首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrophobic organic contaminants (HOCs) may be used as tracers of particle dynamics in aquatic systems. Internal cycling of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were studied in the mesohaline Chesapeake Bay to assess the role of resuspension in maintaining particle and contaminant inventories in the water column, and to compare settling and suspended particle characteristics. Direct measurements of sediment resuspension and settling conducted in conjunction with one of the sediment trap deployments indicate reasonable agreement between measurements of particle flux using the two different methods. Organic carbon and PCB concentrations in settling solids collected in near-surface sediment traps were remarkably lower than concentrations in suspended particles collected by filtration during the trap deployments, but higher PAH concentrations were found in the settling particles. The different behaviors of PAHs and PCBs in the settling particles are due to their different source types and association to different types of particles. Sediment trap collections in near bottom waters were dominated by resuspension. Resuspension fluxes of HOCs measured 2 m above the bay bottom were as high as 2.5 μg/m2 day for total PCBs and 15 μg/m2 day for fluoranthene, and were 25 and 10 times higher than their settling fluxes from surface waters, respectively. HOC concentrations in the near bottom traps varied much less between trap deployments than HOC concentrations in the surface traps, indicating that the chemical composition of the resuspended particles collected in the near bottom traps was more time-averaged by repeated resuspension than the surface particles.  相似文献   

2.
Sediment trap experiments were carried out ten times in one year (1977) at three depths in Funka Bay. The material obtained in the traps was analyzed for metals, organic elements and radionuclides, together with the suspended matter in the overlying water column. Two groups with extremely different downward fluxes were found, a group with a small flux increasing with depth, and another with a large flux that is rather constant with depth and is observed only in winter. The flux in winter, and sometimes in the bottom layer below the summer thermocline was larger than the net sedimentation rate for total dry matter or for each chemical constituent. The flux was also larger than the net removal flux for 234Th. A most striking fact is that the specific activity of short-lived 234Th did not decrease in winter, indicating that the large flux in winter was not caused by the re-suspension of old bottom sediments. The concentration of suspended matter in winter was not much greater than that in other seasons. These results suggest that the downward flux observed in sediment trap experiments is not a net removal rate and that there must be an upward particulate flux in the bay.  相似文献   

3.
Cylindrical sediment traps were deployed at various depths in the anoxic water of Framvaren for two periods of one year (1981–1982 and 1983–1984). The traps were emptied three times during 1981–1982 and five times during 1983–1984. The vertical fluxes of total suspended material, organic carbon and nitrogen were calculated on a daily and annual basis. The average annual sediment flux 20 m above the bottom was approximately 60 g m−2 y−1 and the flux of organic carbon was 20 g m−2 y−1. On the basis of an average C/N ratio of 8 and a constant carbon flux below a depth of 20 m, it is concluded that little mineralization of the organic matter takes place in the anoxic water column. Assuming a primary production of the order to 50–100 g m−2 y−1, 22–24% of that reaches the anoxic water masses. Further breakdown of organic matter takes place in the surface sediments.  相似文献   

4.
《Journal of Sea Research》1999,41(1-2):19-33
Electron microprobe analysis of suspended-matter samples collected at different water depths at ten stations in the Angola Basin indicated that at each station, from top to bottom, the elementary composition of the suspended matter was very similar and differed from the composition of the suspended matter at the adjacent stations. This indicates that the downward settling of the suspended matter is much faster than the horizontal transport and mixing by the currents. Assuming that the suspended matter settles in the form of flocs, or is scavenged by settling flocs, the suspended matter can indeed reach the bottom in a shorter period than needed for the currents to cover the distance between adjacent stations. Comparison with sediment trap data from the literature shows that also lateral transports and/or deep water gyres have to be invoked to further increase residence times of suspended matter in the water column.  相似文献   

