首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
2017年6月和8月,通过对秦皇岛海域的超微型浮游植物进行现场调查和流式细胞仪分析,发现了聚球藻(Synechococcus)和超微型真核藻类(picoeukaryotes)两大类群,其中聚球藻又分为聚球藻Ⅰ和聚球藻Ⅱ两个亚群。调研期间,正处于秦皇岛海域褐潮高发期。通过分析超微型浮游植物细胞丰度、碳生物量及分布特点,研究了秦皇岛海域在褐潮高发期超微型浮游植物分布及相关环境因子影响。结果表明,6月份超微型真核藻、聚球藻Ⅰ和聚球藻Ⅱ平均丰度分别为1.14×104 个/mL、4.02×104 个/mL和1.04×104 个/mL,碳生物量均值分别为27.22 μg/L、8.49 μg/L和2.27 μg/L;在8月份超微型真核藻、聚球藻Ⅰ和聚球藻Ⅱ平均丰度分别为3.27×103 个/mL、5.79×104 个/mL 和2.58×104个/mL,碳生物量均值分别为6.35 μg/L、13.41 μg/L和5.83 μg/L。超微型真核藻、聚球藻Ⅰ和聚球藻Ⅱ在6月份和8月份表现出不同的分布特征。超微型真核藻的细胞丰度从6月到8月明显降低一个数量级,说明8月份过高的水体温度与低浓度的营养物质等因素限制了超微型真核藻中褐潮种的生长。聚球藻Ⅰ和聚球藻Ⅱ细胞丰度在6月份呈现从河口到近岸逐渐升高的分布趋势,而超微型真核藻呈现下降的分布趋势。与6月份聚球藻Ⅰ和聚球藻Ⅱ细胞丰度分布相反,超微型真核藻和聚球藻Ⅰ细胞丰度则在8月份呈现从河口到近岸逐渐降低的分布趋势,而聚球藻Ⅱ细胞丰度的区域分布趋势不明显,主要分布在水体表层。通过对超微型真核藻、聚球藻Ⅰ和聚球藻Ⅱ与环境因子相关性分析表明,6月份硝酸盐与铵盐是聚球藻Ⅰ细胞生长的主要控制因子,而聚球藻Ⅱ与环境因子没有明显的相关性,超微型真核藻的细胞丰度与硅酸盐浓度呈正相关。在8月份,超微型真核藻细胞的生长受到多种环境因子(硝酸盐、亚硝酸盐、硅酸盐、磷酸盐、温度以及光照)的共同作用的影响,聚球藻Ⅰ细胞丰度与硝酸盐呈正相关,温度与光照则是影响聚球藻Ⅱ细胞分布的关键因素。  相似文献   

2.
胶州湾微微型浮游植物丰度及其与环境因子的相关性分析   总被引:1,自引:0,他引:1  
利用流式细胞仪对胶州湾微微型浮游植物4个季节的丰度分布进行了研究,并分析了微微型浮游植物与环境因子的相关性。结果表明,聚球藻的丰度在2.17×102—2.329×104个/ml之间,高值区主要分布在湾内西部和湾口海域;仅夏季、冬季丰度之间有显著性差异;夏季在垂直分布上差异显著,在B3、C4、D5连续站昼夜变化趋势基本一致,分别在13:00和3:00出现峰值。微微型真核浮游植物的丰度分布在1.028×103—8.651×104个/ml之间,主要活跃于湾内西部海域;四季丰度在垂直分布上差异不显著;春、夏季丰度明显高于秋、冬季;夏季连续站昼夜变化趋势与聚球藻基本一致。通过主成分分析表明,聚球藻和微微型真核浮游植物丰度在不同季节受不同环境因子的影响,在冬季与温度有关,温度升高,二者的丰度增高。在其它季节,二者丰度主要受营养盐等环境因子的影响。  相似文献   

