首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Molybdenum isotopes are increasingly widely applied in Earth Sciences. They are primarily used to investigate the oxygenation of Earth's ocean and atmosphere. However, more and more fields of application are being developed, such as magmatic and hydrothermal processes, planetary sciences or the tracking of environmental pollution. Here, we present a proposal for a unifying presentation of Mo isotope ratios in the studies of mass‐dependent isotope fractionation. We suggest that the δ98/95Mo of the NIST SRM 3134 be defined as +0.25‰. The rationale is that the vast majority of published data are presented relative to reference materials that are similar, but not identical, and that are all slightly lighter than NIST SRM 3134. Our proposed data presentation allows a direct first‐order comparison of almost all old data with future work while referring to an international measurement standard. In particular, canonical δ98/95Mo values such as +2.3‰ for seawater and ?0.7‰ for marine Fe–Mn precipitates can be kept for discussion. As recent publications show that the ocean molybdenum isotope signature is homogeneous, the IAPSO ocean water standard or any other open ocean water sample is suggested as a secondary measurement standard, with a defined δ98/95Mo value of +2.34 ± 0.10‰ (2s).  相似文献   

2.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

3.
The double‐spike method with multi‐collector inductively coupled plasma‐mass spectrometry was used to measure the Mo mass fractions and isotopic compositions of a set of geological reference materials including the mineral molybdenite, seawater, coral, as well as igneous and sedimentary rocks. The long‐term reproducibility of the Mo isotopic measurements, based on two‐year analyses of NIST SRM 3134 reference solutions and seawater samples, was ≤ 0.07‰ (two standard deviations, 2s, n = 167) for δ98/95Mo. Accuracy was evaluated by analyses of Atlantic seawater, which yielded a mean δ98/95Mo of 2.03 ± 0.06‰ (2s, n = 30, relative to NIST SRM 3134 = 0‰) and mass fraction of 0.0104 ± 0.0006 μg g?1 (2s, n = 30), which is indistinguishable from seawater samples taken world‐wide and measured in other laboratories. The comprehensive data set presented in this study serves as a reference for quality assurance and interlaboratory comparison of high‐precision Mo mass fractions and isotopic compositions.  相似文献   

4.
Here we describe high‐precision molybdenum isotopic composition measurements of geological reference materials, performed using multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS). Purification of Mo for isotopic measurements was achieved by ion exchange chromatography using Bio‐Rad AG® 1‐X8 anion exchange resin. Instrumental mass bias was corrected using 100Mo‐97Mo double spiking techniques. The precision under intermediate measurement conditions (eighteen measurement sessions over 20 months) in terms of δ98/95Mo was 0.10‰ (2s). The measurement output was approximately four times more efficient than previous techniques, with no compromise in precision. The Mo isotopic compositions of seven geochemical reference materials, seawater (IAPSO), manganese nodules (NOD‐P‐1 and NOD‐A‐1), copper‐molybdenum ore (HV‐2), basalt (BCR‐2) and shale (SGR‐1b and SCo‐1), were measured. δ98/95Mo values were obtained for IAPSO (2.25 ± 0.09‰), NOD‐P‐1 (?0.66 ± 0.05‰), NOD‐A‐1 (?0.48 ± 0.05‰), HV‐2 (?0.23 ± 0.10‰), BCR‐2 (0.21 ± 0.07‰), SCo‐1 (?0.24 ± 0.06‰) and SGR‐1b (0.63 ± 0.02‰) by calculating δ98/95Mo relative to NIST SRM 3134 (0.25‰, 2s). The molybdenum isotopic compositions of IAPSO, NOD‐A‐1 and NOD‐P‐1 obtained in this study are within error of the compositions reported previously. Molybdenum isotopic compositions for BCR‐2, SCo‐1 and SGR‐1b are reported for the first time.  相似文献   