5.
Temporal variations of sinking particle flux, together with their organic chemical properties, were monitored in the deep basin of Sagami Bay, Japan, using sediment traps with very high time resolutions from March 1997 to August 1998. At a height of 350 m above the bottom (about 1200 m water depth), the averaged total mass flux was more than 1000 mg/m2/day, which is about 10 times higher than those obtained for open ocean regions near Sagami Bay. While large amounts of phytodetritus, derived from phytoplankton blooms in the surface water, were transported downward in spring, the following extraordinary patterns in the temporal variability of sinking particle flux were also observed: (1) A sustained large flux of sinking particles during low productive periods from summer to winter in 1997. (2) An episodic increase of sinking particle flux in June 1998. (3) A difference in the temporal variability of sinking particles between the spring bloom periods of 1997 and 1998. The content of total organic carbon (TOC) and the stable carbon isotopic ratio (δ13C) of TOC demonstrated that the large fluxes observed in (1) and (2) could be attributed to the resuspension of phytodetritus deposited on the sea floor during the spring bloom period, and the abrupt erosion of surface sediment on the continental slope, respectively. The concentration of suspended particles in the deep water column affect the apparent flux of sinking particles. At the same time, sinking particles exported from surface waters during the spring bloom both decrease and increase suspended particle concentration through scavenging and rebound processes, respectively. Finally, the apparent difference in sinking particle flux between 1997 and 1998, (3), could be explained by differences in the extent of the scavenging process, which depend on the flux and quality of exported particles from the surface waters.  相似文献   

6.
The weekly mass flux of C and phytoplankton pigments at five depths in the main basin of Puget Sound, a deep (200 m) fjordlike estuary, was sampled for a year with moored sequentially-sampling sediment traps. Flux measurements were compared with weekly samples of suspended pigments in the euphotic zone and bi-monthly samples of total suspended matter and particulate C throughout the water column at the mooring site.Seasonal changes in the total mass flux at all depths were small; instead, physical (river runoff, bottom resuspension) and biological (phytoplankton blooms) events caused occasional sharp increases on a weekly scale. The dry weight concentration of pigments in the trap samples mirrored the concentration of pigments in the euphotic zone suspended matter, increasing from 0·01% in winter to a maximum of 0·65% in late summer. Bloom-induced changes in the pigment concentration were observed almost simultaneously in the euphotic zone and in the traps to a depth of 160 m, indicating a rapid vertical transfer of surface-originating particles by organic aggregates. In contrast to the strong seasonal signal in the pigment concentration, C concentration varied by only a factor of three during the year.The seasonal trend of C/pigment ratios in the C flux arises from at least two sources: (1) a balance between terrestrial sources of C during the high-runoff winter season and in-situ primary production in spring and summer, and (2) cycling of C through the zooplankton population. Budget calculations suggest that the loss of primary-produced C and pigment from the euphotic zone by settling is 5% regardless of season. On an annual basis, this C flux (16 g m−2) is sufficient to support previously measured values of benthic aerobic respiration at the mooring site. To account for other C sinks such as burial, predation and chemical oxidation, however, terrestrial C sources and alternate transport pathways, such as vertical advection and sediment movement down the steep basin walls, are necessary.  相似文献   

7.
To establish the relative importance of terrigenous and marine organic matter in the southern Beaufort Sea, we measured the concentrations and the stable isotopic compositions of organic carbon and total nitrogen in sediments and in settling particles intercepted by sediment traps. The organic carbon content of surface sediment in the Chukchi and southern Beaufort Seas ranged from 0.6 to 1.6% dry wt., without a clear geographical pattern. The CORG:NTOT ratio ranged from 7.0 to 10.4 and did not vary significantly downcore at any one station. Values of δ13CORG and δ15NTOT in the sediment samples were strongly correlated, with the highest values, indicative of a more marine contribution, in the Amundsen Gulf. In contrast, the organic matter content, elemental (CORG:NTOT ratio) and isotopic (δ13CORG and δ15NTOT) composition of the settling particles was different from and much more variable than in the bottom sediments. The isotopic signature of organic matter in the Beaufort Sea is well constrained by three distinct end-members: a labile marine component produced in situ by planktonic organisms, a refractory marine component, the end product of respiration and diagenesis, and a refractory terrigenous component. A three-component mixing model explains the scatter observed in the stable isotope signatures of the sediment trap samples and accommodates an apparent two-component mixing model of the organic matter in sediments. The suspended matter in the water column contains organic matter varying from essentially labile and marine to mostly refractory and terrigenous. As it settles through the water column, the labile marine organic matter is degraded, and its original stable isotope signature changes towards the signature of the marine refractory component. This process continues in the bottom sediment with the result that the sedimentary organic matter becomes dominated by the refractory terrigenous and marine components.  相似文献   