3.
河北沿岸微微型浮游植物的分布特征   总被引:1,自引:0,他引:1  
于2006年7月~ 2007年10月间,分4个季度调查了河北省沿岸微微型浮游植物的丰度和生物量及对浮游植物总生物量的贡献.结果显示:河北近岸海域聚球藻蓝细菌丰度为4.46×103个/mL(0.79×103~ 16.19×103个/mL),生物量(以碳计,下同)为1.31 mg/m3 (0.84~17.47 mg/m3),季节分布特征为秋季>冬季>夏季>春季.微微型光合真核生物丰度为4.43×102个/mL (0.84×102~ 17.47×102个/mL),生物量为1.11mg /m3 (0.21~ 4.37 mg/m3),季节变化变现为秋季>冬季>春季>夏季.微微型浮游植物对浮游植物总生物量的贡献年平均为5.32%(1.84%~ 8.91%),春季最高,秋季最低.温度在较冷季节(冬春季)里是影响聚球藻蓝细菌生长和分布的控制因素.总之,在近岸环境里,微微型浮游植物并不占优势.  相似文献   

4.
本研究于2020年夏、秋两季,在黄海的三个站位开展了船基受控培养实验,研究了灰霾颗粒添加和光照变化(相较于海面约40%、68%和82%的光衰减)对微微型浮游植物生长、群落演替及碳生物量和叶绿素a(Chl a)比值的影响。结果表明,微微型浮游植物均表现出对总Chl a相当甚至主导的贡献能力,且所有培养站位初始海水中微微型浮游植物优势类群均为微微型真核浮游植物和聚球藻。在黄海中部和北部的贫营养海域,灰霾颗粒添加提供的氮能够促进微微型浮游植物的Chl a(Chl apico)浓度、微微型真核浮游植物和聚球藻细胞丰度的增加,但光照变化的影响不显著。然而,微微型浮游植物碳生物量(Cpico)和Chl apico比值(Cpico/Chl apico)随着灰霾颗粒的添加和光照强度的衰减呈降低趋势,这与浮游植物的光合色素合成水平密切相关。在近岸富营养海域,培养实验期间海面的光照强度较低,且由于海域水体浑浊,光照强度是影响微微型浮游植物生长和Cpico/Chl a...  相似文献   

5.
王艳  汪岷  杨琳  卢龙飞  王健  孙辉 《海洋与湖沼》2013,44(1):198-204
利用流式细胞仪对南黄海秋季浮游病毒丰度在水平分布和垂直分布上的特征进行了研究,并分析了浮游病毒丰度与异养细菌、微微型浮游植物等宿主丰度以及环境因子的相关性.结果表明,该海区秋季浮游病毒丰度在(2.22×106)-(1.60× 107)ind/ml之间,平均值8.32×106ind/ml.病毒丰度在调查海域的东北和中南部海域出现高值区,在西南部出现低值区,且浮游病毒丰度与异养细菌丰度的平面分布趋势较一致.在表层、中层和底层水体,浮游病毒丰度平均值分别为8.63×106、7.83×106、8.49×106ind/ml,表层和底层丰度无显著差异,但均高于中层(P<0.05).相关性分析表明,浮游病毒丰度与异养细菌丰度、VBR呈显著正相关(P<0.01),与微微型真核浮游植物丰度呈显著负相关(P<0.05),与聚球藻、水深、水温、盐度、溶氧、叶绿素a浓度无明显相关性(P>0.05).  相似文献   

6.
夏季南黄海主要环境因子对微微型浮游生物分布影响   总被引:2,自引:1,他引:1  
利用流式细胞技术, 获取南黄海夏季微微型浮游生物丰度数据, 分析了其组成和分布规律, 并探讨了主要的影响因子。2011年夏季, 聚球藻、微微型真核藻、异养细菌在整个调查海区的平均丰度分别在1×104、1×103、1×106 cells/mL数量级上。在全调查海区, 聚球藻和微微型真核藻受温度和光照的限制明显, 主要集中分布在温跃层及其以上水层;而营养盐的限制较小, 它们的影响只有在沿岸流影响明显的西部海区才能较为明显的体现出来。结果表明在该海域浓度较高的营养盐能够促进微微型浮游生物的生长, 但不是其限制因素;异养细菌受环境因子限制较小, 即使在深海也保持着较高的丰度。  相似文献   

