首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We explore the ways in which primordial magnetic fields influence the thermal and ionization history of the post-recombination Universe. After recombination, the Universe becomes mostly neutral, resulting also in a sharp drop in the radiative viscosity. Primordial magnetic fields can then dissipate their energy into the intergalactic medium via ambipolar diffusion and, for small enough scales, by generating decaying magnetohydrodynamics turbulence. These processes can significantly modify the thermal and ionization history of the post-recombination Universe. We show that the dissipation effects of magnetic fields, which redshifts to a present value   B 0= 3 × 10−9 G  smoothed on the magnetic Jeans scale and below, can give rise to Thomson scattering optical depths  τ≳ 0.1  , although not in the range of redshifts needed to explain the recent Wilkinson Microwave Anisotropy Probe ( WMAP ) polarization observations. We also study the possibility that primordial fields could induce the formation of subgalactic structures for   z ≳ 15  . We show that early structure formation induced by nanoGauss magnetic fields is potentially capable of producing the early reionization implied by the WMAP data. Future cosmic microwave background observations will be very useful to probe the modified ionization histories produced by primordial magnetic field evolution and constrain their strength.  相似文献   

2.
Early reionization of the intergalactic medium (IGM), which is favoured from the WMAP temperature–polarization cross-correlations, contests the validity of the standard scenario of structure formation in the cold dark matter (CDM) cosmogony. It is difficult to achieve early enough star formation without rather extreme assumptions such as a very high escape fraction of ionizing photons from protogalaxies or a top-heavy initial mass function (IMF). Here, we propose an alternative scenario that additional fluctuations on small scales induced by primordial magnetic fields trigger early structure formation. We found that ionizing photons from Population III stars formed in dark haloes can easily reionize the Universe by   z ≃ 15  if the strength of primordial magnetic fields is between 0.7 and  1.5 × 10−9 G  .  相似文献   

3.
Absorption lines of MgH and CaH N  = 1 − 0 transitions were searched for in foreground molecular clouds towards the continuum sources associated with Sgr B2 (M) and W49A (N). None of these lines was detected with our sensitivity level of ∼20 mK. Millimetric absorption lines of MgO, MgOH, CaO and CaOH were also searched for towards Sgr B2 (M) without success. The fractional abundances relative to molecular hydrogen are ≲ 1.0 × 10−11 for MgH, ≲ 7.9 × 10−13 for MgO, ≲ 1.6 × 10−10 for MgOH, ≲ 1.6 × 10−9 for CaH, ≲ 2.0 × 10−12 for CaO, and ≲ 2.5 × 10−10 for CaOH, respectively. The low abundances measured in absorption indicate that a significant fraction of interstellar magnesium and calcium cannot be tied up in their monohydrides, monoxides and monohydroxides. The low abundance of MgH also implies that grain-surface chemistry involving magnesium is not efficient and that magnesium is depleted on to grains to a factor of ≳ 102.5 in well-shielded molecular clouds.  相似文献   

4.
We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies, extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfvén part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum ωlow. For equilibria with accreted mass  1.2 × 10−6≲ M a/M≲ 1.7 × 10−4  and surface magnetic fields  1011≲ B */G ≲ 1013, ωlow  is approximately independent of   B *  , and increases with M a. The results are consistent with the Alfvén spectrum excited in numerical simulations with the zeus-mp solver. The spectrum is modified substantially by the Coriolis force in neutron stars spinning faster than ∼100 Hz. The implications for gravitational-wave searches for low-mass X-ray binaries are considered briefly.  相似文献   

5.
We study the effect of large-scale tangled magnetic fields on the galaxy two-point correlation function in the redshift space. We show that (i) the magnetic field effects can be comparable to the gravity-induced clustering for present magnetic field strength   B 0≃ 5 × 10−8 G  , (ii) the absence of this signal from the present data gives an upper bound   B 0≲ 3 × 10−8 G  and (iii) the future data can probe the magnetic fields of  ≃10−8 G  . A comparison with other constraints on the present magnetic field shows that they are marginally compatible. However, if the magnetic fields corresponding to   B 0≃ 10−8 G  existed at the last scattering surface, they will cause unacceptably large cosmic microwave background radiation anisotropies.  相似文献   

