首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Cambrian Fossil Embryos from Western Hunan,South China   总被引:1,自引:1,他引:0  
The exquisitely preserved fossil embryos of Markuelia recovered from the limestones of the Middle Cambrian Haoqiao Formation and Upper Cambrian Bitiao formation in western Hunan, South China are described and illustrated in detail for the first time.A new species Markuelia elegans sp.nov.is established based mainly on embryos from the Upper Cambrian.A few of animal's resting eggs,which are comparable with those of the Ediacaran Doushantuo Formation,have been also found in the Upper Cambrian of western Hu...  相似文献   

2.
This paper presents the results of eco-geochemical research on black rock series enriched in metallic elements in Pingli County,Shaanxi Province,which lies at the northern margin of the Yangtze Platform.There is a suite of bone coal-bearing black carbonaceous rocks in the Cambrian Donghe Formation throughout the region.Soils in Pingli contain high metallic elements derived from the bone coal and carbonaceous rocks.Edible plants growing in the soils contain high Se,Cu and Mo.Two case studies are documented.One is a black shale area with bone coal and Se enrichment,and the other is a black shale area with bone coal mine and copper mineralization.Eco-geochemical effects of metallic element-rich black shales on plants are reported in this paper.  相似文献   

3.
The range of observed chemical compositions of natural terrestrial waters varies greatly especially when compared to the essentially constant global composition of the oceans.The concentrations of the REEs in natural terrestrial waters also exhibit more variation than what was reported in seawater,In terrestrial waters ,pH values span the range from acid up to alkaline,In addition,terrestrial waters can range from very dilute waters through to highly concentrated brines.The REE concentrations and their behavior in natural terrestrial waters reflect these compositional ranges,Chemical weathering of rocks represents the source of the REEs to natural terrestrial waters and ,consequently,the REE signature of rocks can impart their REE signature to associated waters,In addition,Because of the typical low solubilities of the REEs both surface and solution complexation can be important in fractionating REEs in aqueous solution.Both of these processes are important in all natural terrestrial waters,however,their relative importance varies as a function of the overall solution composition,In alkaline waters,for example,Solution complexation of the REEs with carbonate ions appears to control their aqueous distributions whereas in acid waters,the REE signature of the labile fraction of the REEs is readily leached from the rocks.In circumneutral pH waters,both processes appear to be important and their relative significance has not yet been determined.  相似文献   

4.
This study investigated the geochemical features of the lower Paleozoic strata of Yaerdang Mountain outcrop along with the core samples from well TD2∈ in the eastern Tarim Basin,NW China.The total organic carbon abundance,hydrocarbon-generating precursor biospecies,and stable isotope ratios of organics and carbonate(δ~(13)C_(ker),δ~(13)C_(carb) and δ~(18)O_(carb)) were comprehensively studied for their possible correlative constraints during sedimentary evolution.The results revealed that the δ~(13)C_(ker)(VPDB) of Cambrian kerogens along the outcrop section varied from-34.6‰ to-28.4‰,indicating an increasing tendency from the lower Cambrian to the upper Cambrian.This was on the whole accompanied by the variation in the δ~(13)C_(carb) and δ~(18)O_(carb) along the profile,which might be associated with the changes in the sea level and also in the compositional variation of benthic and planktonic biomass.The large variation in the stable carbon isotope ratios up to 6‰ along the outcrop section reflected the heterogeneity of the Cambrian source rocks from the eastern Tarim Basin.Hence,the ~(13)C-enriched crude oils from well TD2∈might have been derived from a localized stratum of Cambrian source rocks.The results from this study showed the possibility of multiple source kitchens in the Cambrian-lower Ordovician portion of Tarim Basin.  相似文献   