7.
南海永乐龙洞位于西沙群岛永乐环礁,是迄今为止发现的最深的海洋蓝洞,水文环境及理化因素特殊,90 m以下水体为无氧环境。为研究永乐龙洞浮游植物的群落组成及其昼夜变化,于2017年3月在龙洞、潟湖及外礁坡进行浮游植物样品采集。研究结果表明:龙洞内叶绿素a浓度呈现随深度先增大后减小的趋势,日间浓度最大值层出现在40 m层(0.42μg/L),夜间则出现在20 m层(0.59μg/L)。永乐龙洞微微型浮游植物丰度介于1.1×10^3~5.1×10^4 cells/mL。聚球藻在上层水体占优势(0~20 m),40 m以下水层原绿球藻丰度对微微型浮游植物丰度贡献率最大(90%以上),微微型真核浮游植物丰度在整个水体都较低(除20 m层)。微微型浮游植物昼夜存在明显差异,夜间其丰度最大值层为20 m层,日间则上移至表层。本研究共记录微型和小型浮游植物5门41属55种(含未定种)。其中,硅藻门25属34种、甲藻门12属15种、金藻门1属1种、蓝藻3属、隐藻1属。微型和小型浮游植物丰度介于3.3×10^2~9.8×10^4 cells/L。甲藻丰度对浮游植物总丰度贡献率最大,其次是硅藻,隐藻和蓝藻丰度仅在少数水层占优势。微型和小型浮游植物昼夜变化明显,夜间丰度最大值层为20 m层,日间则出现在40 m层。微微型、微型和小型浮游植物垂直分布与叶绿素a浓度垂直分布一致性高。龙洞浮游植物的种类数和丰度高于潟湖和外礁坡。  相似文献   

8.
2014年夏季南海北部超微型浮游植物分布及环境因子影响   总被引:3,自引:1,他引:2  
魏玉秋  孙军  丁昌玲 《海洋学报》2015,37(12):56-65
利用流式细胞仪BD Accuri C6对2014年夏季南海北部超微型浮游植物进行了现场的观测研究,发现了3类超微型光合自养浮游植物,聚球藻(Synechococcus,Syn)、原绿球藻(Prochlorococcus,Pro)和超微型真核藻类(pico-eukaryotes,Euk),并对其丰度与分布以及环境因子影响进行了研究。结果表明,Syn、Pro和Euk丰度总平均值分别为5.13×103个/mL,3.27×104个/mL和1.85×103个/mL,碳生物量均值分别为1.19μg/L,1.86μg/L和4.51μg/L。Syn、Pro和Euk的丰度表现出不同的分布特征。Syn、Pro和Euk丰度分布趋势呈现近海低而外海高,Syn和Euk丰度高值区分别出现在沿岸带与陆架和上升流影响海域,Pro丰度高值区出现在沿岸带与陆架,低值区出现在上升流影响海域。Syn、Euk丰度高值区主要分布在次表层,Pro丰度高值区主要分布在真光层底部,Euk丰度垂直变化差异相对Syn和Pro较小。超微型浮游植物与环境因子的相关性分析结果表明,Syn、Pro和Euk的碳生物量均与硝酸盐、硅酸盐浓度和深度呈现负相关关系,Pro的碳生物量与磷酸盐浓度呈现正相关关系。  相似文献   