6.
We explore possibilities of collapse and star formation in Population III objects exposed to the external ultraviolet background (UVB) radiation. Assuming spherical symmetry, we solve self-consistently radiative transfer of photons, non-equilibrium H2 chemistry and gas hydrodynamics. Although the UVB does suppress the formation of low-mass objects, the negative feedback turns out to be weaker than previously suggested. In particular, the cut-off scale of collapse drops significantly below the virial temperature T vir∼104 K at weak UV intensities ( J 21≲10−2) , owing to both self-shielding of the gas and H2 cooling. Clouds above this cut-off tend to contract highly dynamically, further promoting self-shielding and H2 formation. For plausible radiation intensities and spectra, the collapsing gas can cool efficiently to temperatures well below 104 K before rotationally supported and the final H2 fraction reaches ∼ 10−3.
Our results imply that star formation can take place in low-mass objects collapsing in the UVB. The threshold baryon mass for star formation is ∼ 109 M for clouds collapsing at redshifts z ≲3 , but drops significantly at higher redshifts. In a conventional cold dark matter universe, the latter coincides roughly with that of the 1 σ density fluctuations. Objects near and above this threshold can thus constitute 'building blocks' of luminous structures, and we discuss their links to dwarf spheroidal/elliptical galaxies and faint blue objects. These results suggest that the UVB can play a key role in regulating the star formation history of the Universe.  相似文献   

7.
One of the most-outstanding problems in the gravitational collapse scenario of early structure formation is the cooling of primordial gas to allow for small-mass objects to form. As the neutral primordial gas is a poor radiator at temperatures   T ≤ 104 K  , molecular hydrogen is needed for further cooling down to temperatures   T ∼ 100 K  . The formation of molecular hydrogen is catalyzed by the presence of free electrons, which could be provided by the ionization due to an early population of cosmic rays (CRs). In order to investigate this possibility, we developed a code to study the effects of ionizing CRs on the thermal and chemical evolution of primordial gas. We found that CRs can provide enough free electrons needed for the formation of molecular hydrogen, and therefore can increase the cooling ability of such primordial gas under following conditions. A dissociating photon flux with   F < 10−18 erg cm−2 Hz−1 s−1  , initial temperature of the gas  ∼103 K  , total gas number densities   n ≥ 1 cm−3  , and cosmic-ray sources with     .  相似文献   

8.
In order to interpret H2 quasar absorption-line observations of damped Lyα systems (DLAs) and subDLAs, we model their H2 abundance as a function of dust-to-gas ratio, including H2 self-shielding and dust extinction against dissociating photons. Then, we constrain the physical state of the gas by using H2 data. Using H2 excitation data for DLAs with H2 detections, we derive a gas density  1.5 ≲ log n (cm−3) ≲ 2.5  , temperature  1.5 ≲ log T (K) ≲ 3  , and an internal ultraviolet (UV) radiation field (in units of the Galactic value)  0.5 ≲ log χ≲ 1.5  . We then find that the observed relation between the molecular fraction and the dust-to-gas ratio of the sample is naturally explained by the above conditions. However, it is still possible that H2 deficient DLAs and subDLAs with H2 fractions less than  ∼10−6  are in a more diffuse and warmer state. The efficient photodissociation by the internal UV radiation field explains the extremely small H2 fraction  (≲10−6)  observed for  κ≲ 1/30  (κ is the dust-to-gas ratio in units of the Galactic value); H2 self-shielding causes a rapid increase in, and large variations of, H2 abundance for  κ≳ 1/30  . We finally propose an independent method to estimate the star formation rates of DLAs from H2 abundances; such rates are then critically compared with those derived from other proposed methods. The implications for the contribution of DLAs to the cosmic star formation history are briefly discussed.  相似文献   

9.
We explore the implications of a possible cosmic-ray (CR) background generated during the first supernova explosions that end the brief lives of massive Population III stars. We show that such a CR background could have significantly influenced the cooling and collapse of primordial gas clouds in minihaloes around redshifts of   z ∼ 15–20  , provided the CR flux was sufficient to yield an ionization rate greater than about 10−19 s−1 near the centre of the minihalo. The presence of CRs with energies  ≲107  eV would indirectly enhance the molecular cooling in these regions, and we estimate that the resulting lower temperatures in these minihaloes would yield a characteristic stellar mass as low as  ∼10 M  . CRs have a less-pronounced effect on the cooling and collapse of primordial gas clouds inside more massive dark matter haloes with virial masses  ≳108 M  at the later stages of cosmological structure formation around   z ∼ 10–15  . In these clouds, even without CR flux the molecular abundance is already sufficient to allow cooling to the floor set by the temperature of the cosmic microwave background.  相似文献   

10.
The collapse of marginally Jeans-unstable primordial gas clouds in the presence of a UV radiation field is discussed. Assuming that the dynamical collapse proceeds approximately in an isothermal self-similar fashion, we investigate the thermal evolution of the collapsing central core until H2 cooling dominates photoheating and the temperature drops to below 104 K. Consequently, the mass of the cooled core is evaluated as M cool=3.6×106 M ( I 21/1)−0.32. This scale depends only on the incident UV intensity, and provides a lower limit to the mass of collapsed objects in the UV radiation field.  相似文献   