5.
The Nain and Ashin ophiolites consist of Mesozoic melange units that were emplaced in the Late Cretaceous onto the continental basement of the Central-East Iran microcontinent(CEIM).They largely consist of serpentinized peridotites slices;nonetheless,minor tectonic slices of sheeted dykes and pillow lavas-locally stratigraphically associated with radiolarian cherts-can be found in these ophiolitic melanges.Based on their whole rock geochemistry and mineral chemistry,these rocks can be divided into two geochemical groups.The sheeted dykes and most of the pillow lavas show island arc tholeiitic(IAT)affinity,whereas a few pillow lavas from the Nain ophiolites show calc-alkaline(CA)affinity.Petrogenetic modeling based on trace elements composition indicates that both IAT and CA rocks derived from partial melting of depleted mantle sources that underwent enrichment in subduction-derived components prior to melting.Petrogenetic modeling shows that these components were represented by pure aqueous fluids,or sediment melts,or a combination of both,suggesting that the studied rocks were formed in an arc-forearc tectonic setting.Our new biostratigraphic data indicate this arc-forearc setting was active in the Early Cretaceous.Previous tectonic interpretations suggested that the Nain ophiolites formed,in a Late Cretaceous backarc basin located in the south of the CEIM(the so-called Nain-Baft basin).However,recent studies showed that the CEIM underwent a counter-clockwise rotation in the Cenozoic,which displaced the Nain and Ashin ophiolites in their present day position from an original northeastward location.This evidence combined with our new data and a comparison of the chemical features of volcanic rocks from different ophiolites around the CEIM allow us to suggest that the Nain-Ashin volcanic rocks and dykes were formed in a volcanic arc that developed on the northern margin of the CEIM during the Early Cretaceous in association with the subduction,below the CEIM,of a Neo-Tethys oceanic branch that was existing between the CEIM and the southern margin of Eurasia.As a major conclusion of this paper,a new geodynamic model for the Cretaceous evolution of the CEIM and surrounding Neo-Tethyan oceanic basins is proposed.  相似文献   

6.
Abundant mafic-ultramafic blocks and dikes occur in the area north of Zunhua City, eastern Hebei Province, and were previously suggested to be part of a late Archean ophiolitic assemblage. We employed SHRIMP zircon dating and a geochemical study on these mafic and surrounding rocks to test the ophiolite hypothesis. The SHRIMP data suggest that three metagabbro samples were metamorphosed at ~1.8 Ga. Numerous ~2.5 Ga zircons display strong oscillatory zoning, characteristic of zircons from granitoid rocks but not from gabbro, so we suggest that these are xenocrystic grains. The age of these xenocrystic zircons and their metamorpbic rims suggests that these mafic blocks formed in Paleoproterozoic. The surrounding gneiss of intermediate composition also contains 2.5 Ga zircons with oscillatory zoning and 1.8 Ga metamorphic rims. Fractionated REE patterns and Nb, Ta, Zr, Hf negative anomalies to variable extent were observed in the mafic blocks and surrounding rocks, also supporting a significant difference in the chemistry of ophiolitic rocks. Our data suggest that many mafic blocks in northern Zunhua are not part of a late Archean ophiolite complex but part of a tectonically dismembered Paleoproterozoic intrusive gabbro complex. This study shows that late Paleoproterozoic metamorphism occurred in the western part of eastern Hebei Province.  相似文献   

7.
The Guanshan Fauna is a soft-bodied fauna dominated by arthropods (including trilobites, trilobitoides, Tuzoia, Isoxys, and bradorids) in association with priapulids, brachiopods, anomalocaridids, vetulicoliids, sponges, chancellorids, and echinoderms. This paper reports and describes a new arthropod from the yellowish green mudstone at the lower part of the Wulongqing Formation, Canglangpuan Stage, Lower Cambrian in Kunming, Yunnan, China. The stratigraphic and geographic distribution, classification, fossil preservation, life style of this new arthropod and comparisons with other fossil arthropods are also discussed in details. The discovery and research of the non-mineralized arthropod, Guangweicaris Luo, Fu et Hu gen. nov. from the Guanshan Fauna adds new members to the taxonomic list and provides new information to the evolution of early arthropods. Furthermore, this study would shed new light into the "Cambrian Explosion" and the evolution of early life.  相似文献   