9.
秦皇岛作为中国北方重要水产养殖基地,年年爆发褐潮,对当地生态环境造成巨大影响。针对微微型真核浮游生物、浮游病毒和浮游细菌三大类群,进行了褐潮前中2个时期丰度和群落结构及其主要影响因素的分析。本研究利用流式细胞仪技术对褐潮前期和褐潮中期秦皇岛近岸海域微微型真核浮游生物、浮游细菌和浮游病毒的丰度分布特征进行了研究;利用病毒宏基因组技术、18SrDNA V9区和16SrDNA V4~V5高通量测序技术对超微型浮游生物各个类群进行多样性研究。研究发现,褐潮中期微微型真核浮游生物丰度平均值为27.50×103个/mL,浮游细菌丰度平均值为1.97×105个/mL,浮游病毒丰度平均值为9.65×105 VLP/mL。褐潮中期藻类DNA病毒含量提高(20.30%);不等鞭毛虫门为微微型真核浮游植物主要优势类群;变形菌门为浮游细菌主要优势类群。海水生态系统中超微型浮游生物的多样性及丰度对褐潮的发生具有较高敏感性,未来,针对海洋超微型浮游生物的研究,对进一步了解褐潮机制和寻求褐潮消解方法提供了新的角度和思路。  相似文献   

10.
桑沟湾微微型浮游生物丰度和生物量分布的季节变化   总被引:1,自引:0,他引:1  
于2013年4月、7月、10~月和2014年1月,分四个季节在桑沟湾利用流式细胞技术对桑沟湾微微型浮游生物丰度和生物量的时空分布特征进行了研究,并统计分析了其与环境因子之间的关系。结果表明,四个季节中桑沟湾聚球藻丰度和生物量分别为0.04×10~3~408.59×10~3个/mL、0.01~10~2.15 mg/m3,微微型真核浮游生物的丰度和生物量分别为0.21×10~3~99.64×10~3个/mL、0.31~149.46 mg/m3,异养细菌的丰度和生物量分别为3.34×10~5~50.16×10~5个/mL、6.68~10~0.32 mg/m3。四个季节中,夏季桑沟湾微微型浮游生物的丰度和生物量高于其他季节。异养细菌对微微型浮游生物总生物量的四季平均贡献为62.11%,高于自养微微型浮游生物;微微型真核浮游生物占自养微微型浮游生物总生物量比例最高,平均可达86.85%。统计分析显示温度、叶绿素a和营养盐浓度是影响桑沟湾微微型浮游生物丰度和生物量分布的主要因素。上述结果为桑沟湾生态环境的检测和评估提供了基础数据。  相似文献   

11.
During spring and autumn of 2006,the investigations on abundance,carbon biomass and distribution of picoplankton were carried out in the southern Huanghai Sea(Yellow Sea,sHS) . Three groups of picoplankton-Synechococcus(Syn) ,Picoeukaryotes(PEuk) and heterotrophic bacteria(BAC) were identified,but Prochlorococcus(Pro) was undetected. The average abundance of Syn and PEuk was lower in spring(5.0 and 1.3 × 10 3 cells/cm 3,respectively) than in autumn(92.4 and 2.7 × 10 3 cells/cm 3,respectively) ,but it was opposite for BAC(1.3 and 0.7 × 10 6 cells/cm 3 in spring and autumn,respectively) . And the total carbon biomass of picoplankton was higher in spring(37.23 ± 11.67) mg/m 3 than in autumn(21.29 ± 13.75) mg/m 3 . The ratios of the three cell abundance were 5:1:1 341 and 30:1:124 in spring and autumn,respectively. And the ratios of carbon biomass of them were 5:7:362 and 9:4:4 in spring and autumn,respectively. Seasonal distribution characteristics of Syn,PEuk,BAC were quite different from each other. In spring,Syn abundance decreased in turn in the central waters(where phytoplankton bloom in spring occurred) ,the southern waters and inshore waters of the Shandong Peninsula(where even Syn was undetected) ;the high values of PEuk abundance appeared in the central and southern waters and the inshore of the Shandong Peninsula;the abundance of BAC was nearly three order of magnitude higher than that of photosynthetic picoplankton,and high values appeared in the central waters. In autumn,Syn abundance in central waters was higher than that in surrounding waters,while for PEuk abundance,it decreased in turn in the inshore waters of the Shandong Peninsula,the southern waters and the central waters;BAC presented a complicated blocky type distribution. Sub-surface maximum of each group of picopalnkton appeared in both spring and autumn. Compared with the available literatures concerning the studied area,the range of Syn abundance was larger,and the abundance of BAC was higher. In addition,the conversion factors for calculating picoplanktonic carbon biomass were discussed,with the conversion factors which are different from previous studies in the same surveyed waters. The result of regression analysis showed that there was distinct positive correlation between BAC and photosynthetic picoplankton in spring(r=0.61,P 0.001) ,but no correlation was found in autumn.  相似文献   

