首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This two-year study investigates the possible factors that determine spatial and temporal dynamics of picoplankton (heterotrophic bacteria, autotrophic picoplankton—Synechococcus spp., Prochlorococcus, and picoeukaryotes) and nanoflagellate abundance in the subtropical Ilan Bay, Taiwan, where the inner bay is affected by freshwater run-off from the Lanyang River and the eastern outer bay by the Kuroshio Current. In the inner bay, there was more rain and freshwater discharge in 2005 than in 2004 during the warm season (>24° C, June–September). The abundance of bacteria, Synechococcus spp., Prochlorococcus, and picoeukaryotes and the percentage contributions of pigmented nanoflagellate (PNF %) were two- to eight-fold greater during this period (July in 2005) than for other sampling periods. Relatively low abundance of heterotrophic nanoflagellates (HNF) in the presence of abundant picoplankton prey suggests that top-down control determined HNF abundance in the Ilan Bay, Taiwan.  相似文献   

2.
为全面了解黄海典型海区微微型浮游植物的季节变化特征,于2009年7月至2010年6月在北黄海獐子岛海域和2010年1~12月在南黄海胶州湾进行逐月调查采样,利用流式细胞仪检测了表层海水中微微型浮游植物(picophytoplankton)的丰度,包括聚球藻(Synechococcus,SYN)和微微型真核浮游植物(picoeukaryotes,PEUK),并分析了其与环境因子的关系。獐子岛海域和胶州湾SYN和PEUK全年广泛分布,獐子岛海域SYN丰度范围在0.05×103~120.00×103cells/mL之间,丰度在秋季最高;胶州湾SYN丰度范围在0.02×103~61.80×103cells/mL之间,丰度在夏季最高。獐子岛海域PEUK丰度范围在0.01×103~18.76×103cells/mL之间,丰度在秋季最高;胶州湾PEUK丰度范围在0.25×103~95.57×103 cells/mL之间,丰度在春季最高。獐子岛海域微微型浮游植物丰度组成以SYN为主;而胶州湾以PEUK为主。PEUK是两海区微微型浮游植物生物量的主要贡献者。相关性分析结果表明,温度是影响两海区SYN丰度季节变化的最主要因素;影响PEUK季节分布的因素不完全一致,獐子岛海域PEUK丰度主要受温度调控;胶州湾PEUK丰度主要受温度和营养盐浓度影响。与已有研究比较,这两个海区的微微型浮游植物生物量对浮游植物生物量的贡献明显高于其他温带沿岸海域,预示微微型浮游植物在獐子岛海域和胶州湾生态系统中的重要作用,值得进一步深入研究。  相似文献   

3.
Abundance distribution and cellular characteristics of picophytoplankton were studied in two distinct regions of the equatorial Pacific: the western warm pool (0°, 167°E), where oligotrophic conditions prevail, and the equatorial upwelling at 150°W characterized by high-nutrient low-chlorophyll (HNLC) conditions. The study was done in September–October 1994 during abnormally warm conditions. Populations of Prochlorococcus, orange fluorescing Synechococcus and picoeukaryotes were enumerated by flow cytometry. Pigment concentrations were studied by spectrofluorometry. In the warm pool, Prochlorococcus were clearly the dominant organisms in terms of cell abundance, estimated carbon biomass and measured pigment concentration. Integrated concentrations of Prochlorococcus, Synechococcus and picoeukaryotes were 1.5×1013, 1.3×1011 and 1.5×1011 cells m−2, respectively. Integrated estimated carbon biomass of picophytoplankton was 1 g m−2, and the respective contributions of each group to the biomass were 69, 3 and 28%. In the HNLC waters, Prochlorococcus cells were slightly less numerous than in the warm pool, whereas the other groups were several times more abundant (from 3 to 5 times). Abundance of Prochlorococcus, Synechococcus and picoeukaryotes were 1.2×1013, 6.2×1011 and 5.1×1011 cells m−2, respectively. The integrated biomass was 1.9 g C m−2. Prochlorococcus was again the dominant group in terms of abundance and biomass (chlorophyll, carbon); the respective contributions of each group to the carbon biomass were 58, 7 and 35%. In the warm pool the total chlorophyll biomass was 28 mg m−2, 57% of which was divinyl chlorophyll a. In the HNLC waters, the total chlorophyll biomass was 38 mg m−2, 44% of which was divinyl chlorophyll a. Estimates of Prochlorococcus, Synechococcus and picoeukaryotes cell size were made in both hydrological conditions.  相似文献   