8.
The formation depth of metamorphic rocks in the Dabie ultrahigh pressure metamorphic (UHPM) zone influences not only our understanding of formation mechanism and evolution processes of collision orogenic belt, but also the studies on earth's interior and geodynamic processes. In this study, the isotopic data of metamorphic rocks in the Dabie UHPM zone are discussed to give constraints on the formation depth in the Dabie UHPM zone. The εSr of eclogite in the Dabie UHPM zone varies from 18 to 42, and the εNd varies from -6.1 to -17, both of them show the characters of isotopic disequilibrium. The oxygen isotope studies indicate that the protoliths of these UHPM rocks have experienced oxygen isotope exchange with meteoric water (or sea water) before metamorphism and no significant changes in the processes of metamorphism on their oxygen isotope composition have been recorded in these rocks. Except for one sample from Bixiling, all samples of eclogite from Dabie UHPM zone show the 3He/4He ratios from 0.79×10-7 to 9.35×10-7, indicating the important contribution of He from continental crust. All Sr, Nd, O and He isotopic studies indicate that the UHPM rocks retain the isotopic characteristics of their protoliths of crust origin. No significant influence of mantle materials has been found in these metamorphic rocks. Trying to explain above isotopic characteristics, some researchers assume that the speeds of dipping thrust and uplifting of rocks were both very high. In this condition, there will not be enough time for isotopic exchange between crust protolith and mantle materials. Therefore, we can not see the tracer of mantle materials in these UHPM rocks. However, this assumption can not be justified with available knowledge. Firstly, it was estimated that the whole process of UHPM took at least 15 Ma. During such a long period, and at the metamorphic temperature of ≥700 ℃, the protolith of crust origin can not escape from isotopic exchange with mantle materials if the UHPM have happened in the mantle depth of ≥100 km. In contrast, all problems will be dismissed if we assume that the UHPM have happened at the depth still in crust.  相似文献   

9.
Through the study of the oxidized zone of the Debao skarn-type Cu-Sn deposit in Guangxi, the authorshave found 14 arsenate minerals, most of which are for the first time reported in China. They are mainly Cuarsenate minerals with subordinate Cu-Pb arsenate minerals and minor Fe-Pb-Ba varieties. Based on their paragenesis these minerals may be divided into the following series: (1) the clinoclasite-olivenite-cornwallite- cornubite- debaoite- copper silicarsenate association, (2) the scorodite- carminite- beudan-tite-bayldonite- duftite association, and (3) the scorodite-Ba-bearing pharmacosiderite- dussertite association. Arsenate minerals are formed generally in the oxidized zone of the sulfide-type deposits which lie in thewarm, humid and rainy torrid-subtropical zone with pH=6-8 and contain large amounts of arsenopyrite andcarbonate rocks.  相似文献   

10.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   

11.
Discoidal sedimentary structures are commonly described in Proterozoic strata, and even more common in Ediacaran to lower Cambrian sedimentary successions. Many abiotic processes are able to produce such circular or discoidal structures in bedding planes, however, their abundance in Ediacaran strata suggests a possible correlation with the evolution and preservation of epibenthic metazoans that emerged at the end of this period. In the South American paleontological record, studies regarding the Ediacaran soft-bodied organisms are meager and restricted to few reports in Brazil, Paraguay, and Argentina. In many cases, such “fossils” were only tentatively characterized in terms of their general morphology and putative taxonomic affinity. Thus, considering the almost absence of work on these enigmatic structures in South America, this paper aims to make a critical analysis on the main occurrences of Ediacaran-Cambrian discoidal structures described in this continent. Based on a detailed review and unpublished data, it was possible to provide a general picture concerning the main paleoenvironmental and sedimentary significance of this structures, as well as on the most promising prospects in terms of the paleontological record of Ediacaran soft-bodied metazoans in South American. In this sense, it was settled that occurrences such as those in the Jaibaras and Itajaí basins should be reassessed in order to establish reliable criteria of biogenicity. In the case of the material from the Sete Lagoas and Tagatiya Guazu formations, it is considered more parsimonious to interpret the discoidal features as resulting from microbial processes. Similarly, the discoidal structures of the Cerro Negro Formation presents a series of internal laminations and textures that resembles those developed by processes of microbial grain binding and trapping suggesting that, at least part of this material, can be related to microbially induced sedimentary structures. Finally, for the ichnologically diversified Puncoviscana and Camaquã basins, two different scenarios were identified. The first presents an ichnological assemblage strongly indicative of lower Paleozoic, and possibly Cambrian affinity. Thus, the discs in association with these traces, should be viewed with caution and interpretations made in light of a Paleozoic context. The second possesses an ichnological association typical of that expected for the Ediacaran-Cambrian transition, and the diversity of discoidal forms can potentially represent imprints of macroorganisms on a microbially bounded substrate, thus deserving a more detailed approach.  相似文献   