8.
A simple model with horizontal and vertical diffusivities and settling velocity is used to calculate expected distributions of suspended particulate matter in a section across the continental shelf and slope. Dependencies on the shelf and slope profile, diffusivities, settling velocity, cross-slope advection and boundary sources/sinks are explored. It is found that the strongest factors are relative values of diffusivities and settling velocity, and the distribution of sources and sinks – including bottom deposition or resuspension. The latter is the principal means whereby an increased concentration near the bottom is likely, and is suggested as the usual reason for increased deposition recorded by sediment traps nearer the bottom. Observed thin, near-horizontal intermediate nepheloid layers put bounds on the vertical diffusivity and settling velocity, e.g. O(10-4 m2 s-1, 10-5 m s-1) over Goban Spur in OMEX.  相似文献   

9.
The natural isotope 234Th is used in a small-scale survey of particle transport and exchange processes at the sediment–water interface in the Benguela upwelling area. Results from water and suspended particulate matter (SPM) samples from the uppermost and lowermost water column as well as the underlying sediment of three stations are compared. The stations are situated in different sedimentological environments at 1200–1350 m water depth at the continental slope off Namibia. Highly differing extent and particle content of the bottom nepheloid layer (BNL) are determined from transmissometer data. Three models are presented, all explaining the 234Th depletion of the BNL and 234Th excess of the surface sediment that were observed. While the first model is based solely on local resuspension of surface sediment particles, the second evaluates the influence of vertical particle settling from the surface waters on the 234Th budget in the BNL. The third model explains 234Th depletion in the BNL by sedimentation of particles that were suspended in the BNL during long-range transport. Particle inventory of the BNL is highest at a depocenter of organic matter at 25.5°S, where strong deposition is presently taking place and lateral particle transport is suggested to predominate sediment accumulation. This is supported by the high settling flux of particles out of the BNL into the sediments of the depocenter, exceeding the vertical particle flux into sediment traps at intermediate depth in the same area by up to an order of magnitude. High particle residence/removal times in the BNL above the depocenter in the range of 5–9 weeks support this interpretation. Comparison with carbon mineralization rates that are known from the area reveals that, notwithstanding the large fraction of advected particles, organic carbon flux into the surface sediment is remineralized to a large extent. The deployment of a bottom water sampler served as an in situ resuspension experiment and provided the first data of 234Th activity on in situ resuspended particles. We found a mean specific activity of 86 disintegrations per minute (dpm) g−1 (39–339 dpm g−1), intermediate between the high values for suspended particles (in situ pump: 580–760 dpm g−1; CTD rosette: 870–1560 dpm g−1) and the low values measured at the sediment surface (26–37 dpm g−1). This represents essential information for the modeling of 234Th exchange processes at the sediment–water interface.  相似文献   

10.
Investigation of lithogenic particles collected by sediment traps in open-ocean stations revealed that the sediment flux increased linearly with depth in the water column. This rate of increase decreased with distance of the station from the continent; it was largest at the Panama Basin station and almost negligible at the E. Hawaii Abyssal Plain station. At the Panama Basin station, smectite flux increased with depth. We suggest that smectite resuspended from bottom sediments of the continental slope west of the sediment-trap station is advected by easterly deep currents, and the suspended particles are then possibly entrapped by large settling particles. On the other hand, the flux of hemipelagic clay particles, kaolinite and chlorite, was nearly constant at all depths; this can be explained by incorporation of these particles in fecal pellets which then settle from the surface water. At the Demerara Abyssal Basin Station, flux of illite and chlorite particles increased with depth and the flux of smectite was constant. A sudden increase of the flux of illite and chlorite was observed near the bottom traps at the Söhm Abyssal Plain station. The flux of quartz and feldspar was 10 to 15% of the clay flux.  相似文献   

