首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gases were analyzed from well cuttings, core, gas hydrate, and formation tests at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled within the Milne Point Unit, Alaska North Slope. The well penetrated a portion of the Eileen gas hydrate deposit, which overlies the more deeply buried Prudhoe Bay, Milne Point, West Sak, and Kuparuk River oil fields. Gas sources in the upper 200 m are predominantly from microbial sources (C1 isotopic compositions ranging from −86.4 to −80.6‰). The C1 isotopic composition becomes progressively enriched from 200 m to the top of the gas hydrate-bearing sands at 600 m. The tested gas hydrates occur in two primary intervals, units D and C, between 614.0 m and 664.7 m, containing a total of 29.3 m of gas hydrate-bearing sands. The hydrocarbon gases in cuttings and core samples from 604 to 914 m are composed of methane with very little ethane. The isotopic composition of the methane carbon ranges from −50.1 to −43.9‰ with several outliers, generally decreasing with depth. Gas samples collected by the Modular Formation Dynamics Testing (MDT) tool in the hydrate-bearing units were similarly composed mainly of methane, with up to 284 ppm ethane. The methane isotopic composition ranged from −48.2 to −48.0‰ in the C sand and from −48.4 to −46.6‰ in the D sand. Methane hydrogen isotopic composition ranged from −238 to −230‰, with slightly more depleted values in the deeper C sand. These results are consistent with the concept that the Eileen gas hydrates contain a mixture of deep-sourced, microbially biodegraded thermogenic gas, with lesser amounts of thermogenic oil-associated gas, and coal gas. Thermal gases are likely sourced from existing oil and gas accumulations that have migrated up-dip and/or up-fault and formed gas hydrate in response to climate cooling with permafrost formation.  相似文献   

2.
用地球化学方法勘查中国南海的天然气水合物   总被引:7,自引:0,他引:7  
天然气水合物是一种未来新型能源,赋存于低温高压环境下的海洋沉积物中,但也可形成于大陆永久冻土带中。天然气水合物资源量巨大,具有经济和环境上的研究意义。近年来,国际上己对天然气水合物的产况、分布和形成机理开展了大量研究,但国内这方面的工作还刚刚开展。对中国南海的调查表明该区存在天然气水合物赋存的有利地质条件、温压条件和富含有机质的沉积条件。在南海的许多海区还发现了指示天然气水合物存在的地震标志(BSR)。介绍了在南海天然气水合物勘查中的地球化学异常标志。这些地球化学异常的产生可能与天然气水合物的形成或分解过程有关。研究内容包括沉积物中气体含量(主要为甲烷和乙烷),甲烷的碳同位素,孔隙水中阴离子(Cl^-、SO4^2-等)、阳离子(Ca^2 、Mg^2 、Ba^2 、Sr^2 ,B^3 和NH4^ 等)浓度和δ^18,δD,δ^11B,及^87Sr/^86Sr等同位素组成,此外还对海底沉积物的热释光特征和紫外、可见、近红外反射光谱特征开展了探索性研究。通过进一步加强理论和实验研究,结合地球物理和地球化学资料,在不远的将来将会在南海发现和圈定天然气水合物矿藏。  相似文献   

3.
We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and δ13C-CH4 values of ?50.6‰. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas–sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO 4 2? and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.  相似文献   

4.
Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean δ13C = −48.6‰ and δD = −248‰ for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage.  相似文献   

5.
Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll?1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ΣCO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments.  相似文献   