12.
寒武纪初期不仅发生了宏体生物大爆发,而且也出现了地质历史时期少见的蓝细菌鞘体大规模钙化事件。埃迪卡拉纪—寒武纪之交海水化学性质的转变对真核生物的演化起到了重要作用,但是这种转变对微生物岩发育特征以及蓝细菌钙化事件的产生有无影响,目前尚不明确。鉴于此,对华南上扬子北缘汉南—米仓山地区上埃迪卡拉统—寒武系第二统多个典型微生物岩发育剖面进行了系统野外调查和室内岩石学分析,结果表明:上埃迪卡拉统灯影组叠层石广泛发育,以平铺状、缓波状特征为主,而凝块石既可以呈补丁状分布于叠层石纹层间,又可以呈细小的凝絮状、粘结状特征构成厚层岩层;寒武系第二统仙女洞组叠层石丰度显著降低,以高大、坚硬的丘状隆起为特点,包括单独的凝块石丘,以及微生物与古杯的联合建丘。虽然寒武系第二统微生物岩的层状结构和凝块结构与埃迪卡拉系相比并无太大差异,但是寒武系微生物岩内部保存有大量的钙化微生物化石,已识别出附枝菌(Epiphyton)、肾形菌(Renalcis)和葛万菌(Girvanella)等多种类型。在收集、整理前人有关微生物岩特征和发育资料的基础上,本次研究初步整理出华南寒武系第二统微生物岩的时空分布特点,发现寒武纪第二世第三期是钙化微生物大量发育的一个时期,在随后的第四期达到一个小的高峰。对于此次蓝细菌钙化作用幕的启动机制,除前人提出的海水高钙离子浓度和蓝细菌体内二氧化碳浓缩机制等认识外,寒武纪早期海水性质的转变(方解石质原生矿物受成岩改造程度较低)、适度的陆源碎屑输入(黏土组分保护作用)也有利于钙化微生物结构的保存,应引起重视。  相似文献   

13.
It is beyond doubt that the appearance of infaunal bioturbation and metazoan biomineralization across the Ediacaran–Cambrian transition irreversibly affected the nature of marine sediment architecture and biogeochemistry. Here we review those changes in relation to their likely effect upon the processes of fossil preservation, especially within siliciclastic sediments. Processes of soft-tissue preservation in siliciclastic settings from the Ediacaran Period, including microbes and microbial mats as well as Ediacaran macrofossils, are here reviewed within this context. Highlighted examples include the exceptional preservation of microbes found in association with wrinkle structures and Ediacaran macrofossils in England and Newfoundland (replicated by silicate minerals) and in the White Sea region of Russia (replicated by iron sulphide). These occurrences show that soft-tissue preservation in siliciclastic settings went well beyond that typical for Ediacaran macrofossils alone and also extended to similar modes of preservation in associated microbes. Using these new observations it can be argued that several existing explanations for Ediacaran fossil preservation can be united within a biogeochemical model that involves evolution of the sediment mixed layer across this transition.  相似文献   