11.
Four types of sediment traps which are different in their shapes were simultaneously deployed in Funka Bay, Hokkaido or open ocean, in order to compare the quantity and quality of settling particles collected at the same time. In Funka Bay, the larger total particulate fluxes were observed with the sediment traps having the larger height to width ratios. The settling particles collected with the narrower sediment traps were somewhat similar to suspended particle enriched in organic matter, phosphorus and Mn. These results suggest that the narrower sediment trap more effectively collects fine and light particles similar to suspended particles.  相似文献   

12.
Sediment trap experiments were carried out 39 times during the years from 1977 to 1981 in Funka Bay, Hokkaido, Japan. The observed total particulate flux varies seasonally, that is, the particulate fluxes in winter and spring are larger than those in summer. The fluxes in all seasons increased with depth. Major components of settling particles are aluminosilicate in winter, biogenic silicate in spring and organic matter and terrestrial material in summer, respectively. The fluxes of each chemical component observed with sediment traps are normalized to that of Al by assuming that the actual flux of Al is equal to the accumulation rate onto the sediment surface. Vertical changes of the normalized flux of each chemical component indicate the following: Fe was not regenerated from the settling particles in the water column. Mn was regenerated from the settling particles in the lower layer exclusively between 80 m depth and the sediment surface. Cd was actively regenerated in the upper layer above 80 m depth. Phosphate was regenerated in the upper layer, while biogenic silicate was in the lower layer. The silicate regeneration, therefore, occurs after phosphate regeneration. The material decomposing in the water column below 40 m has an atomic ratio of P ∶ Si ∶ C = 1 ∶ 52 ∶ 128.  相似文献   

13.
The anthropogenic contribution of trace metals to settling particulate matter (SPM) and surficial sediments was determined on the high-energy continental shelf adjacent to Sydney, Australia. Settling particulate matter and surficial sediment was collected in the vicinity of a major sewage outfall and at five control sites on the middle shelf (80-100 m water depth). Sediment traps were deployed on 10 occasions for up to 2 weeks during the summer and winter of 1995 and SPM was analyzed for Ag, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. Cobalt, Fe, Mn and Ni act conservatively in SPM and in sediments regionally and are used as normalizing elements to determine anthropogenic enrichment. Surficial sediments and SPM are enriched in Ag, Cr, Cu, Pb and Zn near a major ocean outfall and at four of the five control sites, although sewage particles contribute < 5% of trace metals in the total sample. Silver is the most sensitive trace metal tracer for establishing the presence of sewage particulate matter. Sewage particulate matter flux near the outfall was estimated using a two end-member mixing model and is below 0.5 g m(-2) day(-1) during all deployment periods. The mean sewage particulate matter flux at sampling locations 30 km and 60 km north of the outfall are <0.13 g m(-2) day(-1) and <0.01 g m(-2) day(-1), respectively, indicating an efficient dispersal of anthropogenic material on this high energy continental shelf.  相似文献   

14.
A 2-yr record of downward particle flux was obtained with moored sediment traps at several depths of the water column in two regions characterized by different primary production levels (mesotrophic and oligotrophic) of the eastern subtropical North Atlantic Ocean. Particle fluxes, of ∼71–78% biogenic origin (i.e. consisting of CaCO3, organic matter and opal) on average, decrease about six-fold from the mesotrophic site (highest fluxes in the North Atlantic) nearer the Mauritanian margin (18°30′N, 21°00′W) to the remote, open-ocean, oligotrophic site (21°00′N, 31°00′W). This decrease largely reflects the difference in total primary production between the two sites, from ∼260 to ∼110 g organic C m−2 yr−1. At both sites, temporal variability of the downward particle flux seems to be linked to westward surface currents, which are likely to transport seaward biomass-rich water masses from regions nearer the coast. The influence of coastal upwelling is marked at the mesotrophic site. The large differences between the 1991 and 1992 records at that site, where carbon export is large, underscore the interest of long-term studies for export budget estimates. The different productivity regimes at the two sites seem to induce contrasting downward modes of transport of the particulate matter, as shown in particular by the faster settling rates and the higher E ratio (particulate organic carbon export versus total primary production) estimated at the mesotrophic site.  相似文献   

