首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   1篇
天文学   10篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  1998年   3篇
  1997年   1篇
  1987年   2篇
  1986年   1篇
  1980年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
We study a model of extended radio sources (ERS), in particular, extragalactic jets and radio lobes, which are inhomogeneous and where noncompressive Alfvén and surface Alfvén waves (and not shocks and magnetosonic waves) are primarily excited. We assume that a negligible thermal population exists (i.e., the ion density at the low-energy cut-off of the power law distribution is greater than the ion density of the thermal population, if present). Due to internal instabilities and/or the interaction of the ERS with the ambient medium, surface Alfvén waves (SAW) are created. We show that even very small amplitude SAW are mode converted to kinetic Alfvén waves (KAW) which produce large moving accelerating potentials , parallel to the magnetic field. Neglecting nonlinear perturbations, and for typical physical parameters of ERS, we obtaine1 MeV. Wesuggest that these potentials are important in acceleration (e.g., injection energy) and reacceleration of electrons in ERS. We show that energy losses by synchrotron radiation can be compensated by reacceleration by KAW. The relation between KAW acceleration, and previously studied cyclotron-resonance acceleration by Alfvén waves, is discussed.  相似文献   
2.
The effect of shock wave propagation is investigated with respect to precursor heating and acceleration, upstream, with the aim of explaining Supernova (SN) observations.A model is presented, where two different sources of Langmuir waves produce upstream heating and acceleration: (1) Langmuir waves excited by resonance beam particles, that are accelerated through the shock front by Bell's mechanism; and (2) Langmuir waves, created in the post-shock turbulent zone.The most important processes considered in the calculations are: (1) the heating efficiency of beam particles of different velocity; (2) Bell's acceleration efficiency; (3) the spectrum of Langmuir waves created in a turbulent regime; (4) the effects of density, and of the density gradient in the medium, where the shock propagates.The calculations are applied to type II SN. The results show that temperatures of 105–106 K, obtained in the preshock region, can explain P-Cygni observed line profiles. Moreover, accelerations of the plasma in front of the shock up tov108 cm s–1 by momentum exchange, are in good agreement with observations.Partially supported by Conselho Nacional de Desenvolvimento Cientifico e Technológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).  相似文献   
3.
4.
In this article we extend the study performed in our previous article of the collapse of primordial objects. We here analyse the behaviour of the physical parameters for clouds ranging from 107 to 1015 M. We study the dynamical evolution of these clouds in two ways: as purely baryonic clouds and as clouds with non-baryonic dark matter included. We start the calculations at the beginning of the recombination era, following the evolution of the structure until the collapse (which we defined as the time when the density contrast of the baryonic matter is greater than 104). We analyse the behaviour of several physical parameters of the clouds (e.g. the density contrast and the velocities of the baryonic matter and the dark matter) as a function of time and radial position in the cloud. In this study all physical processes that are relevant to the dynamical evolution of the primordial clouds, such as for example photon drag (due to the cosmic background radiation) and hydrogen molecular production, besides the expansion of the Universe, are included in the calculations. In particular we find that the clouds with dark matter collapse at higher redshift when we compare the results with the purely baryonic models. As a general result we find that the distribution of the non-baryonic dark matter is more concentrated than the baryonic one. It is important to stress that we do not take into account the putative virialization of the non-baryonic dark matter; we just follow the time and spatial evolution of the cloud, solving its hydrodynamical equations. We also studied the role of cooling–heating processes in the purely baryonic clouds.  相似文献   
5.
Oscillations with a period of 5.6 min were observed on 10 July, 1978 while tracking at 22 GHz the active region McMath 15403. The oscillations were strong, clearly defined, had no damping, and lasted for about two hours. The rarity of the phenomenon is indicated by the fact that it occurred only once in more than 250 hr of solar observations. The possibility that these oscillations are due to a standing Alfvén wave driven by the photospheric velocity field is discussed.On sabbatical leave from Technion, Haifa, Israel.Formerly: Centro de Radio-Astronomia e Astrofísica Mackenzie, now with Brazilian National Research Agency CNPq, National Observatory.  相似文献   
6.
The origin of the magnetic field in galaxies is an open question in astrophysics. Several mechanisms have been proposed related, in general, to the generation of small seed fields amplified by a dynamo mechanism. In general, these mechanisms have difficulty in satisfying both the requirements of a sufficiently high strength for the magnetic field and the necessary large coherent scales. We show that the formation of dense and turbulent shells of matter, in the multiple explosion scenario of Miranda &38; Opher for the formation of the large-scale structures of the Universe, can naturally act as a seed for the generation of a magnetic field. During the collapse and explosion of Population III objects, a temperature gradient not parallel to a density gradient can naturally be established, producing a seed magnetic field through the Biermann battery mechanism. We show that seed magnetic fields ∼ 10−12–10−14 G can be produced in this multiple explosion scenario on scales of the order of clusters of galaxies (with coherence length L  ∼ 1.8 Mpc) and up to ∼ 4.5 × 10−10 G on scales of galaxies ( L  ∼ 100 kpc).  相似文献   
7.
We discuss some of the major areas in astronomy and cosmology where plasma physics is important: (1) origin of stars; (2) distortions of the microwave background radiation; (3) expansion rate of the Early Universe; (4) the magnetic fields and relativistic electrons in jets; (5) the collimation of jets; (6) the origin of stellar winds; (7) the origin of filaments and clouds not gravitationally bound; and (8) the origin of cosmic rays.  相似文献   
8.
It is generally assumed that the magnetic fields of millisecond pulsars (MSPs) are ~108 G. We argue that this may not be true and the fields may be appreciably greater. We present six evidences for this: (1) The ~108G field estimate is based on magnetic dipole emission losses which is shown to be questionable; (2) The MSPs in low mass X-ray binaries (LMXBs) are claimed to have <1011 G on the basis of a Rayleygh-Taylor instability accretion argument. We show that the accretion argument is questionable and the upper limit 1011 G may be much higher; (3) Low magnetic field neutron stars have difficulty being produced in LMXBs; (4) MSPs may still be accreting indicating a much higher magnetic field; (5) The data that predict ~108 G for MSPs also predict ages on the order of, and greater than, ten billion years, which is much greater than normal pulsars. If the predicted ages are wrong, most likely the predicted ~108 G fields of MSPs are wrong; (6) When magnetic fields are measured directly with cyclotron lines in X-ray binaries, fields ?108 G are indicated. Other scenarios should be investigated. One such scenario is the following. Over 85% of MSPs are confirmed members of a binary. It is possible that all MSPs are in large separation binaries having magnetic fields >108 G with their magnetic dipole emission being balanced by low level accretion from their companions.  相似文献   
9.
We examine the possibility of the decay of the vacuum energy into a homogeneous distribution of a thermalized cosmic microwave background (CMB), which is characteristic of an adiabatic vacuum energy decay into photons. It is shown that observations of the primordial density fluctuation spectrum, obtained from CMB and galaxy distribution data, restrict the possible decay rate. When photon creation due to an adiabatic vacuum energy decay takes place, the standard linear temperature dependence   T ( z ) = T 0(1 + z )  is modified, where T 0 is the present CMB temperature, and can be parametrized by a modified CMB temperature dependence     . From the observed CMB and galaxy distribution data, a strong limit on the maximum value of the decay rate is obtained by placing a maximum value  βmax≃ 3.4 × 10−3  on the β parameter.  相似文献   
10.
Electric current generation by kinetic Alfvén waves (KAW) is discussed for the case of extended radio sources (ERS), in particular, extragalactic jets (EJ). These currents are generated parallel to the background magnetic field due to Landau damping by which KAW accelerate electrons. We find that the KAW generated currents are in excess of the currents necessary for an EJ to be magnetically self-confined. We address the problem of determining the process that can maintain ERS inhomogeneous. We study the stability of a plasma which has: (1) the average local current density due to KAW given by our calculations; (2) the average local electrical conductivity (anomalous) due to KAW indicated by our calculations and the calculations of Hasegawa and Mima (1978); and (3) wave heating by surface Alfvén waves, independent of plasma temperature. We show that this plasma is subject to the thermal Joule instability. We suggest the thermal Joule instability as the process that maintains ERS inhomogeneous. Our KAW analysis correlates the important problems of ERS of (re)acceleration, current generation, collimation, and maintenance of inhomogeneities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号