohai Sea basin   总被引:3,自引:0,他引:3  
Introduction The present Bohai Sea is a half-closed shallow one in the continent, located at the northeast to North China, with an area about 7.3104 km2. Geologically, it is situated in the northern North China basin and of a short development history. Previous studies (WANG, LI, 1983; Institute of Oceanology, Chinese Academy of Sciences, 1985; HUANG, et al, 1993) show that the Fu-jian-Lingnan uplift in the East China Sea continental shelf sank gradually into the oceanic bottom, mak…  相似文献   

14.
南海东北部及其邻近地区的Pn波速度结构与各向异性   总被引:7,自引:12,他引:7       下载免费PDF全文
利用中国地震台网和ISC台站1980~2004年的地震数据,反演了南海东北部及其邻近地区的Pn波速度结构和各向异性.上地幔顶部的速度变化揭示出区域地质构造的深部特征:华南地区速度较高并且变化平缓,具有构造稳定地区的岩石层地幔特征;华南沿海尤其是滨海断裂带附近出现低速异常,表明该断裂可能穿过壳幔边界深达上地幔顶部.南海北部至台湾海峡较高的速度与华南地区类似,反映出大陆边缘和陆架地区的岩石层地幔性质;西沙海槽附近较高的速度不仅反映了华南大陆向南的延伸,而且与海槽裂谷拉张引起的地幔上拱有关,整个南海北部没有发现大规模地幔热流的活动痕迹.相比之下,南海东部次海盆的上地幔顶部存在明显的低速异常,对应于海底扩张中心的地幔上涌区,表明岩石层地幔强烈减薄甚至缺失;台湾东部-吕宋-菲律宾北部的低速异常与地震、火山活动以及岩浆作用紧密相关,揭示了西太平洋岛弧俯冲带的活动特征;南海东北部的洋-陆边界清晰,南海东部和菲律宾海西部较高的速度代表了海洋岩石层地幔的性质.Pn波各向异性反映出区域性构造应力状态及岩石层地幔的变形痕迹:华南地区的各向异性较小,说明这一构造稳定地区的岩石层地幔变形程度较弱;南海北部的快波方向与地壳浅表层构造的伸展方向一致,主要反映了中、新生代以来的大陆边缘张裂和剪切作用对岩石层地幔结构的影响;琉球-台湾-吕宋岛弧两侧各向异性十分强烈,平行于海沟的快波方向表明菲律宾海板块和欧亚大陆的相互作用导致俯冲板块前缘的岩石层地幔强烈变形;台湾东南海域快波方向的变化可能与欧亚大陆和菲律宾海板块俯冲机制的转换以及岩石层被撕裂有关.  相似文献   

15.
Mikiya  Yamashita  Tetsuro  Tsuru  Narumi  Takahashi  Kaoru  Takizawa  Yoshiyuki  Kaneda  Kantaro  Fujioka  Keita  Koda 《Island Arc》2007,16(3):338-347
Abstract   The Parece Vela Basin (PVB), which is a currently inactive back-arc basin of the Philippine Sea Plate, was formed by separation between the Izu-Ogasawara Arc (IOA) and the Kyushu-Palau Ridge (KPR). Elucidating the marks of the past back-arc opening and rifting is important for investigation of its crustal structure. To image its fault configurations and crustal deformation, pre-stack depth migration to multichannel seismic reflection was applied and data obtained by the Japan Agency for Marine-Earth Science and Technology and Metal Mining Agency of Japan and Japan National Oil Corporation (Japan Oil, Gas and Metals National Corporation). Salient results for the pre-stack depth-migrated sections are: (i) deep reflectors exist around the eastern margin of KPR and at the western margin of IOA down to 8 km depth; and (ii) normal fault zones distributed at the eastern margin of the KPR (Fault zone A) and the western margin of the IOA (Fault zone B) have a total displacement of greater than 500 m associated with synrift sediments. Additional normal faults (Fault zone C) exist 20 km east of the Fault zone B. They are covered with sediment, which indicates deposition of recent volcanic products in the IOA. According to those results: (i) the fault displacement of more than 500 m with respect to initial rifting was approximately asymmetric at 25 Ma based on PSDM profiles; and (ii) the faults had reactivated after 23 Ma, based on the age of deformed sediments obtained from past ocean drillings. The age of the base sediments corresponds to those of spreading and rotation after rifting in the PVB. Fault zone C is covered with thick and not deformed volcanogenic sediments from the IOA, which suggests that the fault is inactive.  相似文献   