5.
Isotope dilution determinations of Lu, Hf, Zr, Ta and W are reported for nine test portions (five for W) of NIST SRM 610 and 612 glass wafers. Additionally, all test portions were analysed for their Hf isotope compositions. In general, high field strength elemental (HFSE) distributions in NIST SRM 610 and 612 were reproducible to ~± 1%, except for Zr (± 5%) in NIST SRM 612, and absolute reported concentrations agreed with previously published values, but with higher precision. The slightly worse reproducibility of Zr in NIST SRM 612 compared to other HFSE is interpreted to result from analytical scatter, rather than sample inhomogeneity. The analyses demonstrated elemental homogeneity for both glass wafers for samples of 1–2 mg with respect to the precision of the method, i.e., ± 1% or better. Average Hf isotope compositions for both glass wafers agreed within uncertainty and the weighted average of all determinations yielded a mean 176Hf/177Hf ratio of 0.282111 ± 0.000009 (95% confidence level). However, although mean values for NIST SRM 610 and 612 agreed within analytical limits, NIST SRM 610 test portions showed a tendency of systematically elevated isotope composition of ~ 0.5 ?Hf units when compared to NIST SRM 612, which may indicate a slightly more radiogenic Hf isotope composition of NIST SRM 610. The results of this study suggest that NIST SRM 610 and 612 are valuable calibrators for HFSE in situ analyses within the given uncertainties.  相似文献   

6.
Niobium and Ta concentrations in MPI‐DING and USGS (BCR‐2G, BHVO‐2G, BIR‐1G) silicate rock glasses and the NIST SRM 610–614 synthetic soda‐lime glasses were determined by 193 nm ArF excimer laser ablation and quadrupole ICP‐MS. Measured Nb and Ta values of MPI‐DING glasses were found to be consistently lower than the recommended values by about 15% and 25%, respectively, if calibration was undertaken using commonly accepted values of NIST SRM 610 given by Pearce et al. Analytical precision, as given by the 1 s relative standard deviation (% RSD) was less than 10% for Nb and Ta at concentrations higher than 0.1 μg g?1. A significant negative correlation was found between logarithmic concentration and logarithmic RSD, with correlation coefficients of ‐0.94 for Nb and ‐0.96 for Ta. This trend indicates that the analytical precision follows counting statistics and thus most of the measurement uncertainty was analytical in origin and not due to chemical heterogeneities. Large differences between measured and expected Nb and Ta in glasses GOR128‐G and GOR132‐G are likely to have been caused by the high RSDs associated with their very low concentrations. However, this cannot explain the large differences between measured and expected Nb and Ta in other MPI‐DING glasses, since the differences are normally higher than RSD by a factor of 3. Count rates for Nb and Ta, normalised to Ca sensitivity, for the MPI‐DING, USGS and NIST SRM 612–614 glasses were used to construct calibration curves for determining NIST SRM 610 concentrations at crater diameters ranging from 16 (im to 60 μm. The excellent correlation between the Nb/Ca1μgg‐1 signal (Nb represents the Nb signal intensity; Ca1μg g‐1 represents the Ca sensitivity) and Nb concentration, and between the Ta/Ca1μg g‐1 signal (where Ta represents the Ta signal intensity; Ca1μg g‐1 represents the Ca sensitivity) and Ta concentration (R2= 0.9992–1.00) in the various glass matrices suggests that matrix‐dependent fractionation for Nb, Ta and Ca was insignificant under the given instrumental conditions. The results confirm that calibration reference values of Nb and Ta in NIST SRM 610 given by Pearce et al. are about 16% and 28% lower, respectively. We thus propose a revision of the preferred value for Nb from 419.4 ± 57.6 μg g?1 to 485 ± 5 μg g?1 (1 s) and for Ta from 376.6 ± 77.6 μg g?1 to 482 ± 4 μg g?1 (Is) in NIST SRM 610. Using these revised values for external calibration, most of the determined average values of MPI‐DING, USGS and NIST SRM 612–614 reference glasses agree within 3% with the calculated means of reported reference values. Bulk analysis of NIST SRM 610 by standard additions using membrane desolvation ICP‐MS gave Nb = 479 ± 6 μg g?1 (1 s) and Ta = 468 ± 7 μg g?1 (1 s), which agree with the above revised values within 3%.  相似文献   