12.
养殖活动对超微型浮游生物分布影响的研究   总被引:2,自引:1,他引:1  
孙辉  汪岷  汪俭  宋雪  邵红兵  甄毓 《海洋与湖沼》2014,45(6):1272-1279
利用流式细胞仪对河北省扇贝养殖区微微型浮游植物、异养细菌、浮游病毒4季的丰度分布特征进行了研究,分析了三者与环境因子的相关性,并与渤海、北黄海非养殖区的超微型浮游生物丰度的分布特征进行对比。结果显示:在养殖区海域,聚球藻丰度在9.00×102—7.07×105cell/m L之间,峰值出现在秋季,且与其他季节差异显著(P0.01)。微微型真核藻类丰度在5.80×102—3.23×105cell/m L之间,夏季赤潮暴发期间,丰度达到3.23×105cell/m L,显著高于其他季节(P0.01)。异养细菌丰度在3.10×105—3.79×106cell/m L之间,峰值出现在秋季,夏、秋季丰度显著高于春、冬季(P0.01)。浮游病毒丰度在2.50×105—2.17×106cell/m L之间,峰值出现在秋季,但无显著性季节差异(P0.05)。通过主成分分析发现,聚球藻、微微型真核藻类、异养细菌和浮游病毒的丰度在不同季节受到不同环境因子的影响。在春、冬季,温度是主要影响因素;而在夏、秋季,主要受到营养盐的影响。养殖区与非养殖区超微型浮游生物主成分4季均有显著差异,养殖区异养细菌4季均是超微型浮游生物的主成分,而非养殖区超微型浮游生物的主成分4季均是微微型浮游植物,结果表明养殖活动显著影响了养殖区超微型浮游生物的群落结构和功能。  相似文献   

13.
2006年冬季北黄海网采浮游植物群落结构   总被引:6,自引:1,他引:5       下载免费PDF全文
杜秀宁  刘光兴 《海洋学报》2009,31(5):132-147
根据2006年12月30日—至2007年1月17日北黄海的调查资料,对该海域浮游植物的种类组成、优势种、丰度及其分布和多样性等基本状况进行了分析。本次调查共鉴定浮游植物4门68属131种,主要以温带近岸和广布性种为主,其中硅藻有53属113种,占总种数的86.3%,甲藻有11属16种,占总种数的12.2%。浮游植物丰度平均值为88.89×104个/m3,硅藻丰度平均值为86.58×104个/m3,甲藻丰度平均值为2.28×104个/m3,硅藻丰度分布趋势决定了浮游植物丰度的分布趋势。辽宁南岸是浮游植物密集区,山东半岛北岸其次,而北黄海中部是浮游植物的稀疏区。优势种为:短角弯角藻(Eucampia zodiacus)、具槽帕拉藻(Paralia sulcata)、尖刺拟菱形藻(Pseu-do-nitzschia pungens)、密连角毛藻(Chaetoceros densus)、柔弱角毛藻(Chaetoceros debilis)、刚毛根管藻(Rhizosolenia setigera)。浮游植物群落Shannon-Weiner物种多样性指数平均值为1.80,Peilou均匀度指数平均值为0.42。与1959年1月相比,2007年1月北黄海浮游植物丰度由150.00×104个/m3降为88.89×104个/m3,下降了近41%,硅藻丰度由148.00×104个/m3降为86.58×104个/m3,而甲藻丰度由1.25×104个/m3上升为2.28×104个/m3,占浮游植物丰度的比例由0.8%上升为2.5%。主要优势种及优势属也发生了一定程度的变化,但浮游植物群落结构仍以硅藻为主、甲藻其次,浮游植物丰度总的分布格局变化不明显。  相似文献   