11.
The 21-cm forest     
We examine the prospects for studying the pre-reionization intergalactic medium (IGM) through the so-called 21-cm forest in spectra of bright high-redshift radio sources. We first compute the evolution of the mean optical depth τ for models that include X-ray heating of the IGM gas, Wouthuysen–Field coupling, and reionization. Under most circumstances, the spin temperature T S grows large well before reionization begins in earnest; this occurs so long as the X-ray luminosity of high-redshift starbursts (per unit star formation rate) is comparable to that in nearby galaxies. As a result,  τ≲ 10−3  throughout most of reionization, and background sources must sit well beyond the reionization surface in order to experience absorption that is measurable by square-kilometre class telescopes. H  ii regions produce relatively large 'transmission gaps' and may therefore still be observable during the early stages of reionization. Absorption from sheets and filaments in the cosmic web fades once T S becomes large and should be rare during reionization. Minihaloes can produce strong (albeit narrow) absorption features. Measuring their abundance would yield useful limits on the strength of feedback processes in the IGM as well as their effect on reionization.  相似文献   

12.
A model of the ferromagnetic origin of magnetic fields of neutron stars is considered. In this model, the magnetic phase transition occurs inside the core of neutron stars soon after formation. However, owing to the high electrical conductivity the core magnetic field is initially fully screened. We study how this magnetic field emerges for an outside observer. After some time, the induced field that screens the ferromagnetic field decays enough to uncover a detectable fraction of the ferromagnetic field. We calculate the time-scale of decay of the screening field and study how it depends on the size of the ferromagnetic core. We find that the same fractional decay of the screening field occurs earlier for larger cores. We conjecture that weak fields of millisecond pulsars, B ∼108–109 G, could be identified with ferromagnetic fields of unshielded fraction ε ∼10−4–10−3 resulting from the decay of screening fields by a factor 1− ε in ∼108 yr since their birth.  相似文献   

13.
We investigate the properties of the first galaxies at   z ≳ 10  with highly resolved numerical simulations, starting from cosmological initial conditions and taking into account all relevant primordial chemistry and cooling. A first galaxy is characterized by the onset of atomic hydrogen cooling, once the virial temperature exceeds  ≃104 K  , and its ability to retain photoheated gas. We follow the complex accretion and star formation history of a  ≃5 × 107 M  system by means of a detailed merger tree and derive an upper limit on the number of Population III (Pop III) stars formed prior to its assembly. We investigate the thermal and chemical evolution of infalling gas and find that partial ionization at temperatures  ≳104 K  catalyses the formation of  H2  and hydrogen deuteride, allowing the gas to cool to the temperature of the cosmic microwave background. Depending on the strength of radiative and chemical feedback, primordial star formation might be dominated by intermediate-mass Pop III stars formed during the assembly of the first galaxies. Accretion on to the nascent galaxy begins with hot accretion, where gas is accreted directly from the intergalactic medium and shock heated to the virial temperature, but is quickly accompanied by a phase of cold accretion, where the gas cools in filaments before flowing into the parent halo with high velocities. The latter drives supersonic turbulence at the centre of the galaxy and could lead to very efficient chemical mixing. The onset of turbulence in the first galaxies thus likely marks the transition to Pop II star formation.  相似文献   

14.
15.
We discuss the evolution of the magnetic flux density and angular velocity in a molecular cloud core, on the basis of three-dimensional numerical simulations, in which a rotating magnetized cloud fragments and collapses to form a very dense optically thick core of  >5 × 1010 cm−3  . As the density increases towards the formation of the optically thick core, the magnetic flux density and angular velocity converge towards a single relationship between the two quantities. If the core is magnetically dominated its magnetic flux density approaches  1.5( n /5 × 1010 cm−3)1/2 mG  , while if the core is rotationally dominated the angular velocity approaches  2.57 × 10−3 ( n /5 × 1010 cm−3)1/2 yr−1  , where n is the density of the gas. We also find that the ratio of the angular velocity to the magnetic flux density remains nearly constant until the density exceeds  5 × 1010 cm−3  . Fragmentation of the very dense core and emergence of outflows from fragments will be shown in the subsequent paper.  相似文献   