6.
从勘探技术和资源评价的角度综述了甲烷水合物生成和聚集的重要特征, 如地震反射剖面、测井曲线资料、地球化学特点等以及对未知区的地质勘探和选区评价 .甲烷水合物在地震剖面上主要表现为BSR(似海底反射)、振幅变形(空白反射)、速度倒置、速度-振幅结构(VAMPS)等,大规模的甲烷水合物聚集可以通过高电阻率(>100欧姆.米)声波速度、低体积密度等号数进行直接判读.此项研究实例表明,沉积物中典型甲烷水合物具有低渗透性和高毛细管孔隙压力特点,地层孔隙水矿化度也呈异常值,并具有各自独特的地质特征.现场计算巨型甲烷水合物储层中甲烷资源量的方法可分为:测井资料计算法公式为:SW=(abRw/φm.Rt)1/n;地震资料计算法公式为:ρp=(1-φ)ρm+(1-s)φρw+sφρh、VH=λ.φ.S.对全球甲烷水合物总资源量预测的统计达20×1015m3以上.甲烷水合物形成需满足高压、低温条件,要求海水深度>300 m.因此,甲烷水合物的分布严格地局限于两极地区和陆坡以下的深水地区,并具有3种聚集类型:1.永久性冻土带;2.浅水环境;3.深水环境.深海钻探计划(DSDP)和大洋钻探计划(ODP)已在下述10个地区发现大规模的甲烷水合物聚集,他们是:秘鲁、哥斯达黎加、危地马拉、墨西哥、美国东南大西洋海域、美国西部太平洋海域、日本海域的两个地区、阿拉斯加和墨西哥湾地区.在较浅水沉积物岩心样中发现甲烷水合物的地区,包括黑海、里海、加拿大北部、美国加里福尼亚岸外、墨西哥湾北部、鄂霍茨克海的两个地区.在垂向上,甲烷水合物主要分布于海底以下2 000 m以浅的沉积层中.最新统计表明又主要分布于二个深度区间:200~450 m和700~920 m,前者是由ODP995~997站位发现的;后者在加拿大麦肯齐河三角洲马立克2L-38号井中897~922 m处发现.中国海域已发现多处甲烷水合物可能赋存地区,包括东沙群岛南部、西沙海槽北部、西沙群岛南部以及东海海域地区.姚伯初报道了南海地区9处地震剖面速度异常值的发现,海水深度为420~3 920 m,海洋地质研究所则在东海海域解释了典型BSR反射的剖面,具有速度异常、弱振幅、空白反射、与下伏反射波组具不整合接触关系(VAMPS)等,大致圈定了它们的分布范围,表明在中国海域寻找甲烷水合物具有光明的前景.  相似文献   

7.
Despite much progress over the past years in fundamental gas hydrate research, frontiers to the unknown are the early beginning and early decomposition of gas hydrates in their natural, submarine environment: gas bubbles meeting ocean water and forming hydrate, and gas starting to escape from the surface of a hydrate grain. In this paper we report on both of these topics, and present three-dimensional microstructure results obtained by synchrotron radiation X-ray cryo-tomographic microscopy (SRXCTM). Hydrates can precipitate when hydrate-forming molecules such as methane exceed solubility, and combine with water within the gas hydrate stability zone. Here we show hydrate formation on surfaces of bubbles from different gas mixtures and seawater, based on underwater robotic in situ experiments in the deep Monterey Canyon, offshore California. Hydrate begins to form from the surrounding water on the bubble surfaces, and subsequently grows inward into the bubble, evidenced by distinct edges. Over time, the bubbles become smaller while gas is being incorporated into newly formed hydrate. In contrast, current understanding has been that hydrate decomposition starts on the outer surface of hydrate aggregates and grains. It is shown that in an early stage of decomposition, newly found tube structures connect well-preserved gas hydrate patches to areas that are dissociating, demonstrating how dissociating areas in a hydrate grain are linked through hydrate that is still intact and will likely decompose at a later stage.
Figure
The boundaries of a gas hydrate grain: excepting for the matrix (transparent, not shown), one can see tubular structures, pores from decomposition, and bubbles.  相似文献   

8.
Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures.Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.  相似文献   

9.
《Marine and Petroleum Geology》2012,29(10):1751-1767
Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures.Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.  相似文献   

