首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of a damaged ship in waves is a complex phenomenon regarding fluid and structure interactions. Flooded water motions in the damaged compartment could be influenced by decks, obstructions and obstacles in the compartment. This becomes particularly relevant in case of flooding in the engine room that is usually characterized by the presence of large objects such as engines and machineries. In such cases the possibility to better understand the behavior of a damaged ship, influenced by the fluid and structure interactions, could provide novel outcomes and thus enhance the damaged ship safety.In this paper an experimental campaign is conducted on a passenger ferry hull. The effects of obstacles in the engine room compartment, such as decks and engines, on ship roll responses, are studied. Roll decay in still water and steady roll responses in beam regular waves at zero speed are measured for the empty compartment and for the compartment with obstructions, as defined above.The main outcomes from the conducted experiments disclose a mitigation of the resonant behavior of the coupled system, ship with damaged compartment, by having engine shapes occupying the flooded engine room. Moreover it is possible to observe how the resonant frequency of the ship modifies having a more realistic arrangement of damaged compartment and how motion RAOs and roll decay characteristics modify accordingly.  相似文献   

2.
船舶随浪运动稳性仿真计算   总被引:2,自引:0,他引:2  
本文利用Liapunov理论,研究了船舶在规则波浪运动的稳性;利用摄动理论,求解出船舶运动响应;并讨论了船舶横摇与垂荡运动频率、最大横摇角和波浪要素对稳性曲线GZ的影响,以及流体动压力对稳性曲线的修正,从而给计算船舶在随浪中的稳性提供了一种方法。  相似文献   

3.
Most of the large scaled casualties are caused by loss of structural strength and stability due to the progressive flooding and the effect of waves and wind. To prevent foundering and structural failure, it is necessary to predict the motion of the damaged ship in waves.This paper describes the motion of damaged ship in waves resulting from a theoretical and experimental study. A time domain theoretical model, which can be applied to any type of ship or arrangement, for the prediction of damaged ship motion and accidental flooding has been developed considering the effects of flooding of compartments. To evaluate the accuracy of the model, model tests are carried out in ship motion basin for three different damaged conditions: engine room bottom damage, side shell damage and bow visor damage of Ro–Ro ship in regular and irregular waves with different wave heights and directions.  相似文献   

4.
The large roll motion of ships sailing in the seaway is undesirable because it may lead to the seasickness of crew and unsafety of vessels and cargoes, thus it needs to be reduced. The aim of this study is to design a rudder roll stabilization system based on Radial Basis Function Neural Network (RBFNN) control algorithm for ship advancing in the seaway only through rudder actions. In the proposed stabilization system, the course keeping controller and the roll damping controller were accomplished by utilizing modified Unscented Kalman Filter (UKF) training algorithm, and implemented in parallel to maintain the orientation and reduce roll motion simultaneously. The nonlinear mathematical model, which includes manoeuvring characteristics and wave disturbances, was adopted to analyse ship’s responses. Various sailing states and the external wave disturbances were considered to validate the performance and robustness of the proposed roll stabilizer. The results indicate that the designed control system performs better than the Back Propagation (BP) neural networks based control system and conventional Proportional-Derivative (PD) based control system in terms of reducing roll motion for ship in waves.  相似文献   

5.
Ship motions after damage are difficult to evaluate since they are affected by complex phenomena regarding fluid and structures interactions. The possibility to better understand how ship behavior in damage is influenced by these phenomena is important for improving ship safety, especially for passenger vessel.In this paper an experimental campaign is carried out on a passenger ferry hull, to show the effects of the water dynamics across damage openings on ship motions. Novel aspects of this research include the study of the effects of the damage position on the ship roll response. The study is carried out for still water and for beam regular waves at zero speed.Results from the experiments carried out underline that the roll behavior of a damaged ship is affected by the position of damage opening and not only by its size. Assuming the same final equilibrium conditions after flooding but characterized by different damage openings it is possible to observe how motions RAOs and roll decay characteristics modify according to the opening locations.  相似文献   