15.
近海悬浮物在海水中的运移受诸多因素影响,其中由于径流输入导致的水体层化是不可忽视的因素之一,研究层结水体中沉积物受潮流、波浪影响的再悬浮特征有重要意义.2005年5月15日在黄河口西侧18海里处的莱州湾口设立了一个周日连续观测站,试图揭示弱层结水体中悬浮物的再悬浮特征及其水平、沉降通量.利用ADCP回声强度反演得到了高...  相似文献   

16.
Activities of the natural radionuclides 226Ra (T1/2 =1602 years) and 22sRa (T1/2 =5.75 years) in particulate matter are reported from sediment traps deployed in the tropical northeast Atlantic. 228Ra/226Ra activity ratios in settling particles are compared to those found in the water column in order to specify the origin of radium incorporated in particulate matter, and consequently that of barium, since the two elements are known to display close geochemical behaviours in the oceans. Whereas 228Ra/226Ra activity ratios in the water column display very large variations with depth, they remain nearly constant in particles, with values close to those found in the upper 250 m. These results clearly demonstrate that particles acquire their radium and, by inference, their barium, in the upper water column and that there is very little exchange with the dissolved phase as they settle to the bottom.  相似文献   

17.
Under conditions common in muddy coastal and estuarine environments, acoustic Doppler velocimeters (ADVs) can serve to estimate sediment settling velocity (w s) by assuming a balance between upward turbulent Reynolds flux and downward gravitational settling. Advantages of this method include simple instrument deployment, lack of flow disturbance, and relative insensitivity to biofouling and water column stratification. Although this method is being used with increasing frequency in coastal and estuarine environments, to date it has received little direct ground truthing. This study compared in situ estimates of w s inferred by a 5-MHz ADV to independent in situ observations from a high-definition video settling column over the course of a flood tide in the bottom boundary layer of the York River estuary, Virginia, USA. The ADV-based measurements were found to agree with those of the settling column when the current speed at about 40 cm above the bed was greater than about 20 cm/s. This corresponded to periods when the estimated magnitude of the settling term in the suspended sediment continuity equation was four or more times larger than the time rate of change of concentration. For ADV observations restricted to these conditions, ADV-based estimates of w s (mean 0.48±0.04 mm/s) were highly consistent with those observed by the settling column (mean 0.45±0.02 mm/s). However, the ADV-based method for estimating w s was sensitive to the prescribed concentration of the non-settling washload, C wash. In an objective operational definition, C wash can be set equal to the lowest suspended solids concentration observed around slack water.  相似文献   

18.
In terms of downward transport, suspended particulate matter(SPM) from marine or terrigenous sources is an essential contributor to the carbon cycle. Within mesoscale environments such as seagrass ecosystems, SPM flux is an essential part of the total carbon budget that is transported within the ecosystem. By assessing the total SPM transport from water column to sediment, potential carbon burial can be estimated. However, SPM may decompose or reforming aggregate during transport, so estimating the vertical flux without knowing the decomposition rate will lead to over-or underestimation of the total carbon budget. Here this paper presents the potential decomposition rate of the SPM in seagrass ecosystems in an attempt to elucidate the carbon dynamics of SPM. SPM was collected from the seagrass ecosystems located at Sikka and Sorong in Indonesia. In situ experiments using SPM traps were conducted to assess the vertical downward flux and decomposition rate of SPM. The isotopic profile of SPM was measured together with organic carbon and total nitrogen content. The results show that SPM was transported to the bottom of the seagrass ecosystem at a rate of up to(129.45±53.79)mg/(m~2·h)(according to carbon). Considering the whole period of inundation of seagrass meadows, SPM downward flux reached a maximum of 3 096 mg/(m~2·d)(according to carbon). The decomposition rate was estimated at from 5.9 μg/(mg·d)(according to carbon) to 26.6 μg/(mg·d)(according to carbon). Considering the total downward flux of SPM in the study site, the maximum decomposed SPM was estimated 39.9 mg/(m~2·d)(according to carbon) and 82.6 mg/(m~2·d)(according to carbon) for study site at Sorong and Sikka, respectively.The decomposed SPM can be 0.6%–2.7% of the total SPM flux, indicating that it is a small proportion of the total flux. The seagrass ecosystems of Sorong and Sikka SPM show an autochthonous tendency with the primary composition of marine-end materials.  相似文献   