10.
This study is a synthesis of gas-related features in recent sediments across the western Black Sea basin. The investigation is based on an extensive seismic dataset, and integrates published information from previous local studies. Our data reveal widespread occurrences of seismic facies indicating free gas in sediments and gas escape in the water column. The presence of gas hydrates is inferred from bottom-simulating reflections (BSRs). The distribution of the gas facies shows (1) major gas accumulations close to the seafloor in the coastal area and along the shelfbreak, (2) ubiquitous gas migration from the deeper subsurface on the shelf and (3) gas hydrate occurrences on the lower slope (below 750 m water depth). The coastal and shelfbreak shallow gas areas correspond to the highstand and lowstand depocentres, respectively. Gas in these areas most likely results from in situ degradation of biogenic methane, probably with a contribution of deep gas in the shelfbreak accumulation. On the western shelf, vertical gas migration appears to originate from a source of Eocene age or older and, in some cases, it is clearly related to known deep oil and gas fields. Gas release at the seafloor is abundant at water depths shallower than 725 m, which corresponds to the minimum theoretical depth for methane hydrate stability, but occurs only exceptionally at water depths where hydrates can form. As such, gas entering the hydrate stability field appears to form hydrates, acting as a buffer for gas migration towards the seafloor and subsequent escape.  相似文献   

11.
Hydrate-bearing sediment cores were retrieved from recently discovered seepage sites located offshore Sakhalin Island in the Sea of Okhotsk. We obtained samples of natural gas hydrates and dissolved gas in pore water using a headspace gas method for determining their molecular and isotopic compositions. Molecular composition ratios C1/C2+ from all the seepage sites were in the range of 1,500–50,000, while δ13C and δD values of methane ranged from ?66.0 to ?63.2‰ VPDB and ?204.6 to ?196.7‰ VSMOW, respectively. These results indicate that the methane was produced by microbial reduction of CO2. δ13C values of ethane and propane (i.e., ?40.8 to ?27.4‰ VPDB and ?41.3 to ?30.6‰ VPDB, respectively) showed that small amounts of thermogenic gas were mixed with microbial methane. We also analyzed the isotopic difference between hydrate-bound and dissolved gases, and discovered that the magnitude by which the δD hydrate gas was smaller than that of dissolved gas was in the range 4.3–16.6‰, while there were no differences in δ13C values. Based on isotopic fractionation of guest gas during the formation of gas hydrate, we conclude that the current gas in the pore water is the source of the gas hydrate at the VNIIOkeangeologia and Giselle Flare sites, but not the source of the gas hydrate at the Hieroglyph and KOPRI sites.  相似文献   

12.
天然气水合物目前已经成为世界范围的一个研究热点,而我国的天然气水合物研究起步则相对较晚,通过阅读国内外有关文献,总结了天然气水合物在海底的分布特征,聚集和形成机制,产状及其形成机理,甲烷羽的形成过程,天然气水合物在沉积物中的聚集位置通常有两种情况:一是较浅的沉积物(海底以下几米)中,受控于泥底辟,泥火山,断层等;二是较深的沉积物(海底以下几十米,甚至更深)中,受控于流体,当断层延伸至海底时,通常在水合物聚集处的上部发现甲烷羽,天然气以溶解气,游离气或分子扩散的形式运移,在温,压适宜的沉积物中,即水合物稳定带内聚集并形成水合物,水合物的形成过程是:最初形成晶体,呈分散状分布于沉积物中,之后逐渐聚集,生长成结核状,层状,最后形成块状,在细粒的浅层沉积物中,通常以较慢的速度生长,形成分散状的水合物;而在粗粒沉积物中,水合物通常呈填隙状,并且这种产状可能位于较深层位中,我国南海在温度,压力,构造条件,天然气来源等方面都能满足天然气水合物的形成条件,并且在南海也发现了一些水合物存在的标志,如似海底反射层(BSR)以及孔隙水中氯离子浓度的降低。因此,天然气水合物在我国南海海域可能有很好的前景。  相似文献   