6.
On the parametric rolling of ships using a numerical simulation method   总被引:2,自引:0,他引:2  
B.C. Chang   《Ocean Engineering》2008,35(5-6):447-457
This paper has shown a numerical motion simulation method which can be employed to study on parametric rolling of ships in a seaway. The method takes account of the main nonlinear terms in the rolling equation which stabilize parametric rolling, including the nonlinear shape of the righting arm curve, nonlinear damping and cross coupling among all 6 degrees of freedom. For the heave, pitch, sway and yaw motions, the method uses response amplitude operators determined by means of the strip method, whereas the roll and surge motions of the ship are simulated, using nonlinear motion equations coupled with the other 4 degrees of freedom. For computing righting arms in seaways, Grim's effective wave concept is used. Using these transfer functions of effective wave together with the heave and pitch transfer functions, the mean ship immersion, its trim and the effective regular wave height are computed for every time step during the simulation. The righting arm is interpolated from tables, computed before starting the simulation, depending on these three quantities and the heel angle. The nonlinear damping moment and the effect of bilge keels are also taken into account. The numerical simulation tool has shown to be able to model the basic mechanism of parametric rolling motions. Some main characteristics of parametric rolling of ships in a seaway can be good reproduced by means of the method. Comprehensive parametric analyses on parametric rolling amplitude in regular waves have been carried out, with that the complicated parametric rolling phenomena can be understood better.  相似文献   

7.
Equations of yaw, sway, roll and rudder motions are formulated to represent realistic maneuvering behavior of high-speed ships such as destroyers. Important coupling terms between yaw, sway, roll and rudder were included on the basis of recent captive model test results of a high-speed ship. A series of computer runs was made by using equations of yaw, sway, roll and rudder motions. Results indicate substantial coupling effects between yaw, roll, and rudder, which introduce changes in maneuvering characteristics and reduce course stability in high-speed operation. These effects together with relatively small GM (which is typical for certain high-speed ships) produce large rolling motions in a seaway as frequently observed in actual operations. Results of digital simulations and captive model tests clearly indicate the major contributing factors to such excessive rolling motions at sea.  相似文献   

8.
Improvements of estimation accuracy on propeller torque fluctuations in waves will contribute assessments on safe operation of a ship main engine as in adverse sea condition. The propeller torque and thrust in waves can be estimated by propeller effective inflow velocity in waves, using the propeller open-water characteristics. Fluctuation components in the mathematical model of the propeller effective inflow velocity in waves can be composed of two components, respectively caused by ship surge motion and wave orbital motion at propeller position. In this study, an experimental method by the model test to directly identify the characteristics of the component by the wave orbital motion is newly proposed. Furthermore, the free-running model test in regular waves, using a simulator of the marine diesel engine which manages the shaft speed of the motor on a ship model as behaving the actual diesel engine, is carried out to obtain realistic torque fluctuations for comparisons of the estimated results applying the proposed identification method. Through comparisons of estimated fluctuations with the measured results, the proposed approach for the component of the inflow velocity due to wave orbital motion is successfully validated.  相似文献   

9.
Kelvin尾迹SAR多视向的成像仿真   总被引:1,自引:0,他引:1  
利用船只Kelvin航迹模型、海面波模型和二尺度微波散射模型,提出了船尾迹多视向的成像仿真技术,并首次在二维空间中从不同视向仿真船尾迹的SAR图像。结果表明,当雷达视向与船只航向平行时,横波成像明显;当雷达视向与船只航向垂直时,扩散波成像明显;当雷达视向与船只航向有个夹角时,会出现一臂亮一臂暗的现象,这一现象取决于两臂尖波的传播方向与雷达视向的夹角,传播方向与雷达视向越接近平行的波越容易被雷达观测到,从而形成亮臂。仿真结果还得出另外一个结论:船只航向与雷达视向越接近垂直,两臂张角越小。仿真结果和实际的多幅ERS-SAR图像所观测到的结果是一致的。该模型可以有效地模拟Kelvin尾迹SAR多视向成像。  相似文献   

10.
In the present work, a coupled-mode technique is applied to the transformation of ship's waves over variable bathymetry regions, characterised by parallel depth-contours, without any mild-slope assumption. This method can be used, in conjunction with ship's near-field wave data in deep water or in constant-depth, as obtained by the application of modern (linearised or non-linear) ship computational fluid dynamic (CFD) codes, or experimental measurements, to support the study of wave wash generated by fast ships and its effects on the nearshore/coastal environment.