7.
This contribution presents data for laser ablation multicollector ICP‐MS (LA‐MC‐ICP‐MS) analyses of NIST SRM 610 and 612 glasses with the express purpose of examining the Pb isotope homogeneity of these glasses at the ~ 100 μm spatial scale, relevant to in situ analysis. Investigation of homogeneity at these scales is important as these glasses are widely used as calibrators for in situ measurements of Pb isotope composition. Results showed that at the levels of analytical uncertainty obtained, there was no discernable heterogeneity in Pb isotope composition of NIST SRM 610 and also most probably for NIST SRM 612. Traverses across the ~ 1.5 mm glass wafers supplied by NIST, consisting of between 75 and 133 individual measurements, showed no compositional outliers at the two standard deviation level beyond those expected from population statistics. Overall, the measured Pb isotope ratios from individual traverses across NIST SRM 610 and 612 wafers closely approximate single normally‐distributed populations, with standard deviations similar to the average internal uncertainty for individual measurement blocks. Further, Pb isotope ratios do not correlate with Tl/Pb ratios measured during the analysis, suggesting that regions of volatile element depletion (marked by low Tl/Pb) in these glasses are not associated with changes in Pb isotope composition. For NIST SRM 610 there also appeared to be no variation in Pb isotope composition related to incomplete mixing of glass base and trace element spike during manufacture. For NIST SRM 612 there was some dispersion of measured ratios, including some in a direction parallel to the expected mixing line for base‐spike mixing. However, there was no significant correlation parallel to the mixing line. At this time this cannot be unequivocally demonstrated to result from glass heterogeneity, but it is suggested that NIST SRM 610 be preferred for standardising in situ Pb isotope measurements. Data from this study also showed significantly better accuracy and somewhat better precision for ratios corrected for mass bias by external normalisation to Pb isotope ratios measured in bracketing calibrators compared to mass bias corrected via internal normalisation to measured 205Tl/203Tl, although the Tl isotopic composition of both glasses appears to be homogeneous.  相似文献   

8.
We present in this article a rapid method for B extraction, purification and accurate B concentration and δ11B measurements by ID‐ICP‐MS and MC‐ICP‐MS, respectively, in different vegetation samples (bark, wood and tree leaves). We developed a rapid three‐step procedure including (1) microwave digestion, (2) cation exchange chromatography and (3) microsublimation. The entire procedure can be performed in a single working day and has shown to allow full B recovery yield and a measurement repeatability as low as 0.36‰ (± 2s) for isotope ratios. Uncertainties mostly originate from the cation exchange step but are independent of the nature of the vegetation sample. For δ11B determination by MC‐ICP‐MS, the effect of chemical impurities in the loading sample solution has shown to be critical if the dissolved load exceeds 5 μg g?1 of total salts or 25 μg g?1 of DOC. Our results also demonstrate that the acid concentration in the sample loading solution can also induce critical isotopic bias by MC‐ICP‐MS if chemistry of the rinsing‐, bracketing calibrator‐ and sample solutions is not thoroughly adjusted. We applied this method to provide a series of δ11B values of vegetal reference materials (NIST SRM 1570a = 25.74 ± 0.21‰; NIST 1547 = 40.12 ± 0.21‰; B2273 = 4.56 ± 0.15‰; BCR 060 = ?8.72 ± 0.16‰; NCS DC73349 = 16.43 ± 0.12‰).  相似文献   

9.
The aim of this study was to improve the quality of laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) determination of phosphorus in crystalline quartz. Over the last decade, the Geological Survey of Norway has routinely performed trace element determinations on quartz from both operating and potential quartz deposits by LA‐ICP‐MS. The determined phosphorus concentrations were, with but few exceptions, consistently within the range of 10 to 30 μg g?1, results that seemed to be both too high and too consistent. The multi‐material calibration curve obtained from a suite of reference materials (NIST SRM 610, 612, 614, 1830, BAM No. 1 amorphous SiO2 glass) did not define a precise regression line. Published phosphorus concentrations for the reference materials are poorly constrained and the observed dispersions along the multi‐material calibration curve suggest that some of the reference values may be inaccurate. Furthermore, the calibration curve did not pass through the origin of the [(cps 31P/cps 30Si) · cone. Si] vs. P concentration diagram; thus, in addition to the uncertainties of the literature values of phosphorus, it is difficult to define the calibration curve. Three reference materials (NIST SRM 614, 1830, synthetic quartz KORTH) were sent for phosphorus accelerator implantation, providing an independent and accurate (± 3%) approach for determining phosphorus concentrations in crystalline quartz. The intrinsic phosphorus concentrations of the three implanted samples plus those for NIST SRM 610 and 612 were determined by secondary ion mass spectrometry (SIMS), yielding new phosphorus values for NIST SRM 610, 612, 614 and 1830. Using these new values resulted in a better defined LA‐ICP‐MS calibration curve. However, the source of the ICP‐MS related background could not be defined, such that it must still be empirically corrected for.  相似文献   