4.
Picoplankton distribution at the boundary zone of the southern Adriatic in May 2009 on a 75 km long shelf-continental slope transect was assessed by combining epifluorescence microscopy, flow cytometry and high-performance liquid chromatography data with hydrographic observations. The picoplankton distribution was greatly influenced by the hydrographic conditions prevailing in the southern Adriatic because of the influence of the Levantine Intermediate Water (LIW) and East Adriatic Current (EAC) forcing. Heterotrophic bacteria numerically dominated the picoplankton community through the entire transect with no significant accumulation. By contrast, picophytoplankton accumulated in the 50–75 m layer, forming a pronounced deep chlorophyll maximum. Synechococcus dominated the photosynthetic picoplankton, whereas picoeukaryotes were the least abundant. The intrusion of warm LIW observed in the layer between 100 and 350 m was followed by Prochlorococcus and Synechococcus peaks (10 × 103 cells mL−1 and 90 × 103 cells mL−1, respectively), as well as by the appearance of two Synechococcus ecotypes. Most picoeukaryotes were observed at the offshore stations, where geostrophic current calculation revealed the strongest EAC influence. A strong EAC spread over the central and eastern basin created a barrier for Prochlorococcus, whereas the picoeukaryote maxima coincided with the core of the EAC, suggesting its persistence to hydrological instabilities.  相似文献   

5.
Samples collected from 10 depths at 25 stations in September–October 1996 and 12 depths at 28 stations in April–May 1997 on an Atlantic Meridional Transect between the British Isles and the Falkland Islands were analysed by flow cytometry to determine the numbers and biomass of four categories of picoplankton: Prochlorococcus spp, Synechococcus spp, picoeukaryotic phytoplankton and heterotrophic bacteria. The composition of the picoplankton communities confirmed earlier findings (Zubkov, Sleigh, Tarran, Burkill & Leakey, 1998) about distinctive regions along the transect and indicated that the stations should be grouped into five provinces: northern temperate, northern Atlantic gyre, equatorial, southern Atlantic gyre and southern temperate, with an intrusion of upwelling water off the coast of Mauritania between the northern Atlantic gyre and equatorial waters. Prochlorococcus was the most numerous phototrophic organism in waters of both northern and southern gyres and in the equatorial region, at concentrations in excess of 0.1×106ml−1; it also dominated plant biomass in the gyres, but the biomass of the larger picoeukaryotic algae equalled that of Prochlorococcus in the equatorial region; higher standing stocks of both Prochlorococcus and picoeukaryotes were present in spring than in autumn in waters of both gyres. In temperate waters at both ends of the transect the numbers and biomass of picoeukaryotes and, more locally, of Synechococcus increased, and the Synechococcus, particularly, were more numerous in spring than in autumn. There was a pronounced southward shift of the main populations of both Synechococcus and Prochlorococcus in April–May in comparison to those of September–October, associated with seasonal changes in solar radiation, the abundance of Prochlorococcus dropping sharply near the 17°C contour, while Synechococcus was still present at temperatures below 10°C. Picoeukaryotes were more tolerant of low temperatures and lower light levels, often being more abundant in samples from greater depths, where they contributed to the deep chlorophyll maximum. Heterotrophic bacterial numbers and biomass tended to be highest in those samples where phototrophic biomass was greatest, with peaks in temperate and equatorial waters, which were shifted southwards in April–May compared with September–October.  相似文献   