14.
《Gondwana Research》2014,25(3):1090-1107
The Ediacaran and Cambrian periods were one of the most important periods for the evolution of life. The biodiversity drastically expanded in the period. However, the origins are still ambiguous because surface environmental changes through the time have not been well understood yet. We conducted in-situ analyses of the phosphorus contents of carbonate minerals with a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) to estimate the phosphorus contents of seawater from the Ediacaran to the early Cambrian. Carbonate rocks contain not only the carbonate minerals but also detrital and authigenic materials such as silicate and phosphate minerals. Therefore, the whole rock compositions of carbonate rocks are not directly related with seawater composition. To avoid the influence of the involvement of the phosphate minerals, we performed the microscopic observation, elemental mapping of Si, Ca, Mg, Fe, and P contents with an electron probe microanalyzer (EPMA), and investigation of time profiles of signal intensities of Ca, Sr, Mn, P, La and Ba with the LA-ICP-MS. Especially, samples with low Mn/Sr ratios and primary textures such as oolites are suitable to estimate the primary phosphorus contents of the carbonates.The chemostratigraphy of the phosphorus contents of carbonates from the drill core and outcrop samples displays that the phosphorus contents decrease from ca. 400 ppm in the Ediacaran through ca. 200 ppm around the terminal Ediacaran and the beginning of the Cambrian to ca. 50 ppm in the early Cambrian. Previous works on 87Sr/86Sr chemostratigraphy from the Ediacaran to the Cambrian sections suggested relatively high continental influx in the middle Ediacaran, and around the Precambrian–Cambrian (PC/C) boundary. The high phosphorus content in the Ediacaran was possibly due to the high continental flux. On the other hand, previous works on chemostratigraphy of carbon isotope values of carbonate carbon from the Ediacaran to the Cambrian sections showed some large negative anomalies in the Ediacaran and around the Precambrian–Cambrian (PC/C) boundary, and suggested that the negative anomalies were caused by remineralization and respiration of dissolved organic matter. The degradation of the organic matter also accounts for the high phosphorus contents in the Ediacaran. The high phosphorus content of seawater favors enhancement of primary productivity and formation of phosphorites. The high phosphorus contents in the seawater possibly led to the emergence of the large, and motile organism through the enhancement of primary productivity and the consequent increase of oxygen content of the seawater.  相似文献   

15.
Ediacaran and Early Cambrian sedimentary rocks from NW Iberia have been investigated for detrital zircon U–Pb ages. A total of 1,161 concordant U–Pb ages were obtained in zircons separated from four Ediacaran samples (3 from the Cantabrian Zone and one from the Central Iberian zone) and two Lower Cambrian samples (one from the Cantabrian Zone and one from the Central Iberian Zone). Major and trace elements including REE and Sm–Nd isotopes were also analyzed on the same set of samples. The stratigraphically older Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 600 Ma based on detrital zircon content and is intruded by ca. 590–580 Ma granitoids constraining the deposition of this part of the sequence between ca. 600 and 580 Ma. The stratigraphically younger Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 553 Ma. The Ediacaran sample from the Central Iberian Zone has an identical within error maximum sedimentation age of ca. 555 Ma. The detrital zircon U–Pb age patterns are very similar in all the Ediacaran samples from both zones including the main age groups ca. 0.55–0.75 Ga, ca. 0.85–1.15 Ga and minor Paleoproterozoic (ca. 1.9–2.1 Ga) and Archean (ca. 2.4–2.6 Ga) populations. Kolmogorov–Smirnov statistical tests performed on this set of samples indicate that they all were derived from the same parent population (i.e., same source area). The same can be said on the basis of Nd isotopes, REE patterns and trace element concentrations. The two Cambrian samples, however, show contrasting signatures: The sample from the Cantabrian Zone lacks the ca. 0.85–1.15 Ga population and has a high proportion of Paleoproterozoic and Archean zircons (>60 %) and a more negative ε Nd and higher T DM values than the Ediacaran samples. The Early Cambrian sample from the Central Iberian Zone has the same U–Pb detrital zircon age distribution (based on KS tests) as all the Ediacaran samples but has a significantly more negative ε Nd value. These data suggest apparently continuous sedimentation in the NW Iberian realm of northern Gondwana between ca. 600 and 550 Ma and changes in the detrital influx around the Ediacaran–Cambrian boundary. The nature and origin of these changes cannot be determined with available data, but they must involve tectonic activity on the margin as evidenced by the angular unconformity separating the Ediacaran and Lower Cambrian strata in the Cantabrian Zone. The absence of this unconformity and the apparent continuity of detrital zircon age distribution between Ediacaran and Cambrian rocks in the Central Iberian Zone suggest that the margin became segmented with significant transport and sedimentation flux changes in relatively short distances. As to the paleoposition of NW Iberia in Ediacaran–Early Cambrian times, comparison of the data presented herein with a wealth of relevant data from the literature both on the European peri-Gondwanan terranes and on the terranes of northern Africa suggests that NW Iberia may have lain closer to the present-day Egypt–Israel–Jordan area and that the potential source of the hitherto enigmatic Tonian–Stenian zircons could be traced to exposed segments of arc terranes such as that described in the Sinai Peninsula (Be’eri-Shlevin et al. in Geology 40:403–406, 2012).  相似文献   