16.
The Tan-Lu fault zone across the eastern margin of the Cenozoic basins offshore the Bohai Sea is a NNE-trending right-lateral strike-slip fault system developed in the Cenozoic basin cover. It cuts through NE-to NNE-striking major extensional faults that controlled the formation of Paleogene basins. Recent petroleum exploration indicates that Cenozoic structural activities of the Tan-Lu fault system have directly or indirectly affected oil and gas distribution offshore the Bohai Sea. As part of a deep fault zone the Tan-Lu fault zone has been activated since the Oligocene,and obviously affected the tectonic evolution of offshore Bohai basins since then. The formation of Paleogene rift basins offshore the Bohai Sea has utilized the pre-existing structural elements of the Tan-Lu fault zone that developed in the late Mesozoic.  相似文献   

17.
The seismotectonic characteristics of 1983–1984, 1993 and 2005 swarms in Andaman Sea are analysed. These swarms are characterised by their typical pulsating nature, oval shaped geometry and higher b values. The migration path of the swarms from north to south along the Andaman Spreading Ridge is documented. While the first two swarms are located along existing mapped rift segments, the 2005 swarm appears to have generated a new rift basin along 8°N. The analysis and supporting evidences suggest that these swarms were generated by intruding magmatic dyke along the weak zones in the crust, followed by rifting, spreading and collapse of rift walls. CMT solutions for 2005 swarm activity indicate that intrusion of magmatic dyke in the crustal weak zone is documented by earthquakes showing strike slip solution. Subsequent events with normal fault mechanism corroborate the rift formation, collapse and its spreading.  相似文献   

18.
The Main Ethiopian Rift (MER) offers a complete record of the time–space evolution of a continental rift. We have characterized the brittle deformation in different rift sectors through the statistical analysis of a new database of faults obtained from the integration between satellite images and digital elevation models, and implemented with field controls. This analysis has been compared with the results of lithospheric-scale analogue models reproducing the kinematical conditions of orthogonal and oblique rifting. Integration of these approaches suggests substantial differences in fault architecture in the different rift sectors that in turn reflect an along-axis variation of the rift development and southward decrease in rift evolution. The northernmost MER sector is in a mature stage of incipient continental rupture, with deformation localised within the rift floor along discrete tectono-magmatic segments and almost inactive boundary faults. The central MER sector records a transitional stage in which migration of deformation from boundary faults to faults internal to the rift valley is in an incipient phase. The southernmost MER sector is instead in an early continental stage, with the largest part of deformation being accommodated by boundary faults and almost absent internal faults. The MER thus records along its axis the typical evolution of continental rifting, from fault-dominated rift morphology in the early stages of extension toward magma-dominated extension during break-up. The extrapolation of modelling results suggests that a variable rift obliquity contributes to the observed along-axis variations in rift architecture and evolutionary stage, being oblique rifting conditions controlling the MER evolution since its birth in the Late Miocene in relation to a constant post ca. 11 Ma ~ N100°E Nubia–Somalia motion.  相似文献   

19.
臧绍先  吴忠良 《地震学报》1991,13(2):129-138
研究了南海、中印半岛及邻区的地震分布,地震主要集中在板块的边界。此外,一些浅震主要集中在缅甸西部和中缅边界。研究了Benioff带的形态。在爪哇海沟、菲律宾海沟,两板块耦合得不好;在缅甸山弧、安达曼-尼科巴岛弧下,俯冲的印度板块向NNE运动。由震源机制解及断层运动推断,主压应力方向在缅泰西部为NNE,在南海为NNW或S-N,与板块相互作用密切相关。   相似文献   

20.
Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50–700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven alvin heat flow measurements at 30°48.5′N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine arc calderas such as Sumisu and South Sumisu volcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号