13.
Multidisciplinary surveys were conducted to investigate gas seepage and gas hydrate accumulation on the northeastern Sakhalin continental slope (NESS), Sea of Okhotsk, during joint Korean–Russian–Japanese expeditions conducted from 2003 to 2007 (CHAOS and SSGH projects). One hundred sixty-one gas seeps were detected in a 2000 km2 area of the NESS (between 53°45′N and 54°45′N). Active gas seeps in a gas hydrate province on the NESS were evident from features in the water column, on the seafloor, and in the subsurface: well-defined hydroacoustic anomalies (gas flares), side-scan sonar structures with high backscatter intensity (seepage structures), bathymetric structures (pockmarks and mounds), gas- and gas-hydrate-related seismic features (bottom-simulating reflectors, gas chimneys, high-amplitude reflectors, and acoustic blanking), high methane concentrations in seawater, and gas hydrates in sediment near the seafloor. These expressions were generally spatially related; a gas flare would be associated with a seepage structure (mound), below which a gas chimney was present. The spatial distribution of gas seeps on the NESS is controlled by four types of geological structures: faults, the shelf break, seafloor canyons, and submarine slides. Gas chimneys that produced enhanced reflection on high-resolution seismic profiles are interpreted as active pathways for upward gas migration to the seafloor. The chimneys and gas flares are good indicators of active seepage.  相似文献   

14.
N.K. Bigalke  G. Rehder  G. Gust   《Marine Chemistry》2009,115(3-4):226-234
The dissolution of in-situ generated methane hydrate in undersaturated, synthetic seawater (S = 35) was investigated in a series of laboratory-based experiments at P-/T-conditions within the hydrate stability field. A controlled flow field was generated across the smooth hydrate surface to test if, in addition to thermodynamic variables, the dissolution rate is influenced by changing hydrodynamic conditions. The dissolution rate was found to be strongly dependent on the friction velocity, showing that hydrate dissolution in undersaturated seawater is a diffusion-controlled process. The experimental data was used to obtain diffusional mass transfer coefficients kd, which were found to correlate linearly with the friction velocity, u. The resulting kd/u-correlation allows predicting the flux of methane from natural gas hydrate exposures at the sediment/seawater interface into the bulk water for a variety of natural P, T and flow conditions. It also is a tool for estimating the rate of hydrate regrowth at locations where natural hydrate outcrops at the seafloor persist in contact with undersaturated seawater.  相似文献   

15.
天然气水合物是天然气和水在特定条件下形成的一种透明的冰状结晶体。天然气水合物的发现为寻找清洁高效的新型能源,以取代日益枯竭的传统能源提供了一个广阔的领域和新的思维方式。我国天然气水合物具有广阔的勘探领域和良好的勘探前景。本文对天然气水合物的研究现状进行了综述。在总结前人关于天然气水合物研究的基础上,总结归纳了天然气水合物的地震、地球物理测井、沉积岩石、地球化学、地形地貌等识别标志。企望对加速天然气水合物的勘探提供一些有益的线索。  相似文献   

16.
In western Canada gas hydrates have been thought to exist primarily in the Cascadia accretionary prism off southern Vancouver Island, British Columbia (BC). We present evidence for the existence of gas hydrate in folds and ridges of the Winona Basin up to 40 km seaward from the foot of the continental slope off northern Vancouver Island. The occurrence of a bottom-simulating reflector (BSR) observed in a number of vintage seismic reflection profiles is strongly correlated to faulted, and folded sedimentary ridges and buried folds. The observed tectonic structures of the Winona Basin are within the rapidly evolving Juan de Fuca - Cascadia - Queen Charlotte triple junction off BC. Re-processing of multi-channel data imaged mildly to strongly deformed sediments; the BSR is confined to sediments with stronger deformation. Changes in the amplitude character of sediment-reflections above and below the depth of the base of gas hydrate stability zone were also used as an indicator for the presence of gas hydrate. Additionally, regional amplitude and frequency reduction below some strong BSR occurrences may indicate free gas accumulations. Gas hydrate formation in the Winona Basin appears strongly constrained to folds and ridges and thus correlated to deeper-routed fluid-advection regimes. Methane production from in situ microbial activities as a source of gas to form gas hydrates, as proposed to be a major contributor for gas hydrates within the accretionary prism to the south, appears to be insufficient to produce the widespread gas hydrate occurrences in the Winona Basin. Potential reasons for the lack of sufficient in situ gas production may be that sedimentation rates are 5-100 times higher than those in the accretionary prism so that available organic carbon moves too quickly through the gas hydrate stability field. The confinement of BSRs to ridges and folds within the Winona Basin results in an areal extent of gas hydrate occurrences that is a factor of five less than what is expected from regional gas hydrate stability field mapping using water-depth (pressure) as the only controlling factor only.  相似文献   