14.
为全面了解黄海典型海区微微型浮游植物的季节变化特征,于2009年7月至2010年6月在北黄海獐子岛海域和2010年1~12月在南黄海胶州湾进行逐月调查采样,利用流式细胞仪检测了表层海水中微微型浮游植物(picophytoplankton)的丰度,包括聚球藻(Synechococcus,SYN)和微微型真核浮游植物(picoeukaryotes,PEUK),并分析了其与环境因子的关系。獐子岛海域和胶州湾SYN和PEUK全年广泛分布,獐子岛海域SYN丰度范围在0.05×103~120.00×103cells/mL之间,丰度在秋季最高;胶州湾SYN丰度范围在0.02×103~61.80×103cells/mL之间,丰度在夏季最高。獐子岛海域PEUK丰度范围在0.01×103~18.76×103cells/mL之间,丰度在秋季最高;胶州湾PEUK丰度范围在0.25×103~95.57×103 cells/mL之间,丰度在春季最高。獐子岛海域微微型浮游植物丰度组成以SYN为主;而胶州湾以PEUK为主。PEUK是两海区微微型浮游植物生物量的主要贡献者。相关性分析结果表明,温度是影响两海区SYN丰度季节变化的最主要因素;影响PEUK季节分布的因素不完全一致,獐子岛海域PEUK丰度主要受温度调控;胶州湾PEUK丰度主要受温度和营养盐浓度影响。与已有研究比较,这两个海区的微微型浮游植物生物量对浮游植物生物量的贡献明显高于其他温带沿岸海域,预示微微型浮游植物在獐子岛海域和胶州湾生态系统中的重要作用,值得进一步深入研究。  相似文献   

15.
Uncovering the role of environmental factors and finding critical factors which harbor significant fractions in governing microbial communities remain key questions in coastal marine systems. To detect the interactions between environmental factors and distributions of virio-and bacterioplankton in trophic coastal areas, we used flow cytometry to investigate the abundance of virio-and bacterioplankton covering 31 stations in the Bohai Sea of China. Our results suggested that the average abundance of total virus(TV) in winter(~2.29×10~8 particles/mL)was slightly lower than in summer(~3.83×10~8 particles/mL). The mean total bacterial abundance(TB) was much lower in winter(~2.54×107 particles/mL) than in summer(~5.43×10~7 particles/mL). Correlation analysis via redundancy analysis(RDA) and network analysis among virioplankton, bacterioplankton and environmental factors revealed that the abundances of viral and bacterial subpopulations depend on environmental factors. In winter, only temperature significantly influenced the abundances of virio-and bacterioplankton. In summer, in addition to temperature, both salinity and nutrient(SiO_2) had a remarkable impact on the distribution of virioand bacterioplankton. Our results showed a clear seasonal and trophic pattern throughout the whole water system, which revealed that temperature and eutrophication may play crucial roles in microbial distribution pattern.  相似文献   

16.
微微型浮游植物是水环境生态碳汇的重要基石之一,也是初级生产的重要执行者。选取了一个典型的陆海交界关键带环境——海南东寨港入海口水域,采集了东寨港红树林保护区开阔水域、入港河流和新埠海海端的微微型浮游植物的样品,通过流式细胞仪分析技术对样品进行分析,以探究它们在东寨港水域中的丰度、分布及环境指示意义。结果表明,冬季水域微微型浮游植物以真核浮游植物(Eukaryote,Euk)和聚球藻(Synechococcus,Syn)两大类群为主,其中聚球藻有两个亚群,分别为富含藻蓝蛋白聚球藻(Phycocyanin-rich,PC)和富含藻红蛋白聚球藻(Phycoerythrin-rich,PE)。Syn-PC、Syn-PE和Euk在东寨港水域表层水体的平均丰度分别为(2.61×104±1.09×104)、(3.06×104±7.05×103)、(1.56×105±8.03×104) cells/m L,底层水体的平均丰度分别为(2.64×104±...  相似文献   