10.
The calcium isotopic composition of NIST SRM 915b and 1486 provided by the National Institute of Standards and Technology was analysed. The δ44/40Ca values of the two reference materials relative to NIST SRM 915a were: NIST SRM 915b =+0.72 ± 0.04‰ and NIST SRM 1486 =?1.01 ± 0.02‰. NIST SRM 1486 did not require any chemical separation prior to measurement.  相似文献   

11.
A double‐spike method in combination with MC‐ICP‐MS was applied to obtain molybdenum (Mo) mass fractions and stable isotope compositions in a suite of sedimentary silicate (marine, lake, stream, estuarine, organic‐rich sediment, shales, slate, chert) and carbonate reference materials (coral, dolomite, limestones, carbonatites), and a manganese nodule reference material, poorly characterised for stable Mo isotope compositions. The Mo contents vary between 0.076 and 364 μg g?1, with low‐Mo mass fractions (< 0.29 μg g?1) found almost exclusively in carbonates. Intermediate Mo contents (0.73–2.70 μg g?1) are reported for silicate sediments, with the exception of chert JCh‐1 (0.24 μg g?1), organic‐rich shale SGR‐1b (36.6 μg g?1) and manganese nodule NOD‐A‐1 (364 μg g?1). The Mo isotope compositions (reported as δ98Mo relative to NIST SRM 3134) range from ?1.77 to 1.03‰, with the intermediate precision varying between ± 0.01 and ± 0.12‰ (2s) for most materials. Low‐temperature carbonates show δ98Mo values ranging from 0.21 to 1.03‰ whereas δ98Mo values of ?1.77 and ?0.17‰ were obtained for carbonatites CMP‐1 and COQ‐1, respectively. Silicate materials have δ98Mo values varying from ?1.56 to 0.73‰. The range of δ98Mo values in reference materials may thus reflect the increasingly important relevance of Mo isotope investigations in the fields of palaeoceanography, weathering, sedimentation and provenance, as well as the magmatic realm.  相似文献   

12.
The high‐precision δ60/58Ni values of twenty‐six geological reference materials, including igneous rocks, sedimentary rocks, stream sediments, soils and plants are reported. The δ60/58Ni values of all samples were determined by double‐spike MC‐ICP‐MS (Nu Plasma III). Isotope standard solution (NIST SRM 986) and geological reference materials (BHVO‐2, BCR‐2, JP‐1, PCC‐1, etc.) were used to evaluate the measurement bias and intermediate precision over a period of six months. Our results show that the intermediate precision of Ni isotope determination was 0.05‰ (2s, n = 69) for spiked NIST SRM 986 and typically 0.06‰ for actual samples, and the δ60/58Ni NIST SRM 986 values were in excellent agreement with previous studies. Eighteen high‐precision Ni isotope ratios of geological reference materials are first reported here, and their δ60/58Ni values varied from ?0.27‰ to 0.52‰, with a mean of 0.13 ± 0.34‰ (2s, n = 18). Additionally, SGR‐1b (0.56 ± 0.04‰, 2s), GSS‐1 (?0.27 ± 0.06‰, 2s), GSS‐7 (?0.11 ± 0.01‰, 2s), GSD‐10 (0.46 ± 0.06‰, 2s) and GSB‐12 (0.52 ± 0.06‰, 2s) could potentially serve as candidate reference materials for Ni isotope fractionation and comparison of Ni isotopic compositions among different laboratories.  相似文献   

13.
The demand for large and reliable data sets on isotopic composition has increased in geochemistry and environmental sciences over recent years. We present an automated ion chromatographic separation method using a robotic pipetting arm, termed ‘ChemCobOne’, to reduce sample separation time. Its performance was tested for lithium isotope separation in geological reference materials using a single‐step separation with HCl (0.2 mol l?1) and a 2 ml resin volume. This refined lithium purification method does not forfeit precision, accuracy or purity compared with manual sample processing. In addition, a δ7Li value for NASS‐6 of 30.99 ± 0.50‰ (2s) (95% CI = 0.14‰, n = 44) was determined and the first δ7Li values for the granite rock reference material GS‐N (?0.57 ± 0.25‰ (2s), 95% CI = 0.15‰, n = 15), and for the soil reference material NIST SRM 2709a (?0.37 ± 0.67‰ (2s), 95% CI = 0.15‰, n = 63) are proposed.  相似文献   