6.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

7.
This study used the dilution method to examine growth and grazing rates of heterotrophic bacteria and an autotrophic picoplankton, Synechococcus spp., from 1 to 11 July 2007 in the East China Sea. The main influence of oceanographic conditions in this aquatic system was the introduction of fresh, high-nutrient water from Changjiang River and the extremely nutrient-poor, high-salinity waters of Kuroshio Water. In these experiments, deviation from linearity in the relationship between dilution factor and net growth rate was significant in a large number of cases. Growth rates for heterotrophic bacteria ranged from 0.024 to 0.24, and for Synechococcus spp. from 0.03 to 0.21 h−1. Grazing rates ranged from 0.02 to 0.19 and 0.01 to 0.13 h−1, respectively. The spatial variations of Synechococcus spp. production to the primary production ratio (SP/PP) were low (<5%) in high Chl a environments and increased exponentially in low Chl a environments, indicating that Synechococcus spp. contributes to a large extent to the photosynthetic biomass in the open sea, especially in the more oligotrophic Kuroshio Water. Furthermore, the results of our dilution experiments suggest that nanoflagellates largely depend on heterotrophic bacteria as an important energy source. On average, heterotrophic bacteria contributes to 76 and 59% of carbon consumed by nanoflagellates within the plume (salinity <31) and outside of it (salinity >31).  相似文献   

8.
The biochemical effects of a cold-core eddy that was shed from the Kuroshio Current at the Luzon Strait bordering the South China Sea (SCS) were studied in late spring, a relatively unproductive season in the SCS. The extent of the eddy was determined by time-series images of SeaWiFS ocean color, AVHRR sea surface temperature, and TOPEX/Jason-1 sea surface height anomaly. Nutrient budgets, nitrate-based new production, primary production, and phytoplankton assemblages were compared between the eddy and its surrounding Kuroshio and SCS waters. The enhanced productivity in the eddy was comparable to wintertime productivity in the SCS basin, which is supported by upwelled subsurface nitrate under the prevailing Northeastern Monsoon. There were more Synechococcus, pico-eucaryotes, and diatoms, but less Trichodesmium in the surface water inside the eddy than outside. Prochlorococcus and Richelia intracellularis showed no spatial differences. Water column-integrated primary production (IPP) inside the eddy was 2–3 times that outside the eddy in the SCS (1.09 vs. 0.59 g C m−2d−1), as was nitrate-based new production (INP) (0.67 vs. 0.25 g C m−2d−1). INP in the eddy was 6 times that in the Kuroshio (0.12 g C m−2d−1). IPP and INP in the eddy were higher than the maximum production values ever measured in the SCS basin. Surface chlorophyll a concentration (0.40 mg m−3) in the eddy equaled the maximum concentration registered for the SCS basin and was higher than the wintertime average (0.29 ± 0.04 mg m−3). INP was 3.5 times as great and IPP was doubled in the eddy compared to the wintertime SCS basin. As cold core eddies form intermittently all year round as the Kuroshio invades the SCS, their effects on phytoplankton productivity and assemblages are likely to have important influences on the biogeochemical cycle of the region.  相似文献   

9.
Using a flow cytometer (FCM) onboard the R/V Xuelong during the 24th Chinese Antarctic cruise, picoplankton community structure and biomass in the surface water were examined along the latitude and around the Antarctic Ocean. Salinity and temperature were automatically recorded and total Chla was determined. Along the cruise, the abundance of Synechococcus, Prochlorococcus, pico-eukaryotes and heterotrophic bacteria ranged in 0.001-1.855×108 ind./L, 0.000-2.778£108 ind./L, 0.002-1.060×108 ind./L and 0.132-27.073×108 ind./L, respectively. Major oceanic distribution of Synechococcus and Prochlorococcus appeared between latitudes 30°N and 30°S. Prochlorococcus was mainly influenced by water temperature, water mass combination and freshwater inflow. Meanwhile, Synechococcus distribution was significantly associated with landing freshwater inflow. Pico-eukaryotes and heterotrophic bacteria were distributed all over the oceans, but with a relatively low abundance in the high latitudes of the Antarctic Ocean. Principal Component Analysis showed that at same latitude of Atlantic Ocean and Indian Ocean, picoplankton distribution and constitution were totally different, geographical location and different water masses combination would be main reasons.  相似文献   