19.
Climatological, current and particulate flux data were gathered in the Grand-Rhône canyon on the Gulf of Lions continental margin for one year (Jan. 1988–Jan 1989). Time series were analyzed to determine the influence of physical exchange processes on particulate matter at the shelf-edge, with a special emphasis on the Northern Current variability.The synoptic variability of the Northern Current was linked to meanders of 2–5 day period. Its meso-scale activity presented a seasonal signal with maximum values in early spring. Peaks of particulate fluxes in the upper traps were little affected by large river and atmospheric inputs, but rather by enhanced shelf-slope exchanges at the shelf edge due to intense cross-slope fluctuations of the Northern Current. These fluctuations caused cross-isobath flows near the bottom, which appeared to be a potential mechanism in transporting particles off the shelf. At 900 m depth, high-flux events measured by sediment traps were primarily linked to periods of higher cross-slope current oscillations. This correlation suggests that vertical motions caused by these oscillations contribute to the suspended particulate matter transport through the process of bringing higher suspended material concentrations from above to greater depths. Vertical velocity estimates were derived through temperature fluctuations combined with vertical temperature gradient and from the kinematic boundary condition. A simple diffusion model indicates that the vertical turbulent mixing of suspended particulate matter, induced by the cross-slope current oscillations, yields downward fluxes of particles comparable to those collected by sediment traps.  相似文献   

20.
伶仃洋河口泥沙絮凝特征及影响因素研究   总被引:1,自引:1,他引:0  
田枫  欧素英  杨昊  刘锋 《海洋学报》2017,39(3):55-67
泥沙絮凝对河口细颗粒泥沙运动过程起着极其重要的作用。本文通过LISST-100激光粒度仪等仪器实测伶仃洋河口2013年洪季悬浮泥沙絮凝体现场粒径及水动力、泥沙条件,结合实验室悬沙粒径分析,研究大小潮期间伶仃洋河口泥沙絮凝特征,探讨紊动剪切强度、含沙量、盐度分层及波浪等因素对伶仃洋河口泥沙絮凝的影响。结果表明:伶仃洋河口水体中现场粒径平均值为148.53 μm,大于实验室悬沙分散粒径36.74 μm,河口絮凝现象明显;沉速与有效密度、粒径呈正相关,絮团平均有效密度为153.49 kg/m3,平均沉速达1.13 mm/s;小潮时絮团平均粒径大于大潮,垂向上表底层絮团粒径小、中层大,中底层絮团沉速大于表层。伶仃洋河口水动力、泥沙条件是影响其泥沙絮凝的重要因素,低剪切强度(小于5 s-1)、低含沙量(小于50 mg/L)及高体积浓度有利于细颗粒泥沙之间的相互碰撞,促进絮凝作用;当剪切强度与颗粒间碰撞强度高于絮团所能承受的强度时,絮团易破碎分解成小絮团或更细的泥沙颗粒;伶仃洋河口盐度层化引起的泥沙捕获现象增大中层泥沙体积浓度,有利于中层絮凝体的发育;观测期相对较大的波浪增强水体紊动,增大了水体细颗粒泥沙的碰撞几率,表层絮团粒径随波高峰值的出现而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号