14.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

15.
A HF‐free sample preparation method was used to purify silicon in twelve geological RMs. Silicon isotope compositions were determined using a Neptune instrument multi‐collector‐ICP‐MS in high‐resolution mode, which allowed separation of the silicon isotope plateaus from their interferences. A 1 μg g‐1 Mg spike was added to each sample and standard solution for online mass bias drift correction. δ30Si and δ29Si values are expressed in per mil (‰), relative to the NIST SRM 8546 (NBS‐28) international isotopic RM. The total variation of δ30Si in the geological reference samples analysed in this study ranged from ‐0.13‰ to ‐0.29‰. Comparison with δ29Si values shows that these isotopic fractionations were mass dependent. IRMM‐17 yielded a δ30Si value of ‐1.41 ± 0.07‰ (2s, n = 12) in agreement with previous data. The long‐term reproducibility for natural samples obtained on BHVO‐2 yielded δ30Si = ‐0.27 ± 0.08‰ (2s, n = 42) on a 12 month time scale. An in‐house Si reference sample was produced to check for the long‐term reproducibility of a mono‐elemental sample solution; this yielded a comparable uncertainty of ± 0.07‰ (2s, n = 24) over 5 months.  相似文献   

16.
This study presents a high‐precision Cd isotope measurement method for soil and rock reference materials using MC‐ICP‐MS with double spike correction. The effects of molecular interferences (e.g., 109Ag1H+, 94Zr16O+, 94Mo16O+ and 70Zn40Ar+) and isobaric interferences (e.g., Pd, In and Sn) to Cd isotope measurements were quantitatively evaluated. When the measured solution has Ag/Cd ≤ 5, Zn/Cd ≤ 0.02, Mo/Cd ≤ 0.4, Zr/Cd ≤ 0.001, Pd/Cd ≤ 5 × 10?5 and In/Cd ≤ 10?3, the measured Cd isotope data were not significantly affected. The intermediate measurement precision of pure Cd solutions (BAM I012 Cd, Münster Cd and AAS Cd) was better than ± 0.05‰ (2s) for δ114/110Cd. The δ114/110Cd values of soil reference materials (NIST SRM 2709, 2709a, 2710, 2710a, 2711, 2711a and GSS‐1) relative to NIST SRM 3108 were in the range of ?0.251 to 0.632‰, the δ114/110Cd values of rock reference materials (BCR‐2, BIR‐1, BHVO‐2, W‐2, AGV‐2, GSP‐2 and COQ‐1) varied from ?0.196‰ to 0.098‰, and that of the manganese nodule (NOD‐P‐1) was 0.163 ± 0.040‰ (2s, n = 8). The large variation in Cd isotopes in soils and igneous rocks indicates that they can be more widely used to study magmatic and supergene processes.  相似文献   

17.
This study presents a high‐precision method to measure barium (Ba) isotope compositions of international carbonate reference materials and natural carbonates. Barium was purified using chromatographic columns filled with cation exchange resin (AG50W‐X12, 200–400 mesh). Barium isotopes were measured by MC‐ICP‐MS, using a 135Ba–136Ba double‐spike to correct mass‐dependent fractionation during purification and instrumental measurement. The precision and accuracy were monitored by measuring Ba isotope compositions of the reference material JCp‐1 (coral) and a synthetic solution obtained by mixing NIST SRM 3104a with other matrix elements. The mean δ137/134Ba values of JCp‐1 and the synthetic solution relative to NIST SRM 3104a were 0.21 ± 0.03‰ (2s,= 16) and 0.02 ± 0.03‰ (2s,= 6), respectively. Replicate measurements of NIST SRM 915b, COQ‐1, natural coral and stalagmite samples gave average δ137/134Ba values of 0.10 ± 0.04‰ (2s,= 18), 0.08 ± 0.04‰ (2s,= 20), 0.27 ± 0.04‰ (2s,= 16) and 0.04 ± 0.03‰ (2s,= 20), respectively. Barium mass fractions and Ba isotopes of subsamples drilled from one stalagmite profile were also measured. Although Ba mass fractions varied significantly along the profile, Ba isotope signatures were homogeneous, indicating that Ba isotope compositions of stalagmites could be a potential tool (in addition to Ba mass fractions) to constrain the source of Ba in carbonate rocks and minerals.  相似文献   