Under the assumption that the ship's track is straight and parallel to the depth-contours, and relatively far from the bottom irregularity, the problem of propagation–refraction–diffraction of ship-generated waves in a coastal environment is efficiently treated in the frequency domain, by applying the consistent coupled-mode model developed by Athanassoulis and Belibassakis [J. Fluid Mech. 1999;389] to the calculation of the transfer function enabling the pointwise transformation of ship-wave spectra over the variable bathymetry region.

Numerical results are presented for simplified ship-wave systems, obtained by the superposition of source–sink Havelock singularities simulating the basic features of the ship's wave pattern. The spatial evolution of the ship-wave system is examined over a smooth but steep shoal, resembling coastal environments, both in the subcritical and in the supercritical case. Since any ship free-wave system, either in deep water or in finite depth, can be adequately modelled by wavecut analysis and suitable distribution of Havelock singularities e.g. as presented by Scrags [21st Int. Conf. Offshore Mech. Arctic Eng., OMAE2002, Oslo, Norway, June 2002], the present method, in conjunction with ship CFD codes, supports the prediction of ship wash and its impact on coastal areas, including the effects of steep sloping-bed parts.  相似文献   


11.
M. Taylan   《Ocean Engineering》2003,30(3):331-350
Capsizing of ships constitutes a primary group of casualties that leads to loss of life and money. Unfortunately, its mechanism has yet to be fully resolved due to underlying complex dynamics and parameters. Upon studying the causes in more detail, designing safer ships against capsizing may become a reality. In the present study, a relatively different approach called “reserve of stability” or “stability margins” which utilizes both statical and nonlinear dynamical aspects of stability is employed to analyze ship hydrodynamics. For this purpose a nonlinear roll model in beam waves has been implemented. In order to apply the theory, a capsized vessel is chosen to be analyzed in terms of stability. The necessary data about the vessel at the time of capsizing were collected from the published work found in the naval architecture literature. Suggestions are made based on the results of the analysis to improve ship stability qualities in a seaway.  相似文献   

12.
Ships experience roll motion due to waves in a seaway. Therefore, fin stabilizers are installed to stabilize such roll motion. A fin stabilizer is effective at reducing the roll motion at moderate speeds but not at low speeds. Recently, pod propellers have been used with fin stabilizers for roll stabilization. In the paper, a MIMO (multi-input multi-output) optimal control system that has two control inputs such as fin stabilizers and pod propellers is designed. The LQR (linear quadratic regulator) control algorithm is applied to reduce the roll motion of cruise ships in regular waves. Also, the nominal plant and the frequency-weighted LQR are applied to reduce the roll motion in irregular waves. The roll motion of cruise ships is effectively reduced when the fin and pod propeller are used as the control actuators at low speeds. The optimal control gain is easily found when the frequency-weighted LQR is applied.  相似文献   

13.
The longitudinal strength of the high-speed ferry was investigated by subjecting the ship's hull girder to long-term loads obtained from a frequency-domain panel code. Prior to the statistical analysis, linearly computed transfer functions were corrected for nonlinear effects, yielding two sets of transfer functions valid for different wave amplitudes. One set corresponded to the hogging condition; the other set, to the sagging condition. Two regular equivalent design waves were specified that resulted in loads representing the most severe global design load conditions. The still-water loading condition, yielding a still-water vertical bending moment in hogging, was superimposed on the wave-induced loads to obtain the total (design) loads in hogging. For the sagging condition only, additional impact-related loads were superimposed to obtain the total (design) loads in sagging. A finite element model of the ship's structure was subjected to pressure distributions according to the two regular design waves. For comparison with classification society rule values, a simple beam theory strength analysis of the ship's midship section was performed first, and then another finite element analysis was carried out, whereby the imposed loads were tuned to the rule values of vertical bending moments. Rule-based magnitudes of nominal maximum longitudinal stress deviated significantly (25–39%) from comparable stresses obtained by the panel code based finite element analysis. However, stresses obtained from the rule-based finite element analysis agreed more favorably, especially in hogging. In the uppermost deck, for example, the panel code based compressive stress was only 9% larger than the comparable stress from the rule-based finite element analysis.  相似文献   