10.
为探究珠江口海域自养微微型浮游生物种群时空分布特征及其与环境之间的关系,于2013年5~11月,运用高液相色谱(HPLC)法和流式细胞术对珠江口海域表层水体中微微型浮游生物进行测定。流式细胞计数结果显示,珠江口海域自养微微型浮游生物由聚球藻(Synechococcus, Syn)和微微型真核生物(Picoeukaryotes,PEUK)组成。聚球藻始终占据总细胞丰度的主导地位。光合色素化学分类法(Chemotaxonomy,CHEMTAX)分析表明,自养微微型浮游生物群落结构具有明显的季节性变化,春季和夏季生物量以聚球藻为主,秋季生物量以青绿藻为主。CHEMTAX分析和流式细胞计数结果的相关性分析表明,在春季和夏季Syn细胞丰度与CHEMTAX生物量(即Syn贡献chla)之间呈现极显著正相关(P<0.01),PEUK细胞丰度与CHEMTAX生物量(即PEUK贡献chla)也存在显著正相关(P<0.05);然而,在秋季则无显著性相关关系(P>0.05)。冗余分析表明,温度和营养盐浓度是影响自养微微型浮游生物群落分布与组成的重要因素。另外,盐度、透明度、悬浮颗粒物对自养...  相似文献   

11.
南黄海夏季微微型浮游植物丰度的分布   总被引:1,自引:1,他引:0  
2008年8月中韩合作对南黄海生态系统进行了整体调查,调查站位共计37个。利用流式细胞仪测定了南黄海微微型浮游植物丰度,结合理化环境因子,分析了它们在夏季南黄海的分布特征。所测微微型真核浮游植物丰度平均值为1.9×103个/mL,最大值为2.4×104个/mL;聚球藻丰度平均值为5.3×104个/mL,最大值为5.1×105个/mL;从河口近岸到南黄海中部的宽阔海域,随着环境因子的变化,微微型浮游植物在各海区的分布明显不同,表现为河口近岸区域丰度大,离岸丰度小的特点;各站位丰度垂直分布主要趋势是上大下小,在跃层突出。根据分布趋势,聚球藻可分为两种垂直分布类型,微微型真核浮游植物分为三种。这些分布差异源于长江冲淡水和黄海冷水团的影响。  相似文献   

12.
The Bungo Channel in southwestern Japan receives both warm, called Kyucho, and cold deep-water intrusions (bottom intrusion) from the Pacific Ocean. Abundances of Prochlorococcus, Synechococcus, and eukaryotic picophytoplankton were monitored from 18 July to 17 August 2001 to clarify whether advected picophytoplankton from the Pacific Ocean can grow in the channel or not. Synechococcus cells were further discriminated into low- and high-PUB types according to their fluorescence property in flow cytometry. From 18 to 25 July, the water temperature decreased by 3 °C at a 5-m depth at all stations, indicating the occurrence of a bottom intrusion. From 25 July to 4 August, a Kyucho occurred and the water temperature rapidly increased. From 4 to 17 August, a bottom intrusion and a Kyucho both occurred twice, although the intensities were smaller than those occurring until 4 August. From 18 to 30 July, the abundance of both Prochlorococcus and a high-PUB type of Synechococcus drastically decreased because of a bottom intrusion; however, the abundances rapidly increased due to the advection by a Kyucho. These advected cells increased from 4 to 17 August in the channel and Kitanada Bay. Changes in the abundance of low-PUB type of Synechococcus and eukaryotic picophytoplankton were less noticeable than those in the abundance of Prochlorococcus and high-PUB type. The present study demonstrated that oceanic picophytoplankton advected by the Kyucho could grow in the channel. However, abundances of low-PUB type and eukaryotic picophytoplankton increased higher than those of Prochlorococcus and high-PUB type did. Thus, these oceanic phytoplankters will be excluded when Kyucho does not occur for a long time. The co-occurrence of various types of picophytoplankton found in the channel is probably achieved by both Kyucho event and their growth capability in the channel.  相似文献   