18.
We present data on the concentration, the isotope composition and the homogeneity of boron in NIST silicate glass reference materials SRM 610 and SRM 612, and in powders and glasses of geological reference materials JB-2 (basalt) and JR-2 (rhyolite). Our data are intended to serve as references for both microanalytical and wet-chemical techniques. The δ11 B compositions determined by N-TIMS and P-TIMS agree within 0.5% and compare with SIMS data within 2.5%. SIMS profiles demonstrate boron isotope homogeneity to better than δ11 B = 2% for both NIST glasses, however a slight boron depletion was detected towards the outermost 200 μm of the rim of each sample wafer. The boron isotope compositions of SRM 610 and SRM 612 were indistinguishable. Glasses produced in this study by fusing JB-2 and JR-2 powder also showed good boron isotope homogeneity, both within and between different glass fragments. Their major element abundance as well as boron isotope compositions and concentrations were identical to those of the starting composition. Hence, reference materials (glasses) for the in situ measurement of boron isotopes can be produced from already well-studied volcanic samples without significant isotope fractionation. Oxygen isotope ratios, both within and between wafers, of NIST reference glasses SRM 610 and SRM 612 are uniform. In contrast to boron, significant differences in oxygen isotope compositions were found between the two glasses, which may be due to the different amounts of trace element oxides added at ten-fold different concentration levels to the silicate matrix.  相似文献   

19.
The commonly used, but no longer available, reference materials NIST SRM 976 (Cu) and ‘JMC Lyon’ (Zn) were calibrated against the new reference materials ERM®‐AE633, ERM®‐AE647 (Cu) and IRMM‐3702 (Zn), certified for isotope amount ratios. This cross‐calibration of new with old reference materials provides a continuous and reliable comparability of already published with future Cu and Zn isotope data. The Cu isotope amount ratio of NIST SRM 976 yielded δ65/63Cu values of ?0.01 ± 0.05‰ and ?0.21 ± 0.05‰ relative to ERM®‐AE633 and ERM®‐AE647, respectively, and a δ66/64ZnIRMM‐3702 value of ?0.29 ± 0.05‰ was determined for ‘JMC Lyon’. Furthermore, we separated Cu and Zn from five geological reference materials (BCR‐2, BHVO‐2, BIR‐1, AGV‐1 and G‐2) using a two‐step ion‐exchange chromatographic procedure. Possible isotope fractionation of Cu during chromatographic purification and introduction of resin‐ and/or matrix‐induced interferences were assessed by enriched 65Cu isotope addition. Instrumental mass bias correction for the isotope ratio determinations by MC‐ICP‐MS was performed using calibrator‐sample bracketing with internal Ni doping for Cu and a double spike approach for Zn. Our results for the five geological reference materials were in very good agreement with literature data, confirming the accuracy and applicability of our analytical protocol.  相似文献   

20.
A method for the simultaneous determination of Cd with In, Tl and Bi by isotope dilution‐internal standardisation (ID‐IS) ICP‐QMS using the same aliquot for rare earth element and other trace element determinations was developed. Samples mixed with an enriched 149Sm spike were decomposed using a HF‐HClO4 mixture, which was evaporated and then diluted with HNO3. After determination of Sm by ID‐ICP‐QMS and Cd, In, Tl and Bi concentrations were determined using the 149Sm intensity as an internal standard. The interference of MoO+ on Cd+ was corrected using the MoO+/Mo+ ratio separately measured using a Mo standard solution, and the validity of the externally determined oxide‐forming ratio correction was evaluated. The MoO+/Mo+ ratios measured using the standard solution and samples were ~ 0.0002 and < 0.002, respectively. Detection limits for Cd, In, Tl and Bi in silicate samples were at levels of < 1 ng g?1 with a total uncertainty of < 7%. Cadmium in the carbonaceous chondrites, Orgueil (CI1), Murchison (CM2) and Allende (CV3) as well as Cd, In, Tl and Bi in the reference materials, JB‐2, JB‐3, JA‐1, JA‐2, JA‐3, JP‐1 (GSJ), BHVO‐1, AGV‐1, PCC‐1 and DTS‐1 (USGS) and NIST SRM 610, 612, 614 and 616 were determined to show the applicability of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号