16.
The Ediacaran–Cambrian transition signals a drastic change in both diversity and ecosystem construction. The Ediacara biota (consisting of various metazoan stem lineages in addition to extinct eukaryotic clades) disappears, and is replaced by more familiar Cambrian and Paleozoic metazoan groups. Although metazoans are present in the Ediacaran, their ecological contribution is dwarfed by Ediacaran-type clades of uncertain phylogenetic affinities, while Ediacaran-type morphologies are virtually non-existent in younger assemblages. Three alternative hypotheses have been advanced to explain this dramatic change at, or near, the Ediacaran–Cambrian boundary: 1) mass extinction of most Ediacaran forms; 2) biotic replacement, with early Cambrian organisms eliminating Ediacaran forms; and 3) a Cheshire Cat model, with Ediacaran forms gradually disappearing from the fossil record (but not necessarily going extinct) as a result of the elimination of unique preservational settings, primarily microbial matgrounds, that dominated the Ediacaran. To evaluate these proposed explanations for the biotic changes observed at the Ediacaran–Cambrian transition, environmental drivers leading to global mass extinction are compared to biological factors such as predation and ecosystem engineering. We explore temporal and biogeographic distributions of Ediacaran taxa combined with evaluations of functional guild ranges throughout the Ediacaran. The paucity of temporally-resolved localities with diverse Ediacaran assemblages, combined with difficulties associated with differences in taphonomic regimes before, during, and after the transition hinders this evaluation. Nonetheless, the demonstration of geographic and niche range changes offers a novel means of assessing the downfall of Ediacara-type taxa at the hands of emerging metazoans, which we hypothesize to be most likely due to the indirect ecological impact metazoans had upon the Ediacarans. Ultimately, the combination of studies on ecosystem construction, biostratigraphy, and biogeography showcases the magnitude of the transition at the Ediacaran–Cambrian boundary.  相似文献   

17.
The Band-e-Hezarchah granitoids (BHG) is located in the northern margin of the central Iran, where the very old continental crust of Iran is found. The BHG mainly include granodiorite, granite and leucogranite. Small meta-gabbroic stocks and dykes are associated with BHG. U–Pb zircon dating of the BHG granites and metabasites yield 238U/206Pb crystallization ages of ca. 553.6 and 533.5 Ma respectively (Ediacaran–early Cambrian). The metabasites have calc-alkaline signature and their magmas seem to have originated from a mantle wedge above a subduction zone. These rocks are thought to be formed in a continental back-arc setting, related to the oblique subduction of Proto-Tethys oceanic lithosphere beneath the northern margin of Gondwanan supercontinent during Ediacaran–Cambrian time. The initial 87Sr/86Sr ratios and ɛNd (t) values for metabasites are change from 0.705 to 0.706 and −3.5 to −3.6 respectively. Sr–Nd isotope composition of metabasites indicates that these rocks were derived from a subcontinental lithospheric mantle source. The BHG and associated metabasites are coeval with other similar aged metagranites and gneisses from Iranian basements exposed in central Iran, Sanandaj-Sirjan and Alborz zones. These rocks were formed due to continental arc magmatism of Neoproterozoic–early Cambrian, bordering the northern active margin of Gondwana.  相似文献   