14.
An inconvenience in the experimental set-up of a FPSO in regular waves highlighted occurrence of parametric-roll events promoted by yaw-roll coupling and motivated a combined physical and numerical analysis on the relevance of this phenomenon on the roll resonance, as well as on the water shipping. The model tests examine the ship in head- and bow-sea waves in the zone of the first parametric resonance. Numerically, it is adopted a 3D Domain-Decomposition (DD) strategy combining a weakly-nonlinear potential-flow solver based on the weak-scatterer theory with a shallow-water approximation for the shipped liquid and with a bottom-slamming solution. Detailed comparisons against these and other seakeeping experiments validated the numerical method in its different aspects with global success.At first, a 2-dof equivalent linearized yaw-roll coupled system is examined and the measurements are used to estimate hydrodynamic coefficients required to complete the mathematical model of the problem. Then the DD method is applied to verify the instability occurrence and compared against the experiments. From the analysis, the parametric-roll instability does not occur if all nonlinearities in the roll restoring load are not accounted for. However the amplitude of the resonant roll is affected by the coupling with the other degrees of freedom. Especially the coupling with yaw tends to increase the steady-state roll amplitude. It also affects the water shipping with the trend in reducing its severity for the vessel, this is opposite to the influence of the parametric roll in head-sea waves on the water on deck, as documented in Greco et al. (2014) [4].  相似文献   

15.
In current Naval Architecture practice, employing static considerations is an important and necessary step in assessing ship stability and seakeeping properties (e.g. inclining experiments, load line regulations, range of stability calculations). However, damaged vessels and vessels operating in heavy weather or in conditions where topside icing is a concern may require an additional assessment of stability that considers dynamic effects. Within such contexts, the actual (i.e. current) second moment properties of the vessel mass become very important in the associated equations of motion for a given ship. One such critical second mass moment property is the roll gyradius, as it is closely related to the occurrence of capsizing. The present paper furnishes a means for reckoning the actual roll gyradius of a given ship operating within a seaway. The approach hinges on the formulation and solution of a stochastic inverse problem that leverages existing seakeeping software against the shipboard inertial measurement unit (IMU) telemetry. The method is demonstrated at full-scale and validated at model scale.  相似文献   

16.
The maximum extent of ship spraying for a medium-sized fishing trawler (MFV) of Soviet type has been considered. A simple geometrical model for generating the spray due to ship-wave collisions has been applied to determine the maximum height of the spray source above the ship deck. The maximum height of the spray source has been assumed to depend on the ship speed relative to the moving waves and an empirical constant specific to a given type of ship. A unique field data set (Kuzniecov et al., 1971) of the height of the upper limit of ice accretion on the foremast of an MFV has been used to determine the value of the empirical constant for this vessel. For documented air-sea and ship motion parameters, the trajectories of droplets hitting the upper parts of the accretion on the foremast have been calculated using the equation of droplet motion for each reported icing event.The heights of the spray source computed by the trajectory method for each case of icing were compared with the heights of the spray source determined by a correlation involving the ship speed relative to the waves and the vertical extent of spray. The best fit was obtained for an empirical constant value of 0.535.The model performance was tested using an independent data set (Sharapov, 1971) on the spraying zone of an MFV. The tests showed that this model predicts the extent of the spraying zone over the ship with satisfactory accuracy and suggest that it should be incorporated into an integrated ship icing model.Finally, the model was run for several ship speeds, headings and wind speeds to examine the effect of these parameters on the maximum height of the spray hitting the ship's foremast. It was found that this height increases with wind speed and ship speed and is maximum for ship headings of 120–130°.  相似文献   