17.
Microbial communities flourish at gas hydrate occurrences in ocean sediments. Studies are reported in this paper on the laboratory production, separation, characterization and hydrate catalysis of biosurfactants from cultures of the Bacillus subtilis bacterium associated with Gulf of Mexico gas-hydrate accumulations. The B. subtilis bacterium from ATCC 21332 species was cultured anaerobically with glucose as carbon-source to produce surfactin, one of the more potent surface active agents known. The surface-active agent was removed from the broth in foam created by bubbling inert gas through the mixture, and biosurfactant was then recovered from the collapsed-foam distilled water solution by acid precipitation and dichloromethane extraction. According to HPLC spectra, five surfactin isomers were identified in the sample of laboratory-generated biosurfactant. Recovered surfactin was then used to perform gas-hydrate formation studies in porous media saturated with the surfactin-water solution. Gas-hydrate induction time and formation rate determinations showed that the anaerobically-produced biosurfactants catalyzed hydrate formation markedly. The tests suggest prolific surfactin production by the B. subtilis bacterium and of other species under prevailing anaerobic conditions around seafloor gas hydrates that promotes hydrate formation and the propensity of the bioproduct to be dispersed in the porous media by natural gas vents.  相似文献   

18.
Many mud diapirs have been recognized in southern Okinawa Trough by a multi-channel seismic surveying on R/V KEXUE I in 2001. Gas hydrates have been identified, by the seismic reflection characteristics, the velocity analysis and the impedance inversion. Geothermal heat flow around the central of the mud diapir has been determined theoretically by the Bottom Simulating Reflectors (BSRs). Comparing the BSR derived and the measured heat flow values, we infer that the BSR immediately at the top of the mud diapirs indicate the base of the saturated gas hydrate formation zone (BSGHFZ), but not, as we ordinarily know, the base of the gas hydrate stability zone (BGHSZ), which could be explained by the abnormal regional background heat flow and free gas flux associated with mud diapirs. As a result, it helps us to better understand the generation mechanism of the gas hydrates associated with mud diapirs and to predict the gas hydrate potential in the southern Okinawa Trough.  相似文献   

19.
Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct–Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg− 1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis.  相似文献   

20.
The field of ocean geochemistry has recently been expanded to include in situ laser Raman spectroscopic measurements in the deep ocean. While this technique has proved to be successful for transparent targets, such as fluids and gases, difficulty exists in using deep submergence vehicle manipulators to position and control the very small laser spot with respect to opaque samples of interest, such as many rocks, minerals, bacterial mats, and seafloor gas hydrates. We have developed, tested, and successfully deployed by remotely operated vehicle (ROV) a precision underwater positioner (PUP) which provides the stability and precision movement required to perform spectroscopic measurements using the Deep Ocean Raman In situ Spectrometer (DORISS) instrument on opaque targets in the deep ocean for geochemical research. The positioner is also adaptable to other sensors, such as electrodes, which require precise control and positioning on the seafloor. PUP is capable of translating the DORISS optical head with a precision of 0.1 mm in three dimensions over a range of at least 15 cm, at depths up to 4000 m, and under the normal range of oceanic conditions (T, P, current velocity). The positioner is controlled, and spectra are obtained, in real time via Ethernet by scientists aboard the surface vessel. This capability has allowed us to acquire high quality Raman spectra of targets such as rocks, shells, and gas hydrates on the seafloor, including the ability to scan the laser spot across a rock surface in sub-millimeter increments to identify the constituent mineral grains. These developments have greatly enhanced the ability to obtain in situ Raman spectra on the seafloor from an enormous range of specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号