18.
《Gondwana Research》2016,29(4):1449-1465
We report here in-situ U–Pb and Hf isotopic results of detrital zircons from sixteen Cambrian–Silurian siliciclastic samples across the Nanhua foreland basin, South China. Together with published data from Ediacaran–Silurian sandstones in the region, we establish the temporal and spatial provenance evolution across the basin. Except for samples from northeast Yangtze, all other Ediacaran–Silurian samples exhibit a prominent population of 1100–900 Ma, moderate populations of 850–700 Ma and 650–490 Ma, and minor populations of 2500 Ma and 2000–1300 Ma, grossly matching that of crystalline and sedimentary rocks in northern India. Zircon Hf isotopes further reveal four episodes of juvenile crustal growth at 2.5 Ga, 1.8 Ga, 1.4 Ga and 1.0 Ga in the source regions. Utilizing the basin history and late Neoproterozoic to early Paleozoic paleogeography of South China, we conclude that the Ediacaran–Cambrian sediments in the Nanhua foreland basin were mainly sourced from northern India and adjacent orogens, and the Ordovician–Silurian sediments were derived from both locally recycled Ediacaran–Cambrian rocks and eroded Cathaysian basement. The Wuyi–Yunkai late-orogenic magmatic rocks also contributed to the Silurian sediments in the basin. The upper-Ordovician to Silurian samples in northeast Yangtze received higher proportions of local Cryogenian (850–700 Ma) magmatic rocks which were uplifted during late-Ordovician to Silurian time. We speculate that there was an Ediacaran–Cambrian collisional orogen between South China and northern India, shedding sediments to the early Nanhua foreland basin. Far-field stress during the late stage of this collisional orogeny triggered the Ordovician–Silurian intraplate Wuyi–Yunkai orogeny in South China, and erosion of the local Wuyi–Yunkai orogen further provided detritus to the late Nanhua foreland basin.  相似文献   

19.
《Gondwana Research》2014,25(3):1070-1089
The Ediacaran–Cambrian was one of the most important periods for the evolution of life. Recent studies have provided detailed chemostratigraphies that decipher the linkages between ambient surface environmental changes and biological evolution. The occurrence of skeletal fossils in Ediacaran rocks suggests that the possible onset of Ca-biomineralization started in the latest Neoproterozoic. Molecular clocks also predict the emergence of animals containing Ca-carbonate spicules in the Neoproterozoic. Therefore, it is important to estimate the transition of the Ca cycle in seawater. Ancient Ca cycles in the oceans are estimated from the calcium isotopic compositions of carbonate rocks. However, the lack of continuous Ca isotopic data in the Ediacaran leaves the Ca cycle unresolved.The almost continuously exposed, Ediacaran and Cambrian strata in South China mainly comprise carbonate rocks with subordinate black shales and sandstones, which contain many fossils, suitable for the study of environmental and biological changes. We conducted drilling from the Liantuo, via the Nantuo, Doushantuo, Dengying and Yanjiahe to the Shuijingtuo formation at four sites in the Three Gorges area in order to obtain continuous, fresh samples without surface alteration and oxidation. We analyzed 44Ca/42Ca ratios in carbonate rocks with a multiple collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS) screened for diagenetic alteration.The resultant δ44/42Ca ratios exhibit a smooth curve. The values of δ44/42Ca are anomalously high relative to those in the Phanerozoic, and they gradually decrease towards the end of the Ediacaran. Our new Ca isotope chemostratigraphy suggests that a different Ca cycle had existed during the Ediacaran. The long-term, high δ44/42Ca is not simply explicable by changes in temperature, differences in carbonate mineralogy, or changes in the input/output fluxes of Ca to the ocean. We propose three possible explanations for the observed high δ44/42Ca ratios in the Ediacaran: high δ44/42Ca ratios of Ca inputs, potential undiscovered sinks of Ca with low δ44/42Ca values, and negligible isotope fractionation between carbonate and seawater; we consider that one or all of these contributed to the high δ44/42Ca ratios. Of these, we prefer the small isotope fractionation, which implies that the Ca concentration in seawater was initially low in the early Ediacaran and increased throughout that period.  相似文献   

20.
Here we present the results of U–Pb LA–ICP–MS dating of detrital zircons from the Ediacaran–Early Cambrian deposits of the eastern part of the Baltic monoclise (Leningrad Region). The obtained age spectra of the detrital zircons suggest that, in the Ediacaran–Early Cambrian, the main clastic material source to the northwest of the Russian Platform was the Baltic Shield. Then in the Early Cambrian along with the Baltic Shield provenance, a clastic source from the Timanian margin of Baltica (northeast in modern coordinates) contributed to the deposits. The obtained data either somewhat set limits of the Timanian orogen formation as older than the previously suggested Middle Cambrian (about 510 Ma), based on the “absence of a Proto–Uralian–Timanian provenance signal” in the Sablino Formation rocks in the south Ladoga, or suggest another rearrangement of detritus transportation paths at the end of Stage 3 (Atdabanian).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号