17.
利用2008年夏季我国第3次北极科学考察资料,基于流式细胞技术,对白令海北部陆架区的微微型浮游植物丰度、细胞大小(碳含量)、色素浓度的分布特征进行了分析,并对该类群的环境适应性进行了研究.结果表明,微微型浮游植物中仅含聚球藻和真核藻,其丰度范围分别为0.14×106~2.69×106和0.23×106-12.49×10...  相似文献   

18.
利用2008年夏季我国第3次北极科学考察资料,基于流式细胞技术,对白令海北部陆架区的微微型浮游植物丰度、细胞大小(碳含量)、色素浓度的分布特征进行了分析,并对该类群的环境适应性进行了研究。结果表明,微微型浮游植物中仅含聚球藻和真核藻,其丰度范围分别为0.14×106 2.69×106和0.23×106-12.49×106个/dm3。聚球藻的叶绿素a和藻红蛋白含量、微微型真核藻的叶绿素a含量与类群丰度以及微微型真核藻的类胡萝卜素含量与细胞大小间均存在同向变化趋势。两类藻偏向于喜温嗜淡型,更适合在寡营养环境中保持较高的丰度,但能在高营养盐浓度下形成相对较高的碳含量。越接近陆地,细胞越小,丰度越大,碳含量及FL2/FL3越低;所处层位越深、纬度越高,则细胞越大,碳含量及FL2/FL3越高。北极气温升高和径流量的增加有利于陆架区微微型浮游植物类群丰度的增加。  相似文献   

19.
春季黄海浮游植物生态分区:物种组成   总被引:3,自引:1,他引:2  
Phytoplanktonic ecological provinces of the Yellow Sea(31.20°–39.23°N, 121.00°–125.16°E) is derived in terms of species composition and hydrological factors(temperature and salinity). 173 samples were collected from 40 stations from April 28 to May 18, 2014, and a total of 185 phytoplanktonic algal species belonging to 81 genera of 7phyla were identified by Uterm?hl method. Phytoplankton abundance in surface waters is concentrated in the west coast of Korean Peninsula and Korea Bay, and communities in those areas are mainly composed of diatoms and cyanobacteria with dominant species of Cylindrotheca closterium, Synechocystis pevalekii, Chroomonas acuta,Paralia sulcata, Thalassiosira pacifica and Karenia mikimotoi, etc. The first ten dominant species of the investigation area are analyzed by multidimensional scaling(MDS) and cluster analysis, then the Yellow Sea is divided into five provinces from Province I(P-I) to Province V(P-V). P-I includes the coastal areas near southern Liaodong Peninsula, with phytoplankton abundance of 35 420×10~3–36 163×10~3 cells/L and an average of 35 791×10~3 cells/L, and 99.84% of biomass is contributed by cyanobacteria. P-II is from Shandong Peninsula to Subei coastal area. Phytoplankton abundance is in a range of 2×10~3–48×10~3 cells/L with an average of 24×10~3cells/L, and 63.69% of biomass is contributed by diatoms. P-III represents the Changjiang(Yangtze River) Diluted Water. Phytoplankton abundance is 10×10~3–37×10~3 cells/L with an average of 24×10~3 cells/L, and 73.14% of biomass is contributed by diatoms. P-IV represents the area affected by the Yellow Sea Warm Current.Phytoplankton abundance ranges from 6×10~3 to 82×10~3 cells/L with an average of 28×10~3 cells/L, and 64.17% of biomass is contributed by diatoms. P-V represents the cold water mass of northern Yellow Sea. Phytoplankton abundance is in a range of 41×10~3–8 912×10~3 cells/L with an average of 1 763×10~3 cells/L, and 89.96% of biomass is contributed by diatoms. Overall, structures of phytoplankton community in spring are quite heterogeneous in different provinces. Canonical correspondence analysis(CCA) result illustrates the relationship between dominant species and environmental factors, and demonstrates that the main environmental factors that affect phytoplankton distribution are nitrate, temperature and salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号