17.
It is difficult to compute far-field waves in a relative large area by using one wave generation model when a large calculation domain is needed because of large dimensions of the waterway and long distance of the required computing points. Variation of waterway bathymetry and nonlinearity in the far field cannot be included in a ship fixed process either. A coupled method combining a wave generation model and wave propagation model is then used in this paper to simulate the wash waves generated by the passing ship. A NURBS-based higher order panel method is adopted as the stationary wave generation model; a wave spectrum method and Boussinesq-type equation wave model are used as the wave propagation model for the constant water depth condition and variable water depth condition, respectively. The waves calculated by the NURBS-based higher order panel method in the near field are used as the input for the wave spectrum method and the Boussinesq-type equation wave model to obtain the far-field waves. With this approach it is possible to simulate the ship wash waves including the effects of water depth and waterway bathymetry. Parts of the calculated results are validated experimentally, and the agreement is demonstrated. The effects of ship wash waves on the moored ship are discussed by using a diffraction theory method. The results indicate that the prediction of the ship induced waves by coupling models is feasible.  相似文献   

18.
In this paper, we present a mathematical model including seakeeping and maneuvering characteristics to analyze the roll reduction for a ship traveling with the stabilizer fin in random waves. The self-tuning PID controller based on the neural network theory is applied to adjust optimal stabilizer fin angles to reduce the ship roll motion in waves. Two multilayer neural networks, including the system identification neural network (NN1) and the parameter self-tuning neural network (NN2), are adopted in the study. The present control technique can save the time for searching the optimal PID gains in any sea states. The simulation results show that the present developed self-tuning PID control scheme based on the neural network theory is indeed quite practical and sufficient for the ship roll reduction in the realistic sea.  相似文献   

19.
Many researchers have studied a wide range of nonlinear equations of motion describing a ship rolling in waves. In this study, a form of nonlinear equation governing the motion of a rolling ship subjected to synchronous beam waves is suggested and solved by the generalized Duffing's method in the frequency domain. Various representations of damping and restoring terms found in the literature are investigated and their solutions are analyzed by the above-mentioned method. Comparative results of nonlinear roll responses are obtained for four distinct vessel types at resonance conditions which constitute the worst situation. The results indicate the importance of roll damping and restoring, when constructing a nonlinear roll model. An inappropriate selection of damping and restoring terms may lead to serious discrepancies with reality, especially in peak roll amplitudes.  相似文献   

20.
The best way of reducing roll motion is by increasing roll damping. Bilge keels are the most common devices for increasing roll damping. If more control is required, anti-roll tanks and fins are used. Tanks have the advantage of being able to function when the ship is not underway. Our objective is to develop design procedures for passive tanks for roll reduction in rough seas. This paper focuses on the design of passive U-tube tanks. The tank-liquid equation of motion is integrated simultaneously with the six-degree-of-freedom (6DOF) equations of the ship motion. The coupled set of equations is solved by using the Large Amplitude Motion Program ‘LAMP’, which is a three-dimensional time-domain simulation of the motion of ships in waves. The unstabilized and stabilized roll motions of a S60-70 ship with forward speed and beam waves have been analyzed. For high-amplitude waves, the unstabilized roll angle exhibits typical nonlinear phenomena: a shift in the resonance frequency, multi-valued responses, and jumps. The performance of a S60-70 ship with a passive tank is investigated in various sea states with different encounter wave directions. It is found that passive anti-roll tanks tuned in the linear or nonlinear ranges are very effective in reducing the roll motion in the nonlinear range. The effect of the tank damping, frequency, and mass on the tank performance is studied. Also, it is found that passive anti-roll tanks are very effective in reducing the roll motion for ships having a pitch frequency that is nearly twice the roll frequency in sea states 5 and 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号