16.
We consider gravitational waves emitted by various populations of compact binaries at cosmological distances. We use population synthesis models to characterize the properties of double neutron stars, double black holes and double white dwarf binaries, and white dwarf–neutron star, white dwarf–black hole and black hole–neutron star systems.
We use the observationally determined cosmic star formation history to reconstruct the redshift distribution of these sources and their merging rate evolution.
The gravitational signals emitted by each source during its early spiralling in phase add randomly to produce a stochastic background in the low-frequency band with spectral strain amplitude between ~10−18 and ~5×10−17 Hz−1/2 at frequencies in the interval ~5×10−6–5×10−5 Hz.
The overall signal, which at frequencies above 10−4 Hz is largely dominated by double white dwarf systems, might be detectable with LISA in the frequency range 1–10 mHz and acts like a confusion-limited noise component, which might limit the LISA sensitivity at frequencies above 1 mHz.  相似文献   

17.
The origin of the magnetic field in galaxies is an open question in astrophysics. Several mechanisms have been proposed related, in general, to the generation of small seed fields amplified by a dynamo mechanism. In general, these mechanisms have difficulty in satisfying both the requirements of a sufficiently high strength for the magnetic field and the necessary large coherent scales. We show that the formation of dense and turbulent shells of matter, in the multiple explosion scenario of Miranda &38; Opher for the formation of the large-scale structures of the Universe, can naturally act as a seed for the generation of a magnetic field. During the collapse and explosion of Population III objects, a temperature gradient not parallel to a density gradient can naturally be established, producing a seed magnetic field through the Biermann battery mechanism. We show that seed magnetic fields ∼ 10−12–10−14 G can be produced in this multiple explosion scenario on scales of the order of clusters of galaxies (with coherence length L  ∼ 1.8 Mpc) and up to ∼ 4.5 × 10−10 G on scales of galaxies ( L  ∼ 100 kpc).  相似文献   

18.
We calculate the secondary anisotropies in the cosmic microwave background (CMB) produced by inhomogeneous reionization from simulations in which the effects of radiative and stellar feedback effects on galaxy formation have been included. This allows us to determine self-consistently the beginning ( z i≈30), the duration ( δz ≈20) and the (non-linear) evolution of the reionization process for a critical density cold dark matter (CDM) model. In addition, from the simulated spatial distribution of ionized regions, we are able to calculate the evolution of the two-point ionization correlation function, C χ , and obtain the power spectrum of the anisotropies, C , in the range 5000<ℓ<106. The power spectrum has a broad maximum around ℓ≈30 000, where it reaches the value 2×10−12. We also show that the ionization correlation function C χ is not Gaussian, but at separation angles θ ≲10−4 rad it can be approximated by a modified Lorentzian shape; at larger separations an anticorrelation signal is predicted for both C χ and C ( θ ). Detection of signals as above will be possible with future millimetre-wavelength interferometers like the Atacama Large Millimeter Array (ALMA) , which appears as an optimum instrument to search for signatures of inhomogeneous reionization.  相似文献   

19.
We calculate the expected mid-infrared (MIR) molecular hydrogen line emission from the first objects in the Universe. As a result of their low masses, the stellar feedback from massive stars is able to blow away their gas content and collect it into a cooling shell where H2 rapidly forms and IR roto-vibrational (as for example the rest-frame 2.12 μm) lines carry away a large fraction (up to 10 per cent) of the explosion energy. The fluxes from these sources are in the range 10−21–10−17 erg s−1 cm−2 . The highest number counts are expected in the 20-μm band, where about 105 sources deg−2 are predicted at the limiting flux of 3×10−18 erg s−1 cm−2. Among the planned observational facilities, we find that the best detection perspectives are offered by the Next Generation Space Telescope ( NGST ), which should be able to reveal about 200 first objects in one hour observation time at its limiting flux in the above band. Therefore, mid-IR instruments appear to represent perfect tools to trace star formation and stellar feedback in the high ( z ≳5) redshift Universe.  相似文献   

20.
Most astrophysical sources powered by accretion on to a black hole, either of stellar mass or supermassive, when observed with hard X-rays show signs of a hot Comptonizing component in the flow, the so-called corona , with observed temperatures and optical depths lying in a narrow range (0.1≲ τ ≲1 and 1×109 K≲ T ≲3×109 K). Here we argue that these facts constitute strong supporting evidence for a magnetically dominated corona. We show that the inferred thermal energy content of the corona, in all black hole systems, is far too low to explain their observed hard X-ray luminosities, unless either the size of the corona is at least of the order of 103 Schwarzschild radii, or the corona itself is in fact a reservoir , where the energy is mainly stored in the form of a magnetic field generated by a sheared rotator (probably the accretion disc). We briefly outline the main reasons why the former possibility is to be discarded, and the latter preferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号