13.
夏季南黄海主要环境因子对微微型浮游生物分布影响   总被引:2,自引:1,他引:1  
利用流式细胞技术, 获取南黄海夏季微微型浮游生物丰度数据, 分析了其组成和分布规律, 并探讨了主要的影响因子。2011年夏季, 聚球藻、微微型真核藻、异养细菌在整个调查海区的平均丰度分别在1×104、1×103、1×106 cells/mL数量级上。在全调查海区, 聚球藻和微微型真核藻受温度和光照的限制明显, 主要集中分布在温跃层及其以上水层;而营养盐的限制较小, 它们的影响只有在沿岸流影响明显的西部海区才能较为明显的体现出来。结果表明在该海域浓度较高的营养盐能够促进微微型浮游生物的生长, 但不是其限制因素;异养细菌受环境因子限制较小, 即使在深海也保持着较高的丰度。  相似文献   

14.
To understand the importance of picoeukaryotes in the biogeochemical cycle in the subtropical Kuroshio Current, a year-round survey of the hydrography and the distribution of picoeukaryotes were conducted in four oceanographic cruises from October 2012 to July 2013. In comparison with other seasons, the highest abundancy of photosynthetic picoeukaryotes, with concentrations >104 cells/ml, was observed around the eastern boundary of the Kuroshio in the winter. Accordingly, the composition of picoeukaryotes in this cold season was further studied by a metabarcoding analysis of the 18S rRNA gene. The majority of picoeukaryotes comprised Alveolata, followed by Haptophyta and Stramenopiles. Their composition was diverse in the waters affected by the Kuroshio and in the offshore province. For Haptophyta, in contrast to clade A prevailing in the Kuroshio waters, clade B1, which was considered the host of uncultivated diazotrophic cyanobacterium group A (UCYN-A), appeared only in the offshore area. Similarly, in Stramenopiles, Pseudo-nitzschia spp. and MAST-1D, respectively, dominated in the Kuroshio-influenced and offshore areas. While Alveolata was the most abundant group, the distributions of all lineages were similar. The association between picoeukaryote succession and hydrographic change is yet to be fully understood. Our results will assist future studies on the community composition of picoplankton and their relationship with marine ecology in the region.  相似文献   

15.
北黄海冷水团对獐子岛微微型浮游生物分布的影响   总被引:3,自引:1,他引:2  
Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3–and PO43–)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.  相似文献   

16.
The spatial distribution of heterotrophic ciliates, environmental factors and potential food items (bacteria, Synechococcus spp. and nanoflagellates) were measured in the East China Sea to examine which variables contributed importantly to the long-term distribution of ciliates between 1998 and 2007. In July 1998 and June 2003, heterotrophic ciliates were found to be abundant (1,000–2,000 × 103 cells m−3) in regions where surface salinity <32 but extremely low (<500 × 103 cells m−3) in shelf waters of surface salinity >32. After August 2003, shortly after the completion of the Three Gorges Dam, we found no significant areal differences in the abundance of heterotrophic ciliates (HC). However, we found a significantly negative correlation between temperature and HC abundance of surface water after the completion of the dam, suggesting that temperature had a greater influence on HC abundance, once the original saline state had changed. For the long-term trends on the vertical distribution of HC, their abundance was significantly higher in the upper 50 m of the water column than at either 75 or 100 m. Abundance of Synechococcus spp. at these levels varied significantly in regions of surface salinity <32, suggesting that ciliates and picophytoplankton contribute greatly to mediating the transfer of organic matter to higher trophic levels in this marine ecosystem.  相似文献   

17.
The meridional distribution of autotrophic picoplankton groups in the central north Pacific was studied during the late northern summer of 1990. Sampling was along a section at 175°N which extended from 45°N to 8°S. The section is far from coastal regions and included subarctic, central gyre, and equatorial areas. Five autotrophic picoplankton groups, autotrophic microflagellate, red-fluorescing picoplankton,Synechococcus, prochlorophyte, and orange-fluorescing picoplankton, were identified from samples taken at stations distributed along this section. These five groups showed distinctive differences in their meridional and vertical distributions. The autotrophic microflagellates and red-fluorescing picoplankton showed distributions that were similar to that of chlorophyll a, which was dominated by the <3 μm size fraction. However, the vertical distribution of these groups was different.Synechococcus was found mostly in surface waters (PAR<10%) and was particularly abundant in the Kuroshio Extension and south of the equatorial region where the nitracline was shallow (50–75 m). Prochlorophytes were abundant in the deep euphotic layer (PAR 1-0.1%) from the south of the Kuroshio Extension to the south of the equatorial area. Orange-fluorescing picoplankton, which may be one kind of cyanobacteria but is larger than typical Synechococcus, were mostly distributed in the oligotrophic surface waters of the central gyre. The carbon biomass estimates for these organisms showed that these five groups dominated in different areas. The vertical distribution of carbon biomass did not correspond to that of chlorophyll a in the central gyre and south of the equator because of the larger carbon/ chlorophyll a ratio of Synechococcus and orange-fluorescing picoplankton relative to that of the other picoplankton.  相似文献   

18.
微微型浮游植物是水环境生态碳汇的重要基石之一,也是初级生产的重要执行者。选取了一个典型的陆海交界关键带环境——海南东寨港入海口水域,采集了东寨港红树林保护区开阔水域、入港河流和新埠海海端的微微型浮游植物的样品,通过流式细胞仪分析技术对样品进行分析,以探究它们在东寨港水域中的丰度、分布及环境指示意义。结果表明,冬季水域微微型浮游植物以真核浮游植物(Eukaryote,Euk)和聚球藻(Synechococcus,Syn)两大类群为主,其中聚球藻有两个亚群,分别为富含藻蓝蛋白聚球藻(Phycocyanin-rich,PC)和富含藻红蛋白聚球藻(Phycoerythrin-rich,PE)。Syn-PC、Syn-PE和Euk在东寨港水域表层水体的平均丰度分别为(2.61×104±1.09×104)、(3.06×104±7.05×103)、(1.56×105±8.03×104) cells/m L,底层水体的平均丰度分别为(2.64×104±...  相似文献   

19.
In our attempt to characterize the interaction of trophic coupling between Synechococcus and pigmented nanoflagellates (PNFs), successive size-fraction experiments were performed at a coastal station on the northeast coast of Taiwan from June, 2005 to January, 2006. By estimating the growth rate and grazing rate of Synechococcus in the presence of nanoflagellates of different sizes, we truncated the food web by removing organisms with different body sizes (<2 μm, <5 μm, <10 μm, and <20 μm). The growth rates of Synechococcus ranged from −0.016 to 0.051 h−1 during the experimental period, suggesting that temperature was a primary mechanism controlling Synechococcus growth. In addition to size and relative biomass of pigmented nanoflagellates and Synechococcus, it is suggested that community structures played an important role in trophic link. Furthermore, we conclude that the trophic cascading effect in the northeast coast of Taiwan includes: 1) high grazing rates at night in the warm season; 2) the Synechococcus biomass generally exceeds the grazing threshold (6 × 104 cells mL−1); and 3) the biomass ratio of <5 μm PNFs to >5 μm PNFs should be 1:1 to 2:1.  相似文献   

20.
During Nov. 2006 and Feb. 2007, two investigations were carried out to investigate the abundance, carbon biomass, and distribution of picoplankton (Pico) and its relationship to the hydrological regime in the East China Sea (ECS). Pico consisted of three groups of photosynthetic picoplankton (phPico)—Synechococcus (Syn), Prochlorococcus (Pro) and Picoeukaryotes (PEuk)—and heterotrophic bacteria (HBAC). The average abundance of Pro, PEuk and HBAC was lower in autumn than in winter, but for Syn the opposite trend was observed. Water temperature, salinity, and stability of water column influenced Pico distribution in both seasons. Regression analysis showed distinct positive correlations between HBAC and phPico in both seasons. Syn contributed more to phPico in coastal waters, whereas Pro dominanted in the shelf and slope areas. PEuk was the major contributor to carbon biomass. In the Pico community, HBAC was predominant, both in abundance and in terms of carbon biomass. The phenomenon of subsurface chlorophyll maximum (SCM) was observed ubiquitously in the shelf and slope area, and Pico organisms